AN L-BAND CW "COLD" LINAC TO BOOST THE BEAM FROM AN S-BAND 'WARM" INJECTOR: POSSIBLE RF LAYOUTS AND BUDGETARY COST ESTIMATE

D. Alesini, R. Boni, M. Ferrario, A. Gallo, F. Marcellini, B. Spataro, F. Tazzioli, M. Vescovi, INFN - LNF

S-Band Injector characteristics and LINAC basic specifications:

INJECTOR

Energy	$E_{\text {inj }}$	150 MeV
Technology		S-band, normal conducting
Mode of operation		pulsed
Pulse length	τ_{p}	$\bullet 3 \mu \mathrm{~s}$
Max charge per bunch	q_{b}	1 nC
Max bunch frequency	f_{b}	$10^{4} / \mathrm{s}$
Max number of bunches per pulse	N_{b}	10
Max pulse repetition rate	$f_{\text {rep }}$	1 kHz
Max beam current	I_{b}	$10 \mu \mathrm{~A}$
Max average beam power	P_{b}	1.5 kW

LINAC

Energy	$E_{\text {linac }}$	2.0 GeV
Technology		L-band, superconducting
Mode of operation		CW
Max beam current	I_{b}	$10 \mu \mathrm{~A}$
Max average beam power	P_{b}	20 kW

THE SYNCHRONIZATION PROBLEM

$\begin{array}{ll}\text { 1) } & \text { SLAC S-Band: } \\ & 2856 \mathrm{MHz}=714 \times 4 \mathrm{MHz} \\ \text { TESLA L-Band: } & \\ & 1300 \mathrm{MHz}=325 \times 4 \mathrm{MHz}\end{array}$

Advantages: use of the most widely diffused standard frequencies/technologies
Limitations: low master frequency, poor flexibility for the bunch pattern in the pulse
2) Modified SLAC S-Band: $2860 \mathrm{MHz}=11 \times 260 \mathrm{MHz}$

TESLA L-Band: $\quad 1300 \mathrm{MHz}=5 \times 260 \mathrm{MHz}$

Advantages: simple frequency ratio, great flexibility for the bunch pattern in the pulse Limitations: S-band sections slightly modified (respect to the SLAC standard)
3) CERN S-Band: • 3000 MHz CEBAF L-Band: • 1500 MHz

Advantages: integer frequency ratio, total flexibility for the bunch pattern in the pulse
Limitations: use of less widely diffused standard frequencies/technologies

TESLA SC CAVITIES BASIC SPECIFICATIONS:

Resonant frequency	f_{0}	$=1.3 \mathrm{GHz}$

Number of cells	N_{C}	$=9$
Quality factor	Q_{0}	- 110^{10} @ $15 \mathrm{MV} / \mathrm{m}$ - 710^{9} @ $25 \mathrm{MV} / \mathrm{m}$
Geometrical impedance	$R / Q=V^{2} / \omega_{0} U$	- $1 \mathrm{k} \cdot$
Structure length	L	- 1 m
Accelerating voltage	V	-15 MV @ $15 \mathrm{MV} / \mathrm{m}$ - 25 MV @ 25 MV/m
Wall power dissipation	P_{d}	- 23 W @ $15 \mathrm{MV} / \mathrm{m}$ -90 W @ $25 \mathrm{MV} / \mathrm{m}$
Number of cavities (@2.0 GeV)	$N_{c a v}$	- 133 @ $15 \mathrm{MV} / \mathrm{m}$ - 80 @ $25 \mathrm{MV} / \mathrm{m}$
Total wall power dissipation	$P_{d T o t}$	-3.1 kW @ $15 \mathrm{MV} / \mathrm{m}$ -7.2 kW @ 25 MV/m
Max beam current	I_{b}	$10 \mu \mathrm{~A}$
Max average beam power per cavity	$P_{b c}$	- 150 W @ $15 \mathrm{MV} / \mathrm{m}$ -250 W @ 25 MV/m
Max external quality factor	$Q_{e x t}$	- 2.510^{7}
Min loaded cavity bandwidth	$f_{B W} \bullet f_{0} / Q_{e x t}$	- 50 Hz
Max cavity filling time	$\tau_{f} \bullet 1 / \bullet f_{B W}$	- 6 ms
Min RF forward power per cavity	$P_{R F} \bullet V^{2} / 4(R / Q) Q_{e x t}$	-2.25 kW @ $15 \mathrm{MV} / \mathrm{m}$ -6.25 kW @ $25 \mathrm{MV} / \mathrm{m}$

THE BEAM LOADING PROBLEM

Since we are considering the option of using a CW, SC linac coupled to a pulsed NC injector, the beam current is fractionated in short trains confined in one pulse of the Sband RF system. In the limit case of trains made of a single bunch, beam loading effects are absent. If each train is composed by a certain number of bunches, each bunch will absorb some energy from the cavity reducing the available gradient for the following
bunches. The train duration (i.e. the pulse length) is definitely too short to allow the cavity energy restoring through the input RF, and an head-tail energy spread along the train is unavoidable.

If we consider a cavity powered to $V_{a c c} \bullet 15 \mathrm{MV} / \mathrm{m}$ and a beam current $I_{b} \cdot 10 \mu \mathrm{~A}$, obtained with 10 bunches of charge $q_{b} \cdot 1 n C$ per pulse and a rep rate $f_{\text {rep }}=1 \mathrm{kHz}$ ($T_{\text {rep }}=1 \mathrm{~ms}$), we typically end up with the following accelerating voltage envelope:

The saw-tooth voltage parameters are given by:
$\Delta V=\frac{1}{2} N_{b} q_{b} \omega_{0}(R / Q) ; \quad V_{\text {drop }}=\Delta V \frac{e^{-T_{r e p} / \tau_{f}}}{1-e^{-T_{\text {rep }} / \tau_{f}}}$

The expected energy spread along the train is $\bullet E / E \cdot 0.28 \%$ in this case. If more than 10 bunches are considered, a larger energy spread is expected. Being perfectly correlated, the spread can be (eventually) cancelled by properly powering one or more off-frequency cavities.

To distribute the train from $-\bullet / 6$ to $+\bullet / 6$ along the "correcting" sine wave the ratio of the frequencies should be:

$$
\omega_{R F}^{\prime} / \omega_{R F}=1+1 / 6 k N_{b}
$$

while the amplitude of the correcting sine wave is: $\quad V_{R F}^{\prime}=N_{c a v} \Delta V$

The condition on the frequencies adds one extra synchronization problem, and it pose some constraints in the choice of bunch pattern inside the pulse.

The feasibility of other compensation methods (like injection of the bunch trains on the rising front of the voltage of the correcting cavities) can be studied.

BASIC LAYOUT OF A CW, L-BAND SC LINAC FOR SASE

$\mathrm{E}_{\text {linac }}=2 \mathrm{GeV} ; \mathrm{Q}_{\mathrm{ext}} \cdot 2.510^{7}$
Cavity cost: $3 \mathrm{G} £ / 12$ cavities; \quad Cryogenics cost: $10 \mathrm{G} £ \bullet\left(\mathrm{P}_{\text {tot }} @ 2^{\circ} \mathrm{K} / 1 \mathrm{~kW}\right)^{0.6} ; \quad \mathrm{RF}$ cost: $30 \mathrm{M} £ / \mathrm{kW}$

Gradient $[\mathrm{MV}]$	$\mathrm{Qo} / 10^{\wedge} 9$	PRF/cav $[\mathrm{kW}]$	PRFtot $[\mathrm{kW}]$	Pd/cav $[\mathrm{kW}]$	Pdtot [kW]	Cavities $[\mathrm{G} £]$	Cryo [G£]	RF [G£]	Tot [G£]
15	10	2.17	289.58	0.022	2.896	33.33	18.93	8.69	60.95
16	9.7	2.47	308.88	0.025	3.184	31.25	20.04	9.27	60.55
17	9.4	2.79	328.19	0.030	3.491	29.41	21.17	9.85	60.43
18	9.1	3.13	347.49	0.034	3.819	27.78	22.34	10.42	60.55
19	8.8	3.48	366.80	0.040	4.168	26.32	23.55	11.00	60.87
20	8.5	3.86	386.10	0.045	4.542	25.00	24.80	11.58	61.38
21	8.2	4.26	405.41	0.052	4.944	23.81	26.09	12.16	62.06
22	7.9	4.67	424.71	0.059	5.376	22.73	27.43	12.74	62.90
23	7.6	5.11	444.02	0.067	5.842	21.74	28.84	13.32	63.90
24	7.3	5.56	463.32	0.076	6.347	20.83	30.31	13.90	65.04
25	7	6.03	482.63	0.086	6.895	20.00	31.85	14.48	66.33

RF SAVING LAYOUT (Feasible? to be verified)

$\mathrm{E}_{\text {linac }}=2 \mathrm{GeV} ; \mathbf{Q}_{\text {ext }} \cdot \mathbf{1 . 2} 1 \mathbf{1 0}^{7}$
Cavity cost: $3 \mathrm{G} £ / 12$ cavities; \quad Cryogenics cost: $10 \mathrm{G} £ \cdot\left(\mathrm{P}_{\text {tot }} @ 2^{\circ} \mathrm{K} / 1 \mathrm{~kW}\right)^{0.6} ; \quad$ RF cost: $7 \mathbf{M} £ / \mathbf{k W}$

Gradient $[\mathrm{MV}]$	$\mathrm{Qo} / 10^{\wedge} 9$	PRF/cav $[\mathrm{kW}]$	PRFtot $[\mathrm{kW}]$	Pd/cav $[\mathrm{kW}]$	Pdtot [kW]	Cavities $[\mathrm{G} £]$	Cryo [G£]	$\mathrm{RF}[\mathrm{G} £]$	Tot [G£]
15	10	4.52	603.28	0.022	2.896	33.33	18.93	4.22	56.48
16	9.7	5.15	643.50	0.025	3.184	31.25	20.04	4.50	55.79
17	9.4	5.81	683.72	0.030	3.491	29.41	21.17	4.79	55.37
18	9.1	6.52	723.94	0.034	3.819	27.78	22.34	5.07	55.19
19	8.8	7.26	764.16	0.040	4.168	26.32	23.55	5.35	55.21
20	8.5	8.04	804.38	0.045	4.542	25.00	24.80	5.63	55.43
21	8.2	8.87	844.59	0.052	4.944	23.81	26.09	5.91	55.81
22	7.9	9.73	884.81	0.059	5.376	22.73	27.43	6.19	56.35
23	7.6	10.64	925.03	0.067	5.842	21.74	28.84	6.48	57.05
24	7.3	11.58	965.25	0.076	6.347	20.83	30.31	6.76	57.90
25	7	12.57	1005.47	0.086	6.895	20.00	31.85	7.04	58.89

LINAC COST (G£)

"Standard" solutions: $\quad 10$ cryomodules, 120 cavities, $\mathrm{V}_{\text {acc }} \bullet 17 \mathrm{MV} / \mathrm{m}, \mathrm{L}_{\text {tot }} \bullet 170 \mathrm{~m}, \quad=>\mathbf{6 0 . 5} \mathbf{G £}$

| 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

"RF power saving" solution: 8 cryomodules, 96 cavities, $\mathrm{V}_{\mathrm{acc}} \bullet 21 \mathrm{MV} / \mathrm{m}, \mathrm{L}_{\text {tot }} \bullet 136 \mathrm{~m},=>\mathbf{5 5 . 8} \mathbf{G} \boldsymbol{£}$

