CONTRIBUTIONS TO THE FEL MEETING ON BUNCH COMPRESSOR ISSUES

1) M. Ferrario	HOMDYN study for possible Sparx linac layouts
2) C. Vaccarezza	Bunch compressor preliminary scheme
3) C. Milardi	General considerations about compressor optics
4) C. Ronsivalle	Bunch compressor: preliminary study
5) M. Quattromini, L. Giannes	siTREDI status report

HOMDYN Study For Possible Sparx Linac

Layouts

Massimo Ferrario

INFN-LNF

 $\Delta s = R_{56} \Delta E / E$

0.5-Meter X-Band RF Accelerating Structure

V = 22 MV f = 11.4 GHz P = 30 MW L = 0.6 mE = 250 MeV

Courtesy of P. Emma, SLAC

SENZA I ARMONICA

DZ_[mm]

DE_[MeV]

CON JE ARHONICA

Noc [A]

Warning: the 2 kA beam is space charge dominated untill ~ 2 GeV

WAKE FIELDS IN HOMDYN

Wake field along a 40 µm bunch

COMPRESSOR/WIGGLER MODEL

IN HOMDYN

$$\dot{z} = c \ \beta - \frac{K^2}{\gamma^2} \left(1 - \cos(2k_z z)\right)$$

$$R_{56} = L_c \vartheta^2$$

CSR Effects - Emittance Growth

Free space radiation from bunch tail at point A overtakes bunch head, a distance s ahead of the source, at the point B which satisfies...

 $s = \operatorname{arc}(AB) - |AB| = R\theta - 2R\sin(\theta/2) - R\theta^{3/24}$

and for $s = \sigma_{z}$ (rms bunch length) the overtaking distance is

 $L_0 |AB| = R\theta$ (24 $\sigma_r R^2$)^{1/3}, (HERA: $L_0 > 100$ m, LCLS: $L_0 \sim 1$ m)

Courtesy of P. Emma, SLAC

LEUTL CSR Measurements (ANL)

S-band inj. + L-band Linac with RF compressor (velocity bunching)

enx_[mmmrad]

enx_[mmmrad]

0

Bunch Compressor preliminary scheme Cristina Vaccarezza (INFN-LNF)

X-FEL Layout

Bunch Compressor main parameters

$$R_{56} \quad 2\theta_B^2 \quad L + \frac{2}{3}L_B$$

$$\frac{\varepsilon}{\varepsilon_0} = \sqrt{1 + \frac{(0.22)^2}{36} \frac{r_e^2 N^2}{\gamma \varepsilon_N \beta}} \frac{\theta^5 L_B}{\sigma_z^4} \frac{2^{/3}}{\rho_z^4} \left[L_B^2 \left(+ \alpha^2 \right) + 9\beta^2 + 6\alpha\beta L_B \right]$$

Beam energy	E	GeV
charge	q	nC
Initial rms bunch length	σ_{zi}	μm
Final rms bunch length	σ_{zf}	μm
rms energy spread throughout chicane	σ_{δ}	%
Momentum compaction	<i>R</i> ₅₆	mm
Total chicane length	L _{tot}	m
Length of each of four dipole magnets	L_B	m
Drift between the dipoles	ΔL	m
Bend angle of each dipole	/ θ_{B} /	deg
Emittance dilution due to CSR (no shielding)	$\Delta \epsilon_{CSR} \epsilon_o$	%
rms CSR relative energy spread (at 250 MeV)	$\sigma_{\delta CSR}$	10-4

Bunch Compressor preliminary scheme

type	E	R ₅₆	σ_{zi}	σ_{zf}	L_B	ΔL	L _{tot}	/ 0 _B /	β_x	$\sigma_{\delta CSR}$	$\Delta \epsilon_{CSR} \epsilon_o$
	(GeV)		(µm)	(µm)	(m)	(m)	(m)	(deg)	(m)	10-4	%
BCI a	.25	100	843	220	.4	1.8	7	8.9	.9	1.3	5.2
BCI b	.25	100	843	220	.2	2.0	6.8	8.9	.9	1.0	3.3
BCII a	.5	41	220	43	.3	5.5	17.7	3.4	.9	2.7	6.9
BCII b	.5	41	220	43	.2	8.0	24.8	2.9	.9	2.3	2.9

Elegant 14.5 (June 2001) ELEctron Generation And Tracking

- Tracking code in 6-dimensional space thate uses matrices of selectable order, canonical kick elements, numerical integrated elements and any combination thereof.
- The particles distributions can be generated internally or externally by other programs and stored in external files.
- The CSR model used by ELEGANT derives from the results of Saldin *et al*.

Each dipole is splitted into a user-specified number of pieces (e.g. 100), for each piece the entire beam (e.g. 40000 particles) is propagated using a second or fourth-order canonical integrator, the CSR wake is computed, finally the CSR energy kick is applied.

• The CSR in the drift space is included, different methods are compared.

General Considerations about Compressor Optics

Catia Milardi LNF - INFN

Bunch compressor main issues:

- * bunch length tuning
- * low _{x,y} to minimize chromatic effects
- * low x to have small contribution to second order isochronicity as well as to transverse emittance.
- * matching section
- * isochronicity (for beam diagnostic)

Bunch Length Tuning

The path length variation with energy is:

the first order approximation neglects contribution from T matrix

the achromatic condition implies

 $R_{51} = R_{52} = 0$

$$\mathbf{c} \mathbf{t} = \mathbf{R}_{56} \mathbf{p}/\mathbf{p}$$

If $R_{56} = 0$ the section is isochronous

Four-Bends Achromat

 $-.16 \text{ [m]} \le \text{R}_{56} \le .16 \text{ [m]}$

	$R_{56} =16 [m]$	$R_{56} = 0 [m]$	$R_{56} = .16 [m]$
KQS1 K [m ⁻¹]	-1.04	99	-1.28
KQS2	2.18	1.89	1.53
KQS3	1.73	1.84	2.4
KQS4	1.82	1.89	1.53
KQS5	1.50	99	-1.28
KQS6	86	79	-1.55
KQS7	91	79	-1.55

DS1	
DS2	$\alpha = 18^{\circ}$
DS3	$\rho = 1.79 \text{ m}$
DS4	

DS1, ..., DS4 are the EPA TL magnets

R₅₆~.16

assuming no E, z correlation the rsm bunch lenght σ_l is

 $\sigma^2_1 = \sigma^2_{10} + \mathbf{R}_{56}\sigma^2_{e}$

the achromat can be used to stretch the bunch

 $R_{56} = 0. !!$

Three-bends achromat

 $\alpha_1 = \alpha_2 = \alpha_3 = 0$ R₅₆ = 0.

Three-bends achromat twiss functions

R₅₆~.16