Inverse Compton Scattering Sources from Soft X-rays to y-rays

J.B. Rosenzweig

UCLA Department of Physics and Astronomy 21 Ottobre, 2004

Introduction

- Inverse Compton scattering provides a path to 4th generation x-ray source
- Doppler upshifting of intense laser sources;
 "monochromatic" source
- Intense electron beam needed
- Extremely diverse uses
 - High energy density physics (shocks, etc.)
 - Material sciences
 - Cool positron production
 - High energy physics
 - Polarized positron sourcery
 - Gamma-gamma colliders
 - Medicine
 - Diagnostics (dichromatic coronary angiography)
 - Enhanced dose therapy

$$\lambda_{\gamma} \simeq \lambda_L / 2(1 + \cos(\theta))\gamma^2$$

Inverse Compton process

Choice of time structure

90° Scattering	180° Scattering
10 - 100 keV	20 - 200 keV
50 - 100 fs pulse width	< 10 ps pulse width
~10 ⁸ y/pulse (10% bandwidth)	~10 ⁹ y/pulse (10% bandwidth)

The luminosity problem

- Photon creation as in HEP colliders
- $N_{\gamma} = \left[\frac{N_l N_{e^-}}{4\pi\sigma_x^2}\right]\sigma_{th}$
- Very tight foci (σ_x^2) needed for both laser and e-beam
- Laser problems:
 - Large "emittance" ($\lambda/4\pi$),
 - short Rayleigh range (depth of focus)
 - Large angles (initial condition variation)
 - Final mirror damage; laser "exhaust" handling
 - Large N_l means high power, large field nonlinear scattering
- Electron beam problems:
 - Achieving ultra-short beta-functions
 - Chromatic aberrations

Shock physics

- Fundamental material studies for ICF, etc.
- Pump-probe systems with high power lasers
- EXAFS, Bragg, radiography in fsec time-scale.

Pair Production

- Pair production for photon energies above threshold
- Moderate positrons
 - produce ultra-cold beam, or
 - Use directly for probing material defects
- Fast, intense sources
- Threshold is 260 MeV for SPARC (800 nm light)
 - Double the light=> 180 MeV

Positron moderation with standard source

HEP 1: Gamma-Gamma collisions

- Start with an electron linear • collider
- Collide the electron bunches • with a laser pulse just before the IP to produce high energy photons (100's GeV)
- Requires:
 - Lasers
 - Pulses of 1J / 1ps @ 11,000 pulses / second
 - Helical polarization
 - Optics
 - Focus pulses inside the IR without interfering with the accelerator or detector

 γ - γ Collisions of High Monochromaticity Luminosity can be achieved

HEP 2: Polarized Positron Sourcery

- Start with an 2-7 GeV electron linac (dependent on photon choice)
- Collide the electron bunches with a circularly polarized laser pulse to produce high energy photons (100 MeV)
- Convert gammas W target to obtain the positrons
- Requires:
 - Lasers
 - Pulses of 1J / 1ps @ 11,000 pulses / second

Medical uses : Monochromatic cancer therapy

Also can use for dichromatic coronary angiography Time structure is certainly not an advantage...

Storage ring-oscillator geometry

- Laser oscillator
- Compact 50-75 MeV storage ring
 - Poor lifetime
 - Radiation damping with *laser*
- Low peak flux (1000 photons/pass)
- ~100 MHz collision frequency: high average flux
- Private company initiative in Palo Alto

UCLA ICS activities

- PLEIADES at LLNL
 - Very mature experiment
 - Velocity bunching, ultra-short focal length PMQ FF
 - First physics: dynamic diffraction
- Neptune 10 micron experiment
 - nonlinear ICS, polarization
- Future activities
 - PEGASUS ICS for nanoscience
 - SPARC opportunities?
 - SLAC FFTB?

The PLEIADES source

Brightness limited by energy?

- Picosecond Laser-Electron InterAction for Dynamic Evaluation of Structures
- Joint project: LLNL and UCLA
- High brightness photoinjector linac source
 - 1 nC, 1-10 ps, 35-100 MeV
- FALCON laser
 - 10 TW, >50 fs, 800 nm source
- Up to 1E9 x-ray photons per pu
 Not yet...
- Photon energy tunable > 30 kV

The FALCON laser

RF Photoinjector and beamline

- UCLA responsibility
- 1.6 cell high field S-band (a la SPARC)
 - 2854.5 MHz(?!)
 - Run up to 5.2 MeV
- All magnets from UCLA
 - Solenoids
 - Bypass quads/dipoles
 - Final focus
 - High field electromagnets
 - PMQ system!

Photoinjector and bypasss

Electron linac

- 35 year old 120 MeV travelling wave linac
- 4 linac sections
 - Adjustable phases
 for velocity bunching
- Solenoid focusing around each section

Velocity bunching for shorter pulses...

Multi-slit phase space measurement at Neptune showing bifurcation in chicane

- Enhanced photon brightness
 - Avoid problems of magnet chicane bunching
- Emittance control *during bunching* using solenoids around linacs
- Bunching effectively at lower energy
 - Lower final energy spread
 - Better final focus... still have chromatic aberrations!

PARMELA simulations of velocity bunching

Velocity bunching measurements

NORMALIZED SIGNAL

- Over factor of 15 bunching shown in CTR measurements
- Better than Neptune "thin-lens" performance
- Next measurements: emittance control

Start-to-end simulations with final focus...

How did it really work?

ICS Collisions with velocity bunching: beam quality

14

Compressor Solenoid Current (Amps)

Transverse emittance compensation limited by x-y correlations

Interaction region

Timing and alignment

- Polished aluminum cube gives <u>for laser</u> <u>and e-beam</u>
 - Spatial alignment (CCD): few micron
 - Timing (streak camera): 1 ps

Photon production

- W/O velocity bunching: 5E6 photons/pulse
- With velocity bunching: 1.2E6 photons/pulse
- Increase brightness by factor of >4!

The problem of the final focus

- Luminosity demands small beams
- Compression gives large energy spread
 - Chromatic aberrations
 - Demagnification limit

$$\frac{\sigma^*}{\sigma_0} = \sqrt{\frac{1 + \left(\frac{\beta_0}{f}\right)^2 \left(\frac{2\sigma_{\delta p}}{p}\right)^2}{1 + \left(\frac{\beta_0}{f}\right)^2 \left[1 + \left(\frac{2\sigma_{\delta p}}{p}\right)^2\right]}} \stackrel{\simeq}{\underset{f}{\approx}} \frac{2\sigma_{\delta p}}{p}$$

- Cannot remove chromatic aberrations with sextupoles, etc. Transport too long, costly...
- Quadrupole strength problem
 - Cannot expand beam; space-charge "decompensation" (also with sextupoles)
 - Solution: permanent magnet quadrupoles

Permanent magnet quadrupoles

Halbach ring-tuned quad for NLC (UCLA/FNAL/SLAC project), with field map

- PMQs stronger than EMQs
 - >600 T/m v. <25 T/m
- PMQs are quite difficult to tune
 - Need to tune system from 35 to 100 MeV!
 - Tradeoffs between tunability, strength, centerline stability
- We decided to not adjust strength of PMQs... only change longitudinal position

UCLA PMQ Final Focus System

- Tunable through longitudinal positioning (like camera optics)
- FODO lattice configuration
- High precision stepper motor linear actuators
- Beam pipe through the center axis of the final focus system

PMQ Simulation (600T/m)

- > Magnetic remnant field: 1.2T
- Permanent magnet material: NdFeB
- Expected magnetic field gradient:570T/m

The magnetic easy-axis direction in each magnet block 22.5°

x40 improvement over 15T/m EMQ

Magnetic center

2D representation of magnetic fields

Final Focus System Project Stage

- Extremely challenging engineering
- 16-piece Halbach PMQ designed at UCLA & manufactured at a local magnet vendor
- PMQ magnetic properties measured with both Hall sensor (field gradient) & pulsed-wire technique (center alignment & linearity)
- Mover system designed to meet with LLNL experimental set-up criteria
- The system assembled & installed in the facility in December, 03
- Motion-VI control software enabling live-time control remotely in the linac control room

Beam Transport Simulation

Electron Beam energy 30MeV

TUNABILITY of PMQ final focus system $\beta_x \sim 1 \text{ mm}, \sigma_x \sim 10 \mu \text{m}$ spot size

249.87mm

Electron*Beam energy 60MeV Length* 1 8.00 mm (Horiz) 42.9 Deg (Long.) PM0 PM0 1 2 3 -4 -5 -6 8.00 mm (Vert) Length*

Beam Measurements

- CCD used to obtain beam images at alignment cube
- $E_{electron}$ =74.1MeV,Q=300pC, ϵ x,y=(9.24,10.9)mm-mrad, β x,y=(3.69,5.16)mm/mrad
- $\sigma_{rms} \approx 15 \times 20 \ \mu m$ electron beam spot size obtained at I.P. for 59-79MeV
- Quad scan performed with PMQ → larger emittance measured: 25-30 mm-mrad
- Minimum spots 18x18 micron

Inverse Compton X-rays with PMQ Final Focus

4.4 x 10⁶ photons (75 keV peak) ps pulse duration

Transmission X-ray Spectrometer

ICS Positron Source Physics Issues

- Need high Compton luminosity
- Need very small electron/laser beams
- Need very high charge/laser energy
- Polarization has strong angular dependence
- Polarization dictates avoiding harmonics

- Laser vector potential must be limited

 $a_L \equiv eE_L / k_L m_e c^2 < 0.2$

- Do NOT use long λ (10 mm)
- USE long λ for nonlinear physics

$$N_{\gamma} \propto U_L N_{\gamma,L} \propto E_L^2 \lambda_L$$
$$\propto \left(a_L / \lambda_L\right)^2 \lambda_L \propto \lambda_L^{-1}$$

Spectrometer for nonlinear ICS...

New directions: SAICS

- Need higher brightness with short pulse length
- Specific problem SPARC is at too high energy
- Small Angle Inverse Compton Scattering
- Small angle gives
 - Lower photon energy with high energy e-beam; small angle x-rays!
 - Luminosity challenges, but *higher* brightness
 - fs pulse lengths
 - Larger spectral width

Example for SPARC

"Medical" photons (33 keV)

• Moderate energy is excellent regime Input: Beam $U_{e_{-}} = 200 \text{ MeV } \beta_{e_{-}} = 5 \text{ mm } \varepsilon_n = 2 \text{ mm-mrad } \sigma_t = 0.5 \text{ ps}$ Laser $\lambda_L = 800 \text{ nm } U_L = 1 \text{ J} \tau_L = 100 \text{ fs } Z_r = 0.4 \text{ mm}$ Crossing angle $\phi = 21.5 \text{ deg}$ (not that small...) Output $\tau_{sc} = 106 \text{ fs}$ $N_{sc} = 7 \times 10^7 (dE/E)_{sc} = 3.49$

Very high brightness at this energy!