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The full machine ADA 
(e+e−, R=65 cm) and a 
single detector like 
ATLAS (pp, R=12 m) at 
LHC (R = 4.2 km).  
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Colliders : introduction 
• Hadronic collisions (Spp ̄S + LHC at 

CERN, TeVatron at Fermilab) share 
common dynamical and kinematical 
features, different from e+e− (Spear, 
LEP, …). 

• Hadrons are composite, as explained by 
the QCD-quark-parton model :  
 coherent pp (p ̄p) scattering at low pT;  
qq/q̄q̄/qq ̄/qg/q ̄g/gg scattering at high 

pT, dominated by t-channel gg. 

• Instead in e+e− Colliders only point-like 
interactions, dominated by s-channel. 

• The historical order Spp ̄S – LEP – LHC is 
unnatural (hadrons, leptons, hadrons), 
but we will follow it, at the price of 
some repetitions and logical leaps.  

• In the Spp ̄S and LHC chapters, the order 
will be the traditional one, increasing pT 
and decreasing cross-section :  

1. [total cross-section], 
2. low-pT interactions, 
3. high-pT hadronic processes, 
4. high-pT electro-weak; 
5. [searches for new physics, if any].  

• For LEP, the order will be the history, 
i.e. the increasing beam energy : 
1. Z-pole electroweak physics, 
2. W+W− pair creation, 
3. [a digression on the method of 

searches and the analysis of 
negative results, the "limits"], 

4. Higgs searches; 
5. [searches for new physics, if any]. 

• In this first chapter, there are some 
definitions and discussions, useful for 
all the following parts, especially for 
hadron colliders. 
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Colliders : vs fixed target 

• Dynamics is invariant under a Lorentz boost; the 
processes depend on the relative motion of 
particles only : fixed target experiments (FT) and 
colliders (C) are dynamically equivalent; 

• however, the explored kinematical region (and the 
experiments) are very different; 

• a general (simplified) discussion of the relative 
merits of FT vs C in the next slides; 

• for general purpose experiments, the quest for 
higher energy gives C a definitive advantage over 
FT [imho, but widely shared]; 

• the [obvious] reason is the CM energy √s : 
 FT  : s ≈ 2 mN Ebeam → √s ∝ √Ebeam; 

 C : s = (2Ebeam)2 → √s ∝ Ebeam; 

• future alternatives : e+e− linear C, µ+µ− circular C. 
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Colliders : types 
• FT's offers a plethora of initial states (nucleons, 

mesons, charged and neutral leptons, …), while C's 
have been realized with only few initial states: 
 e+e− AdA, ADONE, SPEAR, DESY, LEP, DAΦNE, …; 
 p ̄p CERN and Fermilab Colliders; 
 pp ISR, LHC; 
 e±p Hera; 
 (+ heavy ions and specialized machines); 

• projects for µ+µ− Colliders; µ± are dynamically 
equal to e±, but produce (much) smaller brem; so 
they can be accelerated to higher energy; 

• colliders e+e− have been realized since 50 years; 
they have discovered new leptons (τ), new 
hadrons (J/ψ, charm), new dynamics … 

• The successes of pp (p ̄p) are W±, Z, top, H. 

• The swan songs of FT have been J/ψ and b quark (+ 
ν physics, which is a special case). 
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Colliders: Livingston plot 

In addition, FT has plenty 
of applications out of the 
"energy frontier". 

 

 

[our department, together 
with INFN and the SBAI 
department, hosts a PhD 
programme in accelerator 
physics ("dottorato in Fisica 
degli acceleratori")] 
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Synchrotron 
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Build a machine with a circular tube of 
small size and large radius, instrumented 
with dipoles and radiofrequencies of small-
aperture and big power (+ auxiliaries) : 
• from Lorentz force: 
     p (GeV) = mβγ = 0.3BR (T,m); 
→ the mag. field |B| must be continuosly 

synchronized to keep the beam on the 
same R, by varying the current ι in the 
magnet coils (|B| = µ0nι). 

• the revolution period must be an integer 
multiple nR of the radio-frequency period 
τrf [Povh, § A.1] : 
 
 

→ ωrf must be continuosly re-adjusted (i.e. 
synchronized) to follow the beam 
velocity (β=p/E), in order to always get 
the beam in the correct phase; 

π π
= = τ = → ω =

ω
R R
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* higher field 
→ R increased 

[YN1, §12.3.2] 
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Synchrotron: parameters 
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Present limitations for parameters : 
• mag. field B < 1.4 T (warm, iron core) or 

B < 10 T (superconductivity, but requires 
cryo magnets); 

• R limited by civil engineering (costs, 
availability) to few (max tens) Km; 

• radiofrequency limited by energy costs; 
• brem problem for electrons [§ LEP]. 
 

 Results: 
• beam(s) bunched : nbunch < nbucket (= nR); 
• √scollider (TeV) ≈ 2p ≈ 0.6 B(T) R(Km); 

• √sfixed (GeV) ≈ 2MpE ≈ 0.6BR (T,m). 
 
 

Problems: 
• beam manipulation is complicated 

(next); 
• interaction rate [see Luminosity in the 

following] is smaller wrt continuous 
accelerators; 

• however, in practice this is the only 
known method to achieve high 
energy/high intensity; 

→  all modern accelerators are based on 
 the principle of synchrotrons. 

R 

rf system 
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Synchrotron: magnets 
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The conventional approach to particle beam 
manipulations is to treat them as light rays (beam 
optics). The "lenses" are magnets : 
• dipoles for beam bending; the dipoles are the main 

elements; if all the particles behave as their average 
("ideal trajectory") no other elements were necessary; 

• higher multipoles, like quadrupoles, sextupoles, for 
(de)focalization; they (de-)focus the beams like 
(di/con)vergent lenses (but be aware of the Liouville 
theorem !!!); 

•   
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• the overall control is in the hands 
of very smart physicists/engineers,  
fast and big computers, under the 
goddess Fortuna. 

 



Synchrotron: magnet coils 
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The magnets are built with two different 
techniques : 
• warm : coils with high continuous 

currents + iron yoke; 
• cold : superconducting coils at cryo 

temperature and (almost) no iron. 
 

Coils (currents); 

B-field lines; 

Open for beam circulation.  
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Synchrotron: examples of magnets 
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a sextupole in front of 
a "C" dipole 

a quadrupole of the 
HERA accelerator 



Synchrotron: the brem effect 6/6 
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∆E ∝ M-4 √s 
(GeV) ∆E 

LEP 1 e+e− 90 121 MeV 

LEP 2 e+e− 200 2,500 MeV 

LHC pp 14,000 6.9 KeV 

in circular e+e− colliders Rbest ∝ s 
(severe limitation, see § LEP). 
therefore, in future try : 
• µ+µ− colliders; 
• linear e+e− colliders. 
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The fundamental figure to quantify 
collider performances is the Luminosity L. 
Define it with a toy model:   
• N1 particles/bunch turning "clockwise"; 
• N2 … "anti-clockwise"; 
• cylindrical  bunches S×ℓ,  ρ = const.  

[this is the toy assumption]; 
• for each of N1, while traveling inside the 

cylinder N2 for a small step x, the 

probability of interaction is: 
  P1(x) = 1 - e-ρσ

T
x ≅ ρ σT x = N2σTx/(S ℓ); 

• the average number of  interactions / 
crossing is : 

  <nI> = N1 P1 (ℓ) =  N1 N2 σT / S; 
  [<nI> independent from ℓ] 
• the crossings rate is 
 nc = k × ƒ 
 [k = bunch number, ƒ = revolution 
   frequency] 
  therefore, the interaction rate is : 
  R ≡ L σT = <nI> × nc = N1 N2 k ƒ σT / S, 
 where L, the "luminosity", contains the 

parameters of the machine, while σT 
reflects the particle dynamics: 

Luminosity: toy model 1/11 
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Luminosity: comments 2/11 
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The toy model is too naïve, however some 
of the conclusions are correct. 
The luminosity is defined as L ≡ R/σT, the 
ratio between the interaction rate and the 
total cross section(*). L  is: 
•  NOT dependent (for head-on collisions) 
on the bunch length ℓ; 

• proportional to the inverse of the bunch 
section (use an effective bunch section  
S = 4πσxσy); 

• proportional to the number of particles 
/ bunch of both beams (N1N2); 

• proportional to the number of bunch 
crossings / second (kƒ); 

• [not in formula] dependent on centroids 
displacement and beam lifetime. 

___________________________ 
(*) for a process x : Rx/RT = σx/σT  → Rx=L σx. 

 

 
 
 
 
 
 
 
 
 
 

 
 
NB the total number of interactions seems to 
grow ∝ k2; however, in a given interaction 
point, it grows ∝ k. Is it clear ? from this 
consideration, many clever machine 
developments, e.g. the pretzel scheme. 
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Luminosity: collisions at angle α 

• In case of an angle α between the 
beams (LHC), the formula becomes 

 

 

• It turns out(*) : 

 

where σℓ(σT) is the longitudinal (transv.) 
effective dimension of a bunch. 

• Notice the dependence on σℓ/σT; short 
bunches have other pros (better 
definition of the interaction point) and 
cons (e.g. in case of many overlapping 
events in the same bunch-crossing). 

• At LHC, α ≈ 300 μrad → ƒ(α) = 0.83. 

 (*) e.g. CERN CAS 2003, YR 2006-002, page 361.  

 

 

 

 

• Problem : the effect of α on √s and pT :  

in LAB sys (≠ CM !!!) : 
[2E, 0, -2p sin(α/2),0] ≈ [2E, 0, - Eα, 0]; 

→ √s = 2E 1−α2/4 ≈ 2E (1 – α2/8); 
→ ∆√s ≈ - E α2/4 (negligible at LHC); 

→ |pT| ≈ Eα ≈ 2 GeV at LHC (also  
    negligible). 

→ CONCLUSION : at LHC, in practice, 
LAB. sys. =  CM sys., √s = 2E,    
only L affected by α. 

α 
p p 
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Luminosity: <nint> 
Problem. How many interactions / bunch-
crossing [b.c.] ? [nint, also "µ", a bad 
choice for an overused symbol]. 
Solution [τbc = time between b.c.] : 
 
 
The effects of µ depend on its value: 
• <µ> << 1 (SppS̄, LEP): the probability of 

an interaction in a given b.c.; then "µ2" 
is the probability of two events in the 
same b.c. (a known and not-very-
important bckgd for SppS̄ and LEP); 

• <µ> > 1 (LHC): the average number of 
overlapped events in a b.c.; the actual 
number is Poisson-distributed, with 
average <µ>. 

_____________ 
(*) some buckets are empty → larger  Lbc and µ. 

Comments: 
• for hadronic colliders, it is better to 

consider µinelastic [σT → σinel], which 
decreases µ by ~20%, because elastic 
collisions do not produce secondaries in the 
detectors; 

• some old machines (e.g. CERN ISR) had 
"debunched" beams, i.e. particle 
uniformly spread over the whole ring; in 
this case the very definition of <nint> is 
meaningless; however, for LHC this 
setup is simply impossible [why ? try to 
answer]. 
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Luminosity : ε, β, β* 
The dynamics of a real beam : 
 
• real particles oscillate around the ideal 

trajectory (betatron oscillations); 
 

• Reference system and definitions : 
 z : line of flight of the ideal particle; 
x,y : deflections from ideal orbit; 
x' ≡ px / pz; y' ≡ py / pz; 
σx ≡ rms beam size in x (also σy, σx', σy'); 
εx = π · σx · σx’  = "transverse emittance"; 
βx = σx / σx’  = "amplitude function"; 
εy = π · σy · σy’ ; βy = σy / σy’ . 

 
• Therefore (for the *, see on this page): 

 
 

• From Liouville's theorem :  
V(6-dim) = σx· σy· σz· σpx· σpy· σpz = 

 = constant; 
εx,y = const. (modulo stochastic effects, 

which increase it with time); 
βx,y can be modified by accelerator 

devices (e.g. quadrupoles) : it MUST be 
SMALL in the interaction regions ("low-
beta", β*), and large far from them 
("high-beta", β) [next slide]. 

z 

x,y 
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Luminosity: values of ε, β, β* 

• At the CERN Spp̄S : 
 εp ≈ 9 × 10-9 π rad m;  εp̄ ≈ 5 × 10-9 π rad m; 
 β*H ≈ 0.60 m;  β*V ≈ 0.15 m. 

• At LEP (remember the electron brem) : 
 εH ≈ (20÷45) × 10-9 π rad m; 
 εV ≈ (0.25÷1.0) × 10-9 π rad m; 
 β*H ≈ 1.50 m;  β*V ≈ 0.05 m. 

• At LHC (≥ 2012) : 
 εx ≈ εy ≈ 0.5 × 10-9 π rad m; 
 β*x ≈ β*y ≈ 0.55 m; 
 [see next page, from a beautiful CERN 

Academic training by Mike Lamont].  

 

z 

x,y 
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Luminosity : β squeeze 

Image courtesy John Jowett 

β*  = 60 cm 
NB: round beams at IP 

βmax ~4.5 km ATLAS @ LHC 
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Luminosity: better toy model 
A mechanical analogy [Ed Wilson, 28] : 
• a little ball on a falling guide [see]; 
• two forces : 

1. gravity toward z (= "acceleration"); 
2. a force orthogonal to z, which depends 

on the local shape of the guide (e.g. 
elastic ∝ |x|); 

• choose two parameters ε, β: 
 x = 



Luminosity: Liouville's theorem 
 

 

 

 

 

 
• Because of the Liouville's theorem, for 

an "ideal fluid of balls", the [iper-] 
volume of the ellips[oid] keeps constant 
during the motion : 

V = π



Luminosity: evolution with time 
• Many effects deteriorate the 

luminosity during a long data-taking. 
[following figures from LHC, but the 
effects are similar for all colliders]. 

• Parameterize as dL = -L dt/τi; at LHC : 
 collisions τcoll ≅  29 h; 
 increase of emittance τIBS ≅  80 h; 
 residual gas τgas ≅ 100 h; 
 (many other minor effects ...) 

• Global effect on luminosity : 

 

 

 

 

 

 

 L(t)=Lmaxe(-t/τ) ;   1
τ
 = ∑ 1

τj
 ≈ 1 / (15 h). 

Integrated luminosity after a time T : 

 
  

 

• After few hours, new injection and 
acceleration [see § LHC]. 

• I.e. Lmax,effective ≈ ½ Lmax. 

• The decision to dump the beam and 
restart the cycle (inject − accelerate − 
squeeze − data-taking) is crucial : 
At the Spp ̄S was dramatic (high level 

officials), due the scarcity of p ̄. 
 Even at LHC (plenty of protons 

everywhere) is a major concern. 
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Luminosity: L  vs √s 11/11 
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Five parts: 

a. Scattering: collisions in non-relativistic 
q.m., mainly the optical theorem and 
its consequences [a memo]. 

b. (Pseudo-)rapidity: kinematical variables 
used both at low- and high-Q2 [the 
math looks crazy, but it is very useful].  

c. Log s physics: a synonym of "low-Q2 
physics", i.e. when hadrons behave as 
coherent non-point-like particles [an 
old subject, difficult, no clean results, 
but unavoidable, because it is the main 
source of events in hadronic physics]. 

d. The quark parton model: the QCD 
theory and its approx., applied to the 
data [the real subject of the discussion]. 

e. High-pT processes: the kinematical 
analysis of high-Q2 events 
[Mandelstam variables, x, √s & c., both 
at parton and hadron level]. 

  

NB. The sequence is dictated by understanding; 
(a-c-d-e-b) would have been more logical, but 
also more difficult. 



scattering 
• The electromagnetic processes, treated 

in § 2, are a special privileged case : 
 the potential is derived from a well-

known and tested theory; 
 the model is based on symmetries; 
 the dimensionless coupling constant 

αem << 1. 
• The treatment of nuclear interactions is 

much more complex : 
 there is no classical analogue; 
 the analytic form of the interaction is 

[was] unknown; 
 the coupling is much larger than in 

electromagnetism : the perturbative 
approach does not give results at 
small Q2 (= large distances). 

• Much experimental information comes 
from nuclear reactions and scattering 
processes. This study is therefore crucial. 

• Examine the simplest case : 
 two particles; 
 spinless; 
 non-relativistic approximation; 
 potential only dependent from 

relative position. 
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scattering: partial waves 

• Two particles, mass m1 and m2, both 
spin 0, collide with a potential  V(x,y,z). 

• The particles are abserved far from the            
collision region, i.e. where V ≈ 0.  

• Define : 
 
 
 

• If V(r⃗) depends only on r⃗, i.e. on the relative 
positions of m1,2, the Schrödinger equation splits in 
two parts : 
 a function ψCM(R), for the free motion of the 

CM, which behaves as a free particle, with mass 
M and energy ER; 

 a function ψ(r⃗), for the motion of a particle with 
reduced mass µ and energy Er, subject to V(r⃗). 

 

References (many, but e.g.) : 
 Sakurai,  Modern q.m., 397; 
 Weinberg, Lectures on q.m., 211; 

 Burcham – Jobes, 286; 
 Messiah, vol 2, 866; 
 Perkins (ed. 1971), 265. 
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scattering: partial waves 
• The initial state is described by a plain 

wave along z : 

 

 

jℓ(kr) = spherical Bessel functions, 
Pℓ(cosθ) Legendre polynomials. 

• … and the final state by the superposition 
of a plane and a spherical wave, 
modulated by ƒ(θ,ϕ) : 
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' 'd P (cos )P (cos ) 4 /(2 1)

 = Kronecker symbol .

complex factor, for each ℓ : 
• ℑ(…ℓ) = change in phase; 
• ℜ(…ℓ) =  …    in amplitude. 

spin-0 particles + central 
potential = no dependence on ϕ.  

exp(ikz) = mixture of 
different ℓ → expand 
[no ϕ → m=0 only]. 

definition of 
σ and flux. 

this σ refers to 
elastic scattering  



• the δℓ pass through a 
resonance when δℓ = π/2 : 

 ηℓ exp(2iδℓ);   0 ≤ ηℓ ≤ 1; 

 only elastic scattering → ηℓ = 1 → 

  

• Finally, calculating the flux associated 
with ψf, the value of σtot is : 

• [warning : the theorem looks very smart; 
however, it is only a relation, based on wave 
mechanics, between two unknown quantities.] 

• The dynamics, carried by the potential 
V(r⃗), rests in ƒ(θ) [the scattering 
amplitude], or, alternatively, in the 
inelasticity parameters ηℓ  and in the 
phase shifts δℓ. 

scattering: the optical theorem 

"optical theorem" 
[Sellmeier, Rayleigh 1871; 
Bohr, Peierls, Placzek 1939; 
Bethe, de Hoffman 1955] 
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scattering: 𝛔tot 
In hadron colliders, the standard method to 
measure the total cross section, e.g. at LHC 
σtot(pp), uses the optical theorem: 

 
 
 
 
b. Define the elastic cross section in terms 

of ƒel(θ) and t(Mandelstam): 

 

 

 

 

 

 

c. Define ρ = ℜ[ƒel
t=0] / ℑ[ƒel

t=0] and put it in 
the equations : 
 
 
 
 

d. From the definition of the luminosity L, 
for each process x, the rate is 

 σx = Rx / L → σel = Rel /L;   σtot= Rtot/L; 

 → (σtot)2= Rtotσtot /L. 

e. Equating (b) = (c), and using (d) : 

 

f. The final equation is : 
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scattering: measure 𝛔tot 

Since everything (but ρ) is directly 
measurable, σtot can be measured:  

• Rel and Rtot :  
 absolute rates in arbitrary units (only 

the ratio counts, i.e. use Nel and Ntot, 
integrated over the same time interval 
→ smaller stat. errors); 

 systematics due to dead time, faults in 
data-taking, … cancels in the ratio; 

• the term "dRel/dt |t=0" :  
 produce a plot Rel (or Nel) vs tMandelstam; 
 N(t=0) is non-measurable → go as low 

as possible in t and extrapolate → t=0; 
 units do NOT count, but extrapolation 

errors do; 

 

 
 
 
 
 

 the histogram requires t → must 
know pinit → high-β is preferable, even 
if L (and N) are smaller; 

• the ratio ρ [a personal pessimistic view] : 
 can be computed [maybe "guessed"] 

from first principles; 
 turns out small (≈ 0.14 @ LHC) → 
  ∆σ/σ ≈ 2ρ∆ρ ≤ 1%; 
 so ρ [is not well-understood, but it] does 

not harm the result. 
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scattering: 𝕊 matrix 
The 𝕊 matrix (𝕊 for "scattering") was 
introduced indipendently by J.Wheeler 
in 1937 and W.Heisenberg in 1940. 
The following definitions and properties 
are discussed in [MQR § 11] in the 
Interaction Picture ("IP", |〉I) : 
•  lim   ℍI(t) = 0;   t→±∞ 

•  lim |ψ(t)〉I ≡ |ψ(t=±∞)〉I = const.;   t→±∞ 

•   |ψ(t)〉I = 𝕌I(t,t0)|ψ(t0)〉I; 
•   | i 〉 ≡ |ψ(t=−∞)〉I; 
•   | f 〉 ≡ |ψ(t=+∞) 〉I ≡ 𝕊| i 〉; 
•  𝕊  ≡     lim    𝕌I(t2,t1);       t2→+∞,t1=−∞ 

•   𝕊 𝕊† = 𝕊† 𝕊 = 𝟙. 
 
 
 

The following properties follow : 
•   𝒮fi ≡ 〈 f | 𝕊 | i 〉; 
•   Σf|𝒮fi|2 = 1    [conservation of  

    probability]; 
•  𝕊 ≡ 𝟙 + 2i𝕋; 
•   𝕋 = (𝕊 − 𝟙) / (2i); 
•   〈f|𝕊|i〉 = δfi + i(2π)4δ4(pf-pi)〈f|𝕋|i〉; 

•   dσ =   

It is interesting to note that, starting 
from there, the optical theorem follows 
(almost) immediately : 
•   σT = −2 ℜ[Mii] / vi = 4π ℑ[ƒ(0,ϕ)] / pI. 
_________________________ 
The analytical properties of the 𝕊 matrix have 
been extensively studied in the '50s and '60s. 
After that, the success of the field theory and 
the SM have terminated the approach, even if 
some addicts are still around. 
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• The rapidity φ was introduced by 
Minkowski (NOT in particle physics): 

φ = tanh-1(v/c), 
many properties : i.e. it reduces to v/c 
for low speed, it is additive (unlike v), …. 

• In particle physics a similar variable (y) 
defined by Feynman for a particle m≠0, 
relative to an axis z (usually the beam) : 

  

• define also :  

mT
2 = m2 + px

2 + py
2  (transverse mass); 

η = - ln [tan (θ/2)] (pseudo-rapidity); 

x = 2 pz  / √s ("Feynman x"); 

It follows (next slides) : 

 pz → −pz ⇒ θ → (180°−θ) ⇒ y → −y; 

 E = mT cosh (y);  pz = mT sinh (y); 

 y = ln [ (E+pz) / mT] = tanh-1 (pz/E); 

 dy = dpz / E; 

 if (p≫m) → y ≈ η. 

 given a Lorentz transformation 𝕃 
along z, with velocity βz : 

  y’ = 𝕃 (y) = y - tanh-1 βz; ∆y' = ∆y; 

 i.e. y is the variable, whose 
differential dy is invariant for 𝕃-
transformations along z. 

 

(pseudo-)rapidity 

Use p = [E, px, py, pz; m]; other variables will be defined. 
[Unfortunately, with only 26 letters available, there is a lot of 
repetition, e.g. the rapidity y has nothing to do with the inelasticity y.] z 

pT 
p 

θ 
pz 

1/8 

+
=

−
z

z

1 E py ln ;
2 E p

Paolo Bagnaia – PP – 08 33 



(pseudo-)rapidity: plot 
• The pseudorapidity η is important. 
• Sometimes physicists assume to be in 

the extreme relativistic case, and call 
it "rapidity". 

• Roughly, it represents the zenith θ, 
with a scale much expanded towards 
the beam axis. 

• But its properties are many, and …  

2/8 

For small θ (large η) : η [≈ y] = − ln [tan (θ/2)]  → 

 ≈ ln(2) − ln[θ(rad)] = ln(360/π)  − ln[θ(deg)] = 4.741 − ln[θ(deg)]. 
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(pseudo-)rapidity: properties (2) 

… And some others, quite long : 

 

 

a) 𝕃 transform : p'z = γ(pz − βE); 
  E' = γ(E − βpz);  

 

b)   

 
 
 
 

c) ∆y=y2−y1=∆y'=y'2−y'1; 
 i.e. y is the variable, whose 

differential (even the finite ∆y) is 
invariant for 𝕃-transf. along z. 

  

z 

x,y 

y2 

       ∆y is invariant 
       for 𝕃-transform. 
       along z 
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(pseudo-)rapidity: properties (3) 
• Start from well-known math : 

 
 

• Then : 
 
 
 

  
 
 
 
• i.e. the differential dy = dpz / E = dE / pz at constant pT. 

• Definition of the invariant cross section  ["invariant" under 𝕃-transform. along z] : 
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(pseudo-)rapidity: properties (4) 

• [curiosity : an alternative way to show that y is 
invariant for 𝕃-transf. along z : 
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Why are hadronic interactions often 
analyzed in terms of (pseudo-)rapidity ? 

Angular variables depend on each other : 
jacobian transformations relate all 
distributions; however, y looks "natural" 
(and produces simpler plots).  

• The "Feynman argument" : 
 at high-pT the real interaction 

happens at parton level; 
 the values of the parton momenta 

vary for each event, but they are (in 
1st approx) along z; 

 therefore y is the correct variable in 
the lab., e.g. for jets and IVB analysis. 

• The "Rutherford argument" : 
 in the parton CM, the scattering is 

dominated by t-channel processes; 
 the dominant processes are NOT flat 

in y, but ∝ t-2; 
 σ is a mixture of processes, with many 

t-dependences, indistinguishable on 
an event-by-event basis; 

 the rapidity, which expands the scale 
at θ ≈ 0° is welcome : dσ/dy is ~ flat. 

(pseudo-)rapidity: why 7/8 
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(pseudo-)rapidity: how 
Why are soft hadronic interactions often 
analyzed in terms of (pseudo-)rapidity ? 
The phenomenology of low-pT : 
• [maybe reasons based on low-pT physics, 

related to the invariant cross-section]; 
• the inclusive y distributions are ~ flat; 
• so, y is very handy for fast background 

computations. 
Why is η used often, instead of y ? 
• y has important physical properties; 
• y is difficult to measure, since is a small 

difference of two large quantities (E, pz); 
• η depends on an angle, exper. friendly; 
• worst : in the literature sometimes η is 

given the properties of y [but it is ALMOST 
correct]. 

Instead, e+e− interactions, where partons 
(=e±) interact in the LAB at x=1, are 
usually analyzed in terms of cos θ. 

 
 

8/8 
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it means : jets are integrated between ±η�; 
the resultant number is divided by 2η�; 
we used η� = 1, if I remember correctly. 

How to do it ? "typical example" : a 
hard interaction studied in terms of 
d2σ/dpTdη|η=0. 



Log s physics 1/8 

 

 

 

• An intuitive toy-model, with surprisingly 
good results : 

 σtot(pp or p ̄p) ≈ πR2 ≈ π (ℏc/mπ)2 =  
    = π(197 MeV∙fm / 140 MeV)2 = 62 mb. 

• A limit ("Froissart bound") on the 
increase of cross-section for any pairs of 
particles, when √s increases : 
for any two particles (ab) [e.g. pp, p̄p] : 

 

i.e."at sufficiently high energies, the total 
cross-section for scattering on a given 
target [e.g . σ(p ̄p), σ(pp), σ(π±p), σ(π±n)] 
cannot grow faster than ln2 s". 

• A theorem, based on quantum field 
theory (NOT on dynamical assumptions, 
i.e. valid for any type of interaction), 
knows as the "Pomeranchuk theorem" : 

  

i.e. "at sufficiently high energies, the 
total cross-section on a given target is 
the same for particle and antiparticle" 
[e.g. σ(p ̄p) ≈ σ(pp), σ(π+n) ≈ σ(π−n)]. 

• The (unexpected) experimental behavior 
that indeed hadron cross-sections grow 
with √s, [∝ ln(s) or maybe ∝ ln2(s)], and 
that the "Pomeranchuk regime" is 
reached at accelerator energies. 

↓ 

p 
(−) 
p 

→∞

 σ
= σ 

ab

s
ab

lim 1, for any two particles (a,b).

( )
→∞

σ ≤ × 2
abs

lim const ln s ,
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↓ 
• … gave rise (50 years ago) to much 

excitement and phenomenological 
models of low pT hadronic interactions 
("Regge poles", "Pomeron", "cylindrical 
phase space", ...). 
 

• Then, no real breakthrough for many 
years … 
 

 
 
 

Comments (very personal) : 
 physics born many years ago ('50s + 

CERN ISR), before the advent of QCD; 
 poor conceptual foundations, but many 

phenomenological successes; 
many mysteries remain (perhaps no 

mystery, only complex many-body 
interactions, e.g.  chemistry); 

 today the main motivation of the study 
is to predict, parameterize and filter out 
the background. 
 
In the following, we will assume this 

attitude. 
 

The funny name "Log s physics" comes from 
the fact that, in low-pT processes, the evolution 
with s of many quantities is logarithmic; the 
reasons are not really understood (Froissart ?).  

Log s physics: comments 2/8 
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there are books with an extensive treatment of the 
subject; instead we summarize everything here. 

p 
(−) 
p 



Log s physics: σtot(pp) 3/8 

The data of σ(p̄p), i.e. Spp̄S and Tevatron, are dashed, 
to show the similarity of the cross sections.  
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1 b = 10-28 m2  = 10-24 cm2 

1 mb = 10-31 m2  = 10-27 cm2 

LHC 

pp [Tevatron] 
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Log s physics: σtot, dσel/dt @ LHC 4/8 

σT, σanel, σel 

TOTEM (LHC) 
EPL, 96 (2011) 21002 

dσel/dt 
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√s (GeV) 



Log s physics: σtot(pp̄) 5/8 

The data of σ(pp), i.e. LHC, do NOT belong to this 
plot; they are plotted dashed, to show the similarity 
of the cross sections ("Pomeranchuk theorem").  
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A heuristic computation : 
• Compute the limits on y : 

 
 

• i.e. ymax increases ∝ ln(s); 
• if there is a “rapidity plateau”, the total 

cross section is represented by the area 
of the rectangle : 

  
 
• if the plateau grows ∝ ln s, then σtot ∝ 

ln2s, and "saturates" the Froissart 
bound; 

• actually, this seems to be the case : 
both width and height of the rectangle 
grow ∝ ln s. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The real question is : why dσ/dy ∝ ln s ? 

 

Log s physics: "rapidity plateau" 6/8 

y -yMAX yMAX 

∝ ℓn(s)? 

∝ ℓn(s) 

dσ
dy

 

“rapidity plateau” 
(cfr. dσ/dη) 

  +  = ≤ ≤ ≡         
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T T
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m m 2 m

MAX
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y

tot y
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dy dy

−

−

σ σ   
σ = ≈ × ×   

   ∫
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Log s physics: dσ/dη|particles 7/8 

The η distributions of charged particles exhibit typical "rapidity plateaus", 
which increases ∝ log s.  
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Log s physics: inclusive data 8/8 

σ
= ≈

T

3

T s p T y
T T

Ed ƒ(s,p ,y) ƒ (s)ƒ (p )ƒ (y);
p dp dy

Paolo Bagnaia – PP – 08 48 

The number and pT distribution of the 
charged particles of the final state 
exhibits interesting properties : 
• they seem to follow a general law; 
• the law is independent from the 

primary state (e+e−, pp, p ̄p, e±p); 
• it scales (approx) ∝ ln s or ∝ ln2 s. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
Suggestion of a general “factorization 
property” of single particle production at 
low-pT ["Feynman scaling"] : 
 

 
In turn, the single ƒi exhibits interesting 
properties (like the log-dependence of ƒs). 

√s or Q (GeV) 

pT (GeV) 

Ed
3 σ

/d
p3  (

pb
/G

eV
2 )

 

pT (GeV) 
pT 



Hadronic collisions at high pT (= short 
distance) are studied in terms of the 
"quark-parton model" (*) : 

• the process take place in phases, that 
"factorize" (= take place one after the 
other, without mutual interference); 

• the hadrons of the initial state are an 
incoherent mixture of elementary 
partons (= quarks and gluons of QCD); 

• the partons behave as point-like particles 

quasi- free (like the electrons in e+e−); 

• because of the sea contribution, the 
"number" of partons in a hadron is not 
defined; only their total momentum (= 
the hadron momentum) is measurable. 

(… continue …) 
_________________________ 
(*) hadronic collisions at low pT (= great distance, 
Q2<[few-GeV]2) correspond to interactions 
between non-point-like hadrons;  they do NOT 
belong to this picture. 

The quark parton model 1/10 
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The quark parton model: initial state 2/10 

• in first approximation, partons have 
only longitudinal momentum (the 
"Fermi motion" of partons in the 
hadron is small); 

• each parton shares a fraction x of the 
momentum of its parent : 

 pparton  = (0, 0, ±x phadron); 

• the distribution function of x [Fi
h(x,Q2), 

for the parton i in the hadron h] are 

called pdf [= parton distribution 
functions, and depend both on x and 
Q2 [§ 2 and 7]; 

• the evolution in (x, Q2) of the pdf is 
regulated in non-perturbative QCD by 
the equation GLAP (Gribov − Lipatov – 
Altarelli – Parisi). 

(… continue …) 
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The quark parton model: collision 3/10 

• collisions at high-pT between elementary 
partons are two-body scatterings ("ab → 
cd"), to be studied in perturbative QCD; 

• parton energy in their CM : ŝ = sx1x2; 

• most of the partons of the hadrons do 
NOT participate in the collision 
("spectator partons"); they continue in a 
direction (quasi-)parallel to the hadrons 
of the initial state; 

• after the collision, the partons of the 
final state "hadronize" ("fragment"), i.e. 
give rise to the hadrons of the final state; 

• those particles emerge as collimated 
sprays ("jets") of particles with high pT; 

• the 4-vector sum of the momenta of the 
hadrons of a jet is identified with the 4-
vector momentum of the parton. 

(…continue…) 
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The quark parton model: fragmentation 4/10 

• The distributions of the final state 
hadrons are called  "fragmentation 
functions"; 

• they are functions [Dp
h(z,Q2)] of the 

variable z (= phadron / pparton), which 
defines the  distribution of hadron 
"h" in a jet from parton "p"; 

• they do NOT depend, to a good 
approximation, neither on the initial 

state, nor on the elementary 
collision, but only on the final state 
parton and the value of Q2; 

• however, unlike the partons of the 
elementary collision, the hadrons are 
color singlets; therefore in the 
process of fragmentation particles of 
different jets must interact. 
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The quark parton model: electroweak 5/10 

• In (few but) interesting cases, non-
QCD processes happens [e.g. ūd → 
W−, followed by W decay into quarks]; 

• these processes are rare (e.g. 10-5 ÷ 
10-6 of pQCD at LHC), but very 
valuable; they are at the origin of both 
the Spp ̄S and LHC construction; 

 

• the analysis proceeds in the same 
way: the two-body QCD parton 
scattering is replaced by the 
appropriate electroweak (or SUSY, or 
whatever) theory; 

[the figure represents a Drell-Yan process (see 
§ Spp̄S), with the creation of a W± and its 
successive decay into a qq̄ pair, which 
fragments into two jets; other processes are 
treated in the same way.] 
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The quark parton model: score 6/10 

process prediction ? theory ↔ exp. why 
σtot(p ̄p→p ̄p) no the optical theorem is a 

relation, NOT a prediction. low-pT σtot(pp→pp) no 

σincl(pp/p ̄p→π+X) no ℓn s model ? 

σincl(pp/p ̄p→jet X) yes fair pQCD 

σincl(pp/p ̄p→ Z X) yes good 
electro-

weak σincl(pp/p ̄p→ W X)  yes good 

σincl(pp/p ̄p→ H X) yes very good 

σincl(pp/p ̄p→ SUSY) if … ??? ??? 
  cfr. similar e.w. processes: 

σtot(e+e− → µ+µ−) yes perfect pure e.w. 

σtot(e+e− → Z → ƒƒ ̄) yes perfect pure e.w. 

σtot(e+e− → HZ→ƒƒƒƒ) yes [it will be perfect, I know] pure e.w. 
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The quark parton model: method 7/10 

• The scheme works for all known 
interactions of quarks and gluons, both 
e.w. and strong, if the correct definition 
of the elementary process (σ̂) is applied. 

• The present method is to reproduce the 
process, via Montecarlo generation of 
events, later analyzed as real data. 

• When, according to q.m., a distribution 
function (e.g. σ̂, pdf) appears, the 
random function of the computer is used. 

• Many events are generated, so the a-
posteriori analysis is able to 
predict/reproduce the statistical result. 

• A single event is built in successive steps, 
according to the "factorization 
approximation": 

 

(continue …) 

Paolo Bagnaia – PP – 08 55 



a. a parton of a given type is generated 
out of the first hadron; its x is also 
generated, according to its pdf; 

b. ditto for the second init. state parton; 
c. the elementary parton process is 

computed, using the appropriate cross 
section at parton level(1); 

d. (as a part of this step) the angular 
distribution of the final state partons is 
generated, according to the dynamics of 
the elementary process; 

e. each parton of the final state is 
fragmented, with its fragmentation 
functions (or a fragmentation model(2)); 

f. the hadrons from spectator partons are 
added (few methods exist); 

g. all the hadrons of the final state are 
recorded for successive analysis. 

______________________________ 

(1) In case of electroweak decays (W±, Z, H), with 
production of leptons, the treatment of the final 
state has to be appropriate (in fact, it is easier, 
since the fragmentation step is absent or 
simpler). 
(2) "Fragmentation models" like Lund (Pythia), 
Herwig, are a mixture of theory (perturbative 
and non-pertubative QCD), parameterization of 
measurements (fragmentation functions) and 
computing skill for easy management. They are 
very well-done and successful, but are NOT 
based on a complete reproduction of the theory. 

NB. The procedure just described contains some 
loopholes, e.g. pdf's (a-b) depend on Q2, which is 
generated later (c-d); there are appropriate 
tricks, not described here. 

The quark parton model: procedure 8/10 
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Two test-case processes for the q-p model : 

a) two-jet production; 

b) W (or Z) production and decay into jets. 

Notice the correspondence between the 
scheme and the corresponding formula. 

The sums run over all the partons which 
may generate the final state, and the 

integrals between the kinematical limits. 

The pdf's "weight" the processes, giving 
each parton and each x the correct share. 
NB. a)  in principle the parton type is observable 

→ sum the σ’s, NOT the amplitudes; 
 b)  σW is strongly peaked for real W’s → xi , xk   

are NOT kinematically independent] 

The quark parton model: examples 9/10 
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The quark parton model: Spp̄S → LHC 10/10 
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√s [TeV] 

σH(mH=500 GeV) 

10-7 

10-5 

10-3 

10-1 

101 

103 

105 

107 

109 

10-6 

10-4 

10-2 

100 

102 

104 

106 

108 

1010 
σtot 

σb 

σjet(ET
jet>√s/20) 

σW 
σZ 

σjet(ET
jet>100 GeV) 

σt 

σjet(ET
jet>√s/4) 

σH(mH=150 GeV 

TeVatron LHC 

σ 
[n

b]
 

R@
L=

10
34

 c
m

-2
s-1

 [H
z]

 

.1 1 10 

Spp̄S 

NB. Spp̄S and Tevatron 
are p̄p, LHC is pp. 
However, no difference 
within the accuracy of 
this plot. 



High-pT: kinematics 1/5 

 initial state in pp [pp̄] CM : 
 
phadron_1= [½√s, ½√s, ~0, ~0]; pparton_i = [½xi√s, ½xi√s, ~0,  ~0]; 
 
phadron_2= [½√s, -½√s, ~0, ~0]; pparton_k = [½xk√s, -½xk√s, ~0,  ~0]; 
 
 
 sum : ik in CM12 : [½√s(xi + xk), ½√s(xi - xk), ~0, ~0]; 
 
 ik in CMik : [√ŝ, 0, 0, 0] → ŝ = ¼s[(xi + xk)2 – (xi − xk)2] = s xi xk. 

i 

m 

j 

k 

+ Fermi motion of partons @LHC not head-on collisions 
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High-pT: parton variables 2/5 

 pi = [½√ŝ, ½√ŝ,  0, 0]; 

 pk = [½√ŝ, -½√ŝ,  0, 0]; 

 pj = [½√ŝ,  ½√ŝ cosθ*, ½√ŝ sinθ*, 0]; 

 pm = [½√ŝ, -½√ŝ cosθ*, -½√ŝ sinθ*, 0]; 

 ŝ = (pi + pk)2 = (pj + pm)2 = s xi xk; 

 t̂ = (pi - pj)2 = (pm - pk)2 = - ½ŝ (1 - cosθ*); 

 u ̂ = (pi - pm)2 = (pk - pj)2 = - ½ŝ (1 + cosθ*); 

 ŝ + t̂ + u ̂ = 0  (→ in parton CM, two independent variables). 
 

i 

m 

j 

k 

i 

m 

j 

k θ* 

Comments: 
• see § 3 for similar discussion for 

not-composite particles; 
• zero mass approx for all partons 

[for m≠0, § 3 and PDG § 43.5]. 
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High-pT: solve the kinematics 3/5 

xi 

xk 
2pik

longLAB / √s = (xi − xk) 
 

mik
2  /  s = ŝ / s = xi xk 

meas. 

• The overall transverse momentum MUST 
be balanced. A pT imbalance is attributed 
to non interacting particles (ν's) or, most 
likely, to measurement errors. 

• By measuring the 4-momenta of the final 
state (e.g. two jets), it is possible to 
compute ŝ and plong. From there, xi and xk 
and the full kinematics at parton level. 
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Compute (pi+pk) : 
• LAB : [ ½√s(xi+xk), ½√s(xi−xk), ~0, ~0]; 
• CMik : [ √ŝ, 0, 0, 0]; 
→ ŝ = ¼s[(xi+xk)2 – (xi−xk)2] = s xi xk. 

 



High-pT: structure functions (pdf) 
• in the quark parton model, hadrons are 

"wide-band beams" of elementary 
partons; 
 

• in first approximation, structure 
functions do NOT depend on Q2 :     
∂Fi(x, Q2) / ∂Q2 = 0; 

• but scaling violations do exist. 

4/5 

u, Q2 = (5 GeV)2 
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pd

f(x
,Q

2 )
 

when Q2 increases : 
partons "get closer"; 
qsea and g increase at small x; 
qvalence decreases at all x; 
 at x fixed and large, rates 

@LHC smaller than @SppS̄. 

www.zebu.uoregon.edu/~parton/part
ongraph.html 
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Jet reconstruction algorithm 
(one of many many many …) 

cone 
∆R 

hadrons 

High-pT: partons → jets 
• reconstruct the jets via an algorithm : 
 simple clustering of nearby calo cells; 
 cone algo. (see fig) with fixed ∆R 

(very popular ∆R2 = ∆φ2 + ∆η2 = 1); 
 "Durham" 
 anti-Kt 
 … 

 
 

• more refined cooking (split, sum, …) 
• reconstruct 4-momentum : 
 pjet=Σphadrons;     Ejet=ΣEhadrons; 

• [notice that the above definition gives jets a 
mass ≠ 0, generally much larger than the tiny 
parton mass → more cooking …] 

• identify (jet → parton) and play with its 
4-momentum; 

• check the manipulations with known 
cases (W±, Z → jets) and montecarlo. 

5/5 

calo 
cells 
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CDF – Z→ e+e− + jets 
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e+e− ↔ pp ↔ p̄p 
 a hadron is a bundle of many different 

partons (valence+sea quarks, sea anti- 
quarks, gluons); 

 many initial states are simultaneously 
available in pp/p̄p, i.e. hadron 
machines are much richer in physics; 

 in pp/p̄p, no need to scan in √s : at 
high Q2, the pdf's provide a large range 
of √ŝ simultaneously (see the J/ψ 
story); 

 it is therefore possible to define a 
"differential luminosity" dLi/d√ŝ for 
partons of type "i" (quarks, gluons) as 
a function of √ŝ for the same √s; 

 dLi/d√ŝ, integrated in small intervals of 
√ŝ, is small; it also decreases for √ŝ → 
√s (i.e. x1x2 → 1), because of the pdf’s; 

 because of all that, the experiments 
and analysis are much more difficult in 
hadron machines. 

1/7 

Paolo Bagnaia – PP – 08 65 

Few general arguments : the REAL answer is in the complete set of lectures.   



e+e− ↔ pp ↔ p̄p : soft vs hard collisions 
ex. : σ(LEP II, e+e−→ hadr., √s = 200 GeV) ≈ 100 pb; 

  σ(LHC,  pp → total, √s = 14 TeV) ≈ 100 mb; 

  σ(LHC,  pp → jet X, ET
jet > 250 GeV) ≈ 100 nb. 

2/7 

[actual thresholds quite 
arbitrary, retain the 
order of magnitude] 

~ 1 ÷ 109  ÷ 103 (!!!) 

• nucleons, when coherent, are 
"one billion times" larger than 
electrons; 

• however, when individual 
partons have to play, they are 
only "1,000 times" (the actual 
number depends on Q2) 
larger; 

• the factor 1,000 is due to the 
strength of the coupling (αs ↔ 
αem). 
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e+e− ↔ pp ↔ p̄p: small vs large σ 3/7 

• in ee, "small" σtot (~pb, ∝ 1/s away 
from the Z pole), dominated by high-Q2 
processes mainly in the s-channel; 

• therefore few events (rate ~1 Hz), all 
very interesting → event trigger; 
 

• in pp/p̄p, much higher σtot (~100 mb 
over many orders of magnitude), 
dominated by low-Q2 processes (t-
channel); 

• therefore very high rate (~109 Hz), rare 
interesting events → high-pT triggers. 
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e+e− ↔ pp ↔ p̄p: data analysis 
In detector and analysis many differences 
between e+e− and pp/p ̄p: 
• in ee "partonic" energy √s is fixed by 

the machine, and known precisely; 
• in pp/p̄p partonic energy √ŝ changes for 

each event by a large factor; 
• for a given √s, the average √ŝ in a pp/p̄p 

collision is much lower; 

• in ee, kinematical fits in 4D, constraints 
known to 10−5; 

• in pp/p̄p, fits in 2D, (because of 
spectators), constraints to %; 

• but √s in ee machines is severely limited 
by brem. 

4/7 

LEP I, e+e− → Z 
mZ from √s (LEP) 

width = ΓZ = 2.5 GeV 
∆m ≈ few MeV 

UA2, pp̄ → Z 
mZ from m(e+e−) 

width = ΓZ ⊕ σZ ≈ 4.3 GeV, 
i.e. ΓZ and σZ comparable, 

∆m ≈ few × 100 MeV 
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e+e− ↔ pp ↔ p̄p: a personal conclusion 
In a given moment, with similar 
technology (and resources, don't forget) : 
A pp/p ̄p machine : 
• needs a smaller ring (because of brem); 
• more difficult to build (both the 

magnets and the detectors); 
• (much) higher √s and (fairly) higher √ŝ; 
• analysis difficult, higher systematics; 
• larger variety of both initial and final 

states (not only vacuum q.n.); 
Therefore [imho, but largely shared]: 
 (ee) and (pp/p̄p) are complementary, 

NOT competitive; 
 (pp/p̄p) an exploratory machine, for 

first generation experiments; 
 (ee) a "second generation" machine, 

for systematics and consolidation (and 
surprises in the precision meas); 

This has been the CERN strategy in the 
last half a century :  
1. (pp/p ̄p) (re-using an old machine); 
2. civil engineering for a new ring (the 

long and expensive step); 
3. (ee) in the new ring; 
4. [back to step (1), restart the cycle]. 
It happens that, e.g., the value of √s in 
step (3) is similar to ŝeff in step (4/1) [e.g. 
both the Spp ̄S and LEP had W± and Z as 
their main purpose. 
The "luminosity frontier" (Babar, Daφne, 
…) is a different approach : a dedicated 
machine, especially optimized wrt 
intensity and systematics, for (a) very 
important (single) measurement(s). 

5/7 
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e+e− ↔ pp ↔ p̄p: matter vs antimatter 
Last question : pp ↔ p ̄p ? 

• pp has major problems : 
 it needs two independent magnet 

rings; 
 at the same √s, the effective √ŝ is 

smaller for qq ̄ channels (valence-
sea instead of valence-valence); 

• however, p̄p has a larger problem: 
 antiprotons do NOT exist in 

nature (at least in our proximity); 
 therefore p ̄'s have to be "built", 

starting from pp collisions; 
 they are scarce, and have an 

incredible "price" (in the Spp ̄S, 
one good p ̄ / 3×105 pp collisions); 

 they have to be cooled and stored 
(AA, stochastic cooling, van der 
Meer); 

 the resultant luminosity is small 
(in 1983, the golden year, L(Spp̄S) 
< 1030 cm-2s-1); 

 

 

 

• Therefore, in spite of all the 
successes of the p ̄p machines, both 
at CERN and Fermilab, the quest for 
higher energies and (consequently) 
higher luminosities makes the pp 
option really superior for present 
and future colliders. 

• The p̄p option will probably be 
reserved for dedicated single-task 
machines at sub-TeV energy. 
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e+e− ↔ pp ↔ p̄p: e+e− linear or circular ? 
• Smart idea (SLAC '80s): build/use a 

powerful e+e− linear collider, add two 
arcs and produce the equivalent of a 
circular electron collider [see § LEP]. 

• In this way, essentially NO BREM (e+/e− 
only once in a curved path). 

Pros/cons : 
• Circular colliders (like ADA, ADONE, 

SPEAR, LEP, …) : 
 cost ∝ radius, 
 energy to exploit ∝ E4 / R (brem), 
 $ = α R + β E4 / R; 
 d$ / dR = 0 → α = β E4 / R2 →  
 Rbest = β/α E2; $min = αβ E2; 
 best choice: R ∝ E2; $ ∝ E2. 

• Linear colliders (SLC, next CERN ?) : 
 both machine and energy ∝ length; 
 R ∝ E; $ ∝ E. 

• Coefficients α,β depend on technology 
and market; at present the crossing is at 
Ebeam ≈ 150÷200 GeV; 

• possibly LEP is the highest energy e+e− 
circular collider ever built [never say 
never … read the CERN strategy plan]; 
 
 

• p, p ̄, µ±, etc., are different (see § LHC). 

[thanks to Gary Feldman] 
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