Particle Physics - Chapter 2 Hadron structure

AA 219-22

2 - Hadron structure

1. Fermi gas model
2. Rutherford scattering
3. Kinematics
4. Elastic scattering e-Nucleus
5. Form factors
6. Electron-Nucleon scattering
7. Proton structure
8. \quad Higher Q^{2}
9. Deep inelastic scattering
10. Bjorken scaling
11. The parton model
12. The quark-parton model
13. $F_{2}\left(x, Q^{2}\right)$
14. Summary of cross-sections

brief historical summary

"Fegel remarks somewhere that all great, worldfistorical facts and personages occur (...) twice. He has forgotten to add: the first time as tragedy, the second as farce." [Karl Marx, The 18th Brumaire of Louis Bonaparte]

Despite this famous sentence, in this chapter a story is told, neither tragic nor farcical, which happened at least three times in the $20^{\text {th }}$ century: in a scattering experiment, a projectile probes the deep structure of the target; the scale of the observation depends on the energy of the probe:

1. 1911 (Rutherford) α particles \rightarrow gold (nucleus) [\rightarrow FNSN];
2. 1950-60 (Hofstadter) $\mathrm{e}^{-} \rightarrow \mathrm{H} / \mathrm{D} / \mathrm{He}$ (nuclear structure);
3. 1965-80 (SLAC/CERN) e/v \rightarrow hadronic matter (quarks/partons)
4. 20xx [possibly, maybe you] a new substructure emerging ???

The deep meaning of the mechanism resides in Quantum Mechanics, which relates the space scale of a phenomenon with the (transverse) momentum of the scattered particles.

The role of technology is also important: the observation is possible because of powerful accelerators and detectors.

We will follow the history and therefore will study phenomena of ever smaller size [look the contents page].

the treasure map for scattering

the scattering experiment

Q : is the target a pointlike simple object ? if not, how to probe its shape?
A: (à la Rutherford, but (a) he used a particles, (b) he did NOT see the nucleus size)
$>$ take a probe: e.g. an electron (e^{-}),
> study the scattering $\mathrm{e}^{-\mathrm{T}},[\mathrm{T}=$ Nucl-eus/on]
\Rightarrow measure the cross section $\sigma\left(\mathrm{e}^{-T}\right)$,
> ... and the angular distribution of the e^{-};
> ... and detect the excited states or the final state hadronic system ("inelastic interactions").

Path:

1. study the kinematics ${ }^{(*)}$;
2. compute $\sigma\left(e^{-} T\right)$ for pointlike nuclei in classical electrodynamics (Rutherford formula);
3. ditto in QM for spin $1 / 2$ electrons and pointlike nuclei (Mott formula);
4. detect deviations from these models \rightarrow derive informations on nuclear structure;
5. new theory @ smaller distance (i.e. higher $\left.\mathbf{Q}^{2}\right) \rightarrow$ experiment \rightarrow deviations \rightarrow newer theory $\rightarrow \ldots \rightarrow \ldots \rightarrow$ (possibly ad infinitum)

> (*) We call "kinematics" the equations which follow from space / angular momentum conservation and mass. The game is to study the "dynamics" after imposing the "kinematical" constraints.
> Nuclei are bound states of protons (p) and neutrons (n).
> A simple model: the Fermi gas:

- p, n identical, but charge :
- little spheres $r=r_{0}$, mass = m;
- spin $1 / 2$ fermions, pure Dirac-like;
- bound inside the nucleus, otherwise free to move;
- define:
- $\mathrm{n}_{\text {neutr. }} .(=\mathrm{N}), \mathrm{n}_{\text {prot. }}(=\mathrm{Z}), A=N+Z$,
$-p_{\text {Fermi }}\left(=p_{F}\right), E_{\text {Fermi }}\left(=E_{F}\right)$;
$\rightarrow \mathrm{V}_{\text {Nucl }}[\propto \mathrm{A}]=4 \pi r_{0}{ }^{3} \mathrm{~A} / 3$;
- no e.m. interactions, only nuclear $\rightarrow N=Z=A / 2, p_{F}^{p}=p_{F}^{n}, E_{F}^{p}=E_{F}^{n}$ [better approx (not here):different interactions $\left.\rightarrow p_{F}^{p} \neq p_{F}^{n}\right]$;
- uncertainty principle \rightarrow each p / n fills $V_{\text {phase space }}=[2 \pi \hbar]^{3}$.

Therefore:

- well-shaped potential (ப), identical for p / n, i.e. only interactions $\mathrm{p} \leftrightarrow \mathrm{p} \mathrm{n} \leftrightarrow \mathrm{n}$;
- Fermi statistics \rightarrow two p / n per energy level (spin 介\V);
[...next page...]

Fermi gas model: results

From those approximations, an elementary computation :

$$
\begin{aligned}
n^{n, \pi} & =n^{n, \Downarrow}=n^{p, \pi}=n^{p, \Downarrow}=\frac{N}{2}=\frac{Z}{2}=\frac{A}{4}= \\
& =\frac{\left[V_{\text {space }} V_{\text {mom }}\right]_{\text {TOT }}}{\left[V_{\text {space }} V_{\text {mom }}\right]_{\text {each part }}}=\frac{4 / 3 \pi r_{0}^{3} A \times 4 / 3 \pi p_{F}^{3}}{[2 \pi \hbar]^{3}}= \\
& =\frac{2 A r_{0}^{3} p_{F}^{3}}{9 \pi \hbar^{3}} ;
\end{aligned}
$$

$$
\mathrm{N}=\mathrm{Z}=\frac{A}{2}=\frac{4 A \mathrm{r}_{0}^{3} \mathrm{p}_{\mathrm{F}}^{3}}{9 \pi \hbar^{3}} ; \quad \mathrm{p}_{\mathrm{F}}=\frac{\hbar}{\mathrm{r}_{0}} \sqrt[3]{9 \pi / 8}
$$

$$
r_{0} \approx 1.2 \mathrm{fm} \rightarrow\left\{\begin{array}{l}
\mathrm{p}_{\mathrm{F}} \approx 250 \mathrm{MeV} ; \\
\mathrm{E}_{\mathrm{F}}^{\text {kin }}=\mathrm{p}_{\mathrm{F}}^{2} / 2 \mathrm{~m} \approx 33 \mathrm{MeV}
\end{array}\right.
$$

fit from form factors (see later)

Conclusions:

- $\mathrm{V}_{\text {space }} \approx 4 / 3 \pi r_{0}{ }^{3} A \rightarrow r_{\text {nucl. }} \propto A^{1 / 3}$;
- $\mathrm{p}_{\mathrm{F}}, \mathrm{E}_{\mathrm{F}}$ not dependent on $\mathrm{A}(!!!) ;$
- large p_{F}, small kin. energy;
- when p / n hit by probe ($e^{ \pm} / v$), if $E_{\text {probe }}$ >> $30 \mathrm{MeV} \rightarrow$ ignore Fermi motion.
- [more elaborated model, e.g. add e.m. and spin interactions, etc. - see literature]

Rutherford scattering

The birth of nuclear physics
(Manchester, 1908-13):
$\alpha\left(Z_{\alpha}=2, A_{\alpha}=4\right) \rightarrow A u\left(Z_{A u}=79, A_{A u}=197\right)$

- actually performed by H.Geiger and E.Marsden [E.M. was 20 y.o. !];
- alternative model by J.J.Thompson, with a diffused mass/charge ("soft matter");
- the first "fixed target" scattering
- already discussed in FNSN (pag 25);
- do NOT repeat the math, simply recall the results;
- discussion of the physics;
- preparation for further steps.
modern simulation (look):

https://phet.colorado.edu/en/

Rutherford scattering: in a nutshell

[an incredible mix of genius, skill and luck]

- α-particles (i.e. ionized He$) \rightarrow$ Au foil;
- $E_{\alpha}^{\text {kin }} \approx$ few MeV ;
- sometimes, the α was scattered by θ > 90°; ${ }^{*}$ VERY* rare in reality, but impossible if matter were soft and homogeneous;
- only explanation: "matter" actually concentrated in small heavy bodies ("nuclei");
\rightarrow the "matter" is essentially empty;
- how model the scattering ? Rutherford tried with a two-body scattering;
- notice: Coulomb (electrostatic), nonrelativistic, no QM (obviously);
- success !!! [within their limited observation capabilities]
- a key point: the nucleus is small enough, that the α "sees" always its full charge;
- [remember the Gauss' theorem: if impact parameter $b>r_{\text {Nucleus }}$, only see an effective point-like charge]
- but the matter is neutral ! yes, but the electrons are so light, that they cannot stop/deflect the $\alpha\left(m_{\mathrm{e}} / \mathrm{m}_{\alpha} \approx 1 / 8,000\right)$.

$\alpha(\mathrm{m}, \mathrm{z}) \rightarrow$ nucleus (M, Z):
- $\vec{v}_{\alpha, \text { init }}=\vec{v}, \vec{v}_{\alpha, \text { final }}=\vec{v}^{\prime}, \vec{v}_{\text {nucleus }}=0$;
- $\vec{p}=m \vec{v}, \vec{p}^{\prime}=m \vec{v}^{\prime}, m \ll M$;
- Coulomb force only (\vec{F});
- v << c \rightarrow non-relativistic;
- elastic $\rightarrow|\overrightarrow{\mathrm{p}}|=|\overrightarrow{\mathrm{p}}|$;
- conserve E, ang. mom \vec{L};
- $\Delta p_{x}=0$ because of symmetry, only $\Delta \mathrm{p}_{\mathrm{y}}$ matters;
- integral over β, the angle wrt \hat{y};
- if attractive force (e.g. +-), $\mathrm{M} \rightarrow$ the other focus of the hyperbola.
$\Delta \mathrm{p}=\left|\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{p}}^{\prime}\right|=2 \mathrm{p} \sin (\theta / 2) ;$
$|\overrightarrow{\mathrm{L}}|=(\mathrm{D})=|\vec{r} \times \mathrm{m} \overrightarrow{\mathrm{v}}|=\left|\vec{r} \times \mathrm{m}\left(\frac{\mathrm{dr}}{\mathrm{dt}} \hat{r}+\mathrm{r} \frac{\mathrm{d} \beta}{\mathrm{dt}} \hat{\beta}\right)\right|=\mathrm{mr}^{2} \frac{\mathrm{~d} \beta}{\mathrm{dt}}$;
$\Delta \mathrm{p}_{\mathrm{y}}=2 p \sin (\theta / 2)=\int_{-\infty}^{+\infty} \mathrm{dt} F_{\mathrm{y}}=\int_{-\infty}^{+\infty} \mathrm{dt} \frac{z Z e^{2}}{4 \pi \varepsilon_{0}} \frac{\cos \beta}{\mathrm{r}(\mathrm{t})^{2}}=$

$$
=\int_{-(\pi-\theta) / 2}^{(\pi-\theta) / 2} \frac{z Z e^{2}}{4 \pi \varepsilon_{0}} \frac{\cos \beta}{\mathrm{~K}^{2}} \frac{\mathrm{~m} \mathrm{x}^{2}}{\mathrm{pb}} \mathrm{~d} \beta=\frac{\mathrm{zZe}}{2 \pi \varepsilon_{0}} \frac{\mathrm{~m}}{\mathrm{pb}} \cos (\theta / 2) ;
$$

$$
\tan (\theta / 2)=\frac{z Z e^{2}}{4 \pi \varepsilon_{0}} \frac{\mathrm{~m}}{\mathrm{p}^{2} \mathrm{~b}} \rightarrow \mathrm{db}=-\frac{z Z e^{2}}{4 \pi \varepsilon_{0}} \frac{\mathrm{~m}}{\mathrm{p}^{2}} \frac{\mathrm{~d} \theta}{2 \sin ^{2}(\theta / 2)}
$$

$$
\mathrm{d} \sigma=2 \pi \mathrm{bdb}=2 \pi\left(\frac{z Z e^{2} \mathrm{~m}}{4 \pi \varepsilon_{0} \mathrm{p}^{2}}\right)^{2} \frac{\mathrm{~d} \theta}{2 \tan (\theta / 2) \sin ^{2}(\theta / 2)}
$$

$$
\frac{d \sigma}{d \Omega}=\left(\frac{z Z e^{2} m}{4 \pi \varepsilon_{0}}\right)^{2} \frac{1}{4 p^{4} \sin ^{4}(\theta / 2)}=\left(\frac{z Z e^{2} m}{2 \pi \varepsilon_{0}}\right)^{2} \frac{1}{\left|\vec{p}-\vec{p}^{\prime}\right|^{4}}
$$

$$
0[1 / \tan (\theta / 2)]=\mathrm{d}[\cos (\theta / 2) / \sin (\theta / 2)]
$$

$$
=-\mathrm{d}(\theta / 2)\left[1+\cos ^{2}(\theta / 2) \sin ^{2}(\theta / 2)\right] .
$$

$d \Omega=2 \pi \sin \theta d \theta=4 \pi \sin (\theta / 2) \cos (\theta / 2) d \theta$

Useful formulas

$\mathrm{d}_{0}=\mathrm{r}_{\text {min }}(\mathrm{b}=0)=\frac{z Z \mathrm{e}^{2}}{2 \pi \varepsilon_{0} \mathrm{mv}^{2}}$;
$\tan \left(\frac{\theta}{2}\right)=\frac{d_{0}}{2 b} ;$
$d=r_{\text {min }}(b)=\frac{d_{0}+\sqrt{d_{0}^{2}+4 b^{2}}}{2}=$

$$
=\frac{d_{0}}{2}\left(1+\frac{1}{\sin (\theta / 2)}\right)
$$

$\frac{d \sigma}{d \Omega}=\frac{d_{0}^{2}}{16 \sin ^{4}(\theta / 2)} \xrightarrow{\theta \rightarrow 0} \frac{d_{0}^{2}}{\theta^{4}}$.

- [if force attractive (e.g. +-), $\overrightarrow{\mathrm{F}} \rightarrow-\overrightarrow{\mathrm{F}}$, then $\theta \rightarrow$ $-\theta$, but everything else equal, e.g. same dб/d Ω;]
- consider a particle \vec{p}_{2} with $b=0 \rightarrow \theta_{2}=180^{\circ}$;
> define $\mathrm{d}_{0}=$ "distance of closest approach", i.e. $r_{\text {min }}$ (when $r=d_{0}$, the particle is at rest);
$>\mathrm{d}_{0}$ is computed from energy conservation;
- define $d_{0}=\left(z Z e^{2}\right) /\left(2 \pi \varepsilon_{0} m v^{2}\right)$ also for $b \neq 0$;
- write θ and $\mathrm{d} \sigma / \mathrm{d} \Omega$ as functions of d_{0};
- define d as $r_{\text {min }}$ when $b \neq 0$;
- d is computed from E and $\overrightarrow{\mathrm{L}}$ conservation [hint in the box, v_{0} is the velocity in d]:

$$
\left.\begin{array}{rl}
\overrightarrow{\mathrm{L}} \text { conserv } \rightarrow \mathrm{mbv} & =\mathrm{mdv}_{0} \rightarrow \mathrm{v}_{0} / \mathrm{v}=\mathrm{b} / \mathrm{d} \\
\mathrm{E} \text { conserv } \rightarrow 1 / 2 m v^{2} & =1 / 2 \mathrm{mv}_{0}^{2}+2 Z e^{2} /\left(4 \pi \varepsilon_{0} \mathrm{~d}\right)= \\
& =1 / 2 \mathrm{mv}_{0}^{2}+1 / 2 m v^{2} d_{0} / \mathrm{d}
\end{array}\right\} \begin{aligned}
& \rightarrow\left(\mathrm{v}_{0} / \mathrm{v}\right)^{2}=(\mathrm{b} / \mathrm{d})^{2}=1-\mathrm{d}_{0} / \mathrm{d} \rightarrow \\
& \rightarrow \mathrm{~d}^{2}-\mathrm{dd}_{0}-\mathrm{b}^{2}=0 \rightarrow \mathrm{~d}=\ldots .
\end{aligned}
$$

- [the calculations above are *NOT* difficult in math: Newton could have done all 200 years earlier, had the correct model been made];
- the real difficulty was to assess whether the matter is soft and continuous or granular and "empty";
- b large $\rightarrow \theta$ small $\rightarrow \mathrm{d} \sigma / \mathrm{d} \Omega \rightarrow \infty$ [cutoff provided by other Au nuclei].

A long and thorough investigation:

- 1909: found some events $\theta>90^{\circ}$: big shock;
- 1911: falsification of the Thomson model, correct assumptions, check of $\mathrm{d} \sigma / \mathrm{d} \Omega$ in the range $30^{\circ}-50^{\circ}$;
- 1913 : check of $\mathrm{d} \sigma / \mathrm{d} \Omega$ in the range $5^{\circ}-150^{\circ}$;

;

Rutherford scattering: $\mathrm{R}_{\text {nucleus }}$

How large is the nucleus?

- [remember the Gauss' theorem]
- if the α trajectory is completely external to the nucleus, it does NOT probe its (possible) structure;
- the Rutherford experiment could only limit $\mathrm{R}_{\text {nucleus }}<$ $10^{-14} \mathrm{~m}$ [still an important result !];
- to "see" $10^{-15} \mathrm{~m} \rightarrow$ probes with $\mathrm{E}_{\text {kin }}>20 \div 30 \mathrm{MeV}$.

- plot [A]: b and $r_{\text {min }}$ could *NOT* be measured directly for each event, but Rutherford point-like law ($r p l$) relates $\mathrm{b} \leftrightarrow \theta$; in fact $\mathrm{b}_{\text {small }} \leftrightarrow \theta_{\text {large }}$;
- plot [B]: the Gauss' theorem predicts a deviation from rpl, when ($E_{\alpha}^{\text {kin }}$ large) $\rightarrow\left(r_{\text {min }}<R_{\text {nucleus }}\right) \rightarrow$ shielding \rightarrow "smaller θ ";
- plot [C] (1961 !!!): a "Rutherford-like" scattering $\alpha-\mathrm{Pb}$; at $\theta=60^{\circ}$, deviation for $\mathrm{E}_{\alpha}^{\mathrm{kin}}>25 \mathrm{MeV}$;
- at high θ, point-like target \rightarrow larger σ, soft target \rightarrow smaller σ (deviations from rpl related to size of target) [please, remember].

Q. find $r_{\text {min }}$ for $\mathrm{Pb}, \theta=60^{\circ}, \mathrm{E}_{\alpha}^{\mathrm{kin}}=25 \mathrm{MeV}$
A. $r_{\text {min }}=[$ formula $]=14 \mathrm{fm}$.

This is a collection of kinematical computations. It is probably useful to have all in the same place. Notice that here we work in the LAB sys (= N at rest), not in the CM.

This chapter (and many others) deals with scattering. A "probe", usually assumed point-like (e.g. $\mathrm{e}^{ \pm}$) hits a hadronic complex system (a nucleus) [see box].

In the final state, the probe emerges unchanged, while the nucleus may or may not survive intact:

- elastic scattering, when the nucleus is unchanged, i.e. identical initial and final state particles ($\mathrm{W}=\mathrm{M}$);
- excitation, when the nucleus in the final state is excited, i.e. heavier ($W=M^{*}>M$);
- a new hadronic system, with n particles ($\mathrm{i}=1 . . . n$):

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{H}}=\sum_{i=1}^{\mathrm{n}} \mathrm{E}_{\mathrm{i} ;} \quad \overrightarrow{\mathrm{p}}_{\mathrm{H}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \overrightarrow{\mathrm{p}}_{\mathrm{i}} ; \\
& \mathrm{W}=\sqrt{\left(\mathrm{E}_{\mathrm{H}}\right)^{2}-\left(\mathrm{p}_{\mathrm{H}}\right)^{2}}=\mathrm{M}_{\text {had. sys. }}>\mathrm{M} .
\end{aligned}
$$

The underlying idea is to study (understand ?) the structure of the hadrons by observing the scattering.

$\mathrm{e}^{-N} \rightarrow \mathrm{e}^{-} \mathrm{H}$

electron $e^{-}:\left\{\begin{array}{llll}(E, & \vec{p} ; & m) & \text { [init.] } \\ \left(E^{\prime},\right. & \vec{p}^{\prime} ; & m) & {[f i n .]}\end{array}\right.$
had. sys. $:\left\{\begin{array}{lll}(M, & \overrightarrow{0} ; & M) \\ \left(E_{H},\right. & \overrightarrow{\mathrm{p}}_{H} ; & \mathrm{W})\end{array}\right.$ [finit.] $]$

4-mom cons. $\rightarrow\left\{\begin{array}{l}E+M=E^{\prime}+E_{H} ; \\ \vec{p}+\overrightarrow{0}=\vec{p}^{\prime}+\vec{p}_{H} .\end{array}\right.$

- To begin with, assume elastic scattering, i.e. "H" = N;
- Define, in the target nucleus ref.sys. :
electron $e^{ \pm}:\left\{\begin{array}{llll}(E, & \vec{p} ; & m) & \text { [init.] } \\ \left(E^{\prime},\right. & \vec{p}^{\prime} ; & m) & \text { [fin.] }\end{array}\right.$
nucleus

$$
:\left\{\begin{array}{llll}
(M, & \overrightarrow{0} ; & M) & \text { [init.] } \\
\left(E_{H},\right. & \vec{p}_{H} ; & M) & \text { [fin.] }
\end{array}\right.
$$

- 4-mom cons. $\rightarrow\left\{\begin{array}{l}\overrightarrow{\mathrm{p}}+\overrightarrow{0}=\overrightarrow{\mathrm{p}}^{\prime}+\overrightarrow{\mathrm{p}}_{\mathrm{H}} ; \\ E+M=E^{\prime}+E_{H} .\end{array}\right.$
- The relation between the observed quantities ($\mathrm{E}, \mathrm{E}^{\prime}, \theta$) is [next slide] :

$$
E^{\prime}=\frac{E}{1+\frac{E}{M}(1-\cos \theta)}=\frac{E}{1+\frac{2 \mathrm{E}}{\mathrm{M}} \sin ^{2}(\theta / 2)} \approx\left|\overrightarrow{\mathrm{p}}^{\prime}\right| ;
$$

- Therefore, for known initial energy E and fixed M, the final state is defined by one independent variable (E^{\prime} or θ).

$$
\begin{aligned}
& \left\{\begin{array} { l l }
{ \mathrm { e } _ { \text { init } } ^ { - } } & { (\mathrm { E } , \vec { \mathrm { p } } ; \mathrm { m }) ; } \\
{ \mathrm { N } _ { \text { init } } } & { (\mathrm { M } , \vec { 0 } ; \mathrm { M }) ; }
\end{array} \quad \left\{\begin{array}{ll}
\mathrm{e}_{\text {fin }}^{-} & \left(\mathrm{E}^{\prime}, \overrightarrow{\mathrm{p}}^{\prime} ; m\right) ; \\
H_{\text {fin }} & \left(E_{H}, \vec{p}_{H} ; M\right) ;
\end{array}\right.\right. \\
& \text { 4-momentum }\left\{\begin{array}{l}
\mathrm{E}+\mathrm{M}=\mathrm{E}^{\prime}+\mathrm{E}_{H} \rightarrow \mathrm{E}_{H}=\mathrm{E}+\mathrm{M}-\mathrm{E}^{\prime} ; \\
\overrightarrow{\mathrm{p}}+\overrightarrow{0}=\overrightarrow{\mathrm{p}}^{\prime}+\overrightarrow{\mathrm{p}}_{\mathrm{H}} \rightarrow \overrightarrow{\mathrm{p}}_{\mathrm{H}}=\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{p}}^{\prime} ;
\end{array}\right. \\
& \text { conservation }
\end{aligned}
$$

Square and subtract

$$
\left\{\left(\mathrm{E}_{\mathrm{H}}\right)^{2}-\left(\overrightarrow{\mathrm{p}}_{\mathrm{H}}\right)^{2}=\mathrm{M}^{2}=\left(\mathrm{E}^{2}+\mathrm{M}^{2}+\mathrm{E}^{\prime 2}+2 \mathrm{EM}-2 E E^{\prime}-2 M E^{\prime}\right)-\left(\mathrm{p}^{2}+\mathrm{p}^{\prime 2}-2 \mathrm{pp}{ }^{\prime} \cos \theta\right) ;\right.
$$

Ultra-relativistic approx. $\int M^{2}=\not Z^{2}+M^{2}+\hbar^{12}+2 E M-2 E E^{\prime}-2 M E^{\prime}-\not Z^{2}-E^{12}+2 E E^{\prime} \cos \theta$; $\left.\left(m_{e} \ll E, E^{\prime}\right) \rightarrow\left(p \approx E, p^{\prime} \approx E^{\prime}\right)\right] 0 \quad=E M-E E^{\prime}-M E^{\prime}+E E^{\prime} \cos \theta=E M-E^{\prime}[E(1-\cos \theta)+M] ;$
$E^{\prime}=\frac{E M}{M+E(1-\cos \theta)}=\frac{E}{1+\frac{2 E}{M} \sin ^{2}\left(\frac{\theta}{2}\right)}$
q.e.d.

NB - The reaction is planar (why?). The final state is defined by 6 variables. There are 3 (E, \vec{p}) conservations and $2\left(m^{2}=E^{2}-p^{2}\right)$ rules. Therefore: 6-5=1 independent variable.

- in the following, ($\mathrm{E}, \overrightarrow{\mathrm{p}}, \mathrm{E}^{\prime}, \overrightarrow{\mathrm{p}}^{\prime}, \mathrm{m}, \mathrm{M}, \theta$);
$\left[m=m_{e}\right.$ small $\left.\rightarrow E \approx|\vec{p}|, E^{\prime} \approx\left|\vec{p}^{\prime}\right|\right]$
- new (not independent) variable: $\overrightarrow{\mathrm{q}} \equiv \overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{p}}$ "momentum transfer";
$\left[\mathrm{E} / \mathrm{M}\right.$ small $\left.\rightarrow \mathrm{p}^{\prime}=\mathrm{p} \rightarrow|\overrightarrow{\mathrm{q}}|=2|\overrightarrow{\mathrm{p}}| \sin (\theta / 2)\right]$
- relativistic equivalent (p and p^{\prime} are 4-mom):

$$
\begin{aligned}
& q \equiv p-p^{\prime} \quad\left[=\left(E-E^{\prime}, \vec{p}-\vec{p}^{\prime}\right)\right] ; \\
&-q^{2}=-\left(2 m_{e}^{2}-2 E E^{\prime}+2|\vec{p}|\left|\vec{p}^{\prime}\right| \cos \mid \theta\right) \approx \\
& \approx 4 E E^{\prime} \sin ^{2}(\theta / 2)=Q^{2} \quad\left[i . e . Q^{2}>0\right] ; \\
& \text { - } A^{\prime}=\frac{E M}{M+2 E \sin ^{2}(\theta / 2)}=\frac{E M}{M+Q^{2} /\left(2 E^{\prime}\right)}= \\
&=\frac{2 E^{\prime} E M}{2 E^{\prime} M+Q^{2}} \rightarrow 2 E M=2 E^{\prime} M+Q^{2} \\
& \rightarrow Q^{2}=2 M\left(E-E^{\prime}\right) \quad E^{\prime}=E-Q^{2} /(2 M)
\end{aligned}
$$

- [for elastic scattering one independent variable $\left.\rightarrow \mathrm{E}^{\prime}=\mathrm{E}^{\prime}(\theta)=\mathrm{E}^{\prime}\left(\mathrm{Q}^{2}\right), \mathrm{Q}^{2}=\mathrm{Q}^{2}\left(\mathrm{E}^{\prime}\right)\right]$;

Study the kinematical limits:

- $\theta=0^{\circ}$: $\mathrm{E}^{\prime}=\mathrm{E} ; \mathrm{Q}^{2}=0$;
- $\theta=180^{\circ}: E-E^{\prime}=E \frac{M+2 E}{M+2 E}-\frac{E M}{M+2 E}=\frac{2 E^{2}}{M+2 E}$

$$
(\mathrm{E} \gg \mathrm{M}): \mathrm{E}^{-\mathrm{E}^{\prime}} \approx \mathrm{E} \rightarrow \mathrm{E}^{\prime} \approx 0 ;
$$

- in conclusion $\mathrm{E}>\mathrm{E}^{\prime}>{ }^{\prime} \mathrm{O}^{\prime}$ ".
- Plot Q^{2} vs $2 \mathrm{M}\left(\mathrm{E}-\mathrm{E}^{\prime}\right)$: only a segment allowed [useless for elastic scatt., but ...]:

The variable $\overrightarrow{\mathbf{q}}$ is *very* important:

- [if relativistic, use Q^{2} or its root $\sqrt{ } \mathrm{Q}^{2}$];
- it is related to the deBroglie wavelength of the probe: $\lambda=\hbar /|\vec{q}|$;
- it represents the "scale" of the scattering;
- i.e. structures smaller than $\lambda \sim 1 /|\overrightarrow{\mathrm{q}}|$ are not "visible" to the probe;
- [the uncertainty principle $\Delta \mathrm{p} \Delta \mathrm{x} \geq \hbar / 2$ leads to the same conclusion - actually it is exactly the same argument;

[^0]- conclusion:
Q^{2} is an important variable, possibly the most important in modern particle physics.
[in general, $\ell N \rightarrow \ell^{\prime} H$ (ℓ, ℓ^{\prime} generic leptons); the kinematics is the same, if $\left.E_{\ell}, E_{\ell^{\prime}} \gg m_{\ell}, m_{\ell^{\prime}}\right]$

Kinematical variables ($\mathbf{\ell} \rightarrow \ell^{\prime} \mathbf{H}$) :

- [$\mathrm{l}^{\prime}=\mathrm{l}, \mathrm{H}=\mathrm{N} \rightarrow$ elastic];
- 4-mom. in LAB sys (\equiv had CM);
- $p_{1}=p, p_{2}=P, p_{3}=p^{\prime}, p_{4}=p_{H}$;
- $q=p-p^{\prime}$ [as in previous slides];

Lorentz - invariant variables:

- $v=q \cdot P / M=E-E^{\prime}\left[=\right.$ energy lost by e^{-}];
- $Q^{2}=-q^{2}=2\left(E E^{\prime}-p p^{\prime} \cos \theta\right)-2 m^{2} \approx$ $4 \mathrm{EE}^{\prime} \sin ^{2}(\theta / 2)$ [= - module of the 4momentum transfer];
- $\mathrm{x}=\mathrm{Q}^{2} /(2 \mathrm{Mv})$ [later : x -Bjorken x_{B}, the fraction of the hadron 4-momentum carried by the interacting parton];
- $y=(q \cdot P) /(p \cdot P)=v / E[=$ the fraction of the energy lost by the lepton in the target frame];
- $W^{2}=\left(p_{H}\right)^{2}=(P+q)^{2}=M^{2}-Q^{2}+2 M v$ [=(mass) ${ }^{2}$ of the hadron system in the final state] : $\mathrm{W}=\mathrm{M}$ if elastic;
- $s=(p+P)^{2}=\left(p^{\prime}+p_{H}\right)^{2} \approx M(M+2 E)$ [the (energy) ${ }^{2}$ in the CM].

$$
\begin{aligned}
& \left\{\begin{array} { l l }
{ e _ { \text { init } } ^ { - } } & { p (E , \vec { p } ; m _ { \ell }) ; } \\
{ N _ { \text { init } } } & { P (M , \vec { 0 } ; M) ; }
\end{array} \quad \left\{\begin{array}{ll}
e_{\text {fin }}^{-} & p^{\prime}\left(E^{\prime}, \vec{p}^{\prime} ; m_{\ell}\right) ; \\
H_{\text {fin }} & p_{H}\left(E_{H}, \vec{p}_{H} ; W\right) ;
\end{array}\right.\right. \\
& \mathrm{W}^{2} \text { Lorentz invariant; } \\
& \text { E, } \mathrm{E}^{\prime}, \ldots \text { Lab sys (= P at rest). } \\
& q=p-p^{\prime}=\left(E-E^{\prime}, \vec{p}-\vec{p}^{\prime}\right) ; \\
& q^{2}=m^{2}+m^{2}-2 E E^{\prime}+2 p p^{\prime} \cos \theta \approx-2 E E^{\prime}(1-\cos \theta)=-4 E E^{\prime} \sin ^{2}\left(\frac{\theta}{2}\right) \equiv-Q^{2} ; \\
& v \equiv \frac{q \cdot P}{M}=\frac{\left(E-E^{\prime}\right) M}{M}=\left(E-E^{\prime}\right) ; \\
& \text { warning: } x_{B} \text { is very } \\
& \text { interesting, see later } \\
& x \equiv \frac{Q^{2}}{2 M v} ; \quad y \equiv \frac{q \cdot P}{p \cdot P}=\frac{\left(E-E^{\prime}\right) M}{E M}=\frac{E-E^{\prime}}{E}=\frac{v}{E} ; \\
& W^{2}=p_{H}^{2}=(P+q)^{2}=M^{2}-Q^{2}+2 M v ; \\
& s=(p+P)^{2}=\left(p^{\prime}+p_{H}\right)^{2} \approx x^{2}+M^{2}+2 p \cdot P=M^{2}+2 M E .
\end{aligned}
$$

kinematics: the inelastic case - remarks

Remarks:

- a lot of kinematical relations, e.g.

$$
\begin{aligned}
& W^{2}=M^{2}+2 M E y(1-x) ; \\
& Q^{2}=2 M E x y ; \\
& s=M^{2}+m^{2}+Q^{2} /(x y) ;
\end{aligned}
$$

- in the elastic case eN \rightarrow eN [ep \rightarrow ep], v and Q^{2} are NOT independent :

$$
\begin{aligned}
& W^{2}=M^{2}=(P+q)^{2}=M^{2}-Q^{2}+2 M v \\
& \rightarrow Q^{2}=2 M v \rightarrow Q^{2} /(2 M v)=x=1 ;
\end{aligned}
$$

- therefore (obviously) in the elastic case, there is only one independent parameter (E^{\prime} or θ, choice according to the meas.);
- instead, in the inelastic scattering :

$$
\begin{aligned}
Q^{2} & =M^{2}+2 M v-W^{2}= \\
& =2 M v-\left(W^{2}-M^{2}\right) \leq 2 M v \rightarrow x \leq 1 ;
\end{aligned}
$$

if W not fixed, Q^{2} and v are independent;

- therefore, in the inelastic case, there are two independent variables;
- in the analysis, choose two among all variables, according to convenience, e.g.: ($\left.E^{\prime}, \theta\right),\left(Q^{2}, v\right),(x, y)$.

$$
\begin{aligned}
Q^{2} & =\left(\vec{p}-\vec{p}^{\prime}\right)^{2}-\left(E-E^{\prime}\right)^{2}=\left(\vec{p}_{H}\right)^{2}-\left(E_{H}-M\right)^{2}= \\
& =\left(\vec{p}_{H}\right)^{2}-E_{H}^{2}-M^{2}+2 E_{H} M=2 E_{H} M-2 M^{2}= \\
& =2 M\left(E_{H}-M\right) \xrightarrow{\text { elastic }} 2 M T \\
& =\frac{E_{H}}{2 M}+M ; \quad \frac{E_{H}}{M}=1+\frac{Q^{2}}{2 M^{2}} \xrightarrow{\text { Q elastic, no recoil) }_{2}^{2}<M^{2}} 1
\end{aligned}
$$

Redefine the kinematics of the scattering process in the plane (\underline{Q}^{2} vs v) [more precisely (Q^{2} vs 2 Mv)]:

- both are Lorentz-invariant [but usually used in the lab. frame, where the initial state hadron is at rest] ;
- $Q^{2}=4 E E \sin ^{2}(\theta / 2) \geq 0 \rightarrow$ only the $1^{\text {st }}$ quadrant;
- $v=E-E^{\prime} \rightarrow 0 \leq v \leq E \rightarrow$ only a band is allowed;
- $\mathrm{x}=\mathrm{Q}^{2} /(2 \mathrm{Mv}) \leq 1 \rightarrow 0 \leq \mathrm{x} \leq 1 \rightarrow$ only "lower triangle";
- $y=(q \cdot P) /(p \cdot P)=v / E \rightarrow 0 \leq y \leq 1 ;$
- $\mathrm{W}^{2}=\mathrm{M}^{2}+2 \mathrm{Mv}-\mathrm{Q}^{2} \rightarrow$ the bisector $\mathrm{x}=1$ ("/")
 defines the elastic scattering, where $\mathrm{W}^{2}=\mathrm{M}^{2}$;
- on the bisector, only θ varies : $\theta=0 \rightarrow Q^{2}=v=0$;
- the loci $W^{\prime 2}=$ constant are lines parallel to the bisector \rightarrow some of them define the excited states (one shown in fig.);
- at higher distance from the bisector we have the deep inelastic scattering (DIS) and (possibly) new physics.

[see next slide]

$0<x<1$
$0<y<1$
$0<v<E$
$M^{2}<W^{2}<M^{2}+2 M E$
$0<Q^{2}<2 M E$
$0<E^{\prime}<E$
$0^{\circ}<\theta<180^{\circ}$
limits (some only if $\mathrm{E}>\mathrm{M}$).

You are kindly (6ut strong(y) requested to look carefully to this slide and get used to these variables.

THCANKS.

In the '20s QM entered in the game;

- Rutherford formula works also in QM;
- non-relativistic q.m. + Born approx.;
- Coulomb potential;
- initial (i) and final (f) particle as plane waves [see introduction + box];
- negligible recoil;
- $\vec{q}=\left|\vec{p}-\vec{p}^{\prime}\right|$ (as usual);
- $\hbar=c=1$;
- $\mathrm{V}(\mathrm{r}=\infty)$ does NOT contribute, because of other nuclei \rightarrow in the last integration, do not use the value at $r=\infty$ [YN1, 135 has a cutoff " μ "].

$$
\begin{aligned}
& V(r)=-\frac{z Z \alpha}{r} ; \quad \vec{q}=\Delta \vec{p}=\vec{p}-\vec{p}^{\prime} ; \quad q=|\vec{q}|=2 p \sin (\theta / 2) ; \\
& \psi_{i}=e^{i \bar{p} \cdot \vec{r}} / \sqrt{\Phi} ; \quad \psi_{f}=e^{i \bar{p}^{\prime} \cdot \vec{r}} / \sqrt{\Phi} ; \quad \frac{d n}{d E^{\prime}}=\frac{4 \pi p^{\prime 2} \Phi}{(2 \pi)^{3} v^{\prime}} ; \\
& \mathcal{M}_{\mathrm{fi}}=\left\langle\psi_{\mathrm{f}}\right| \mathrm{V}(\vec{r})\left|\psi_{\mathrm{i}}\right\rangle=\frac{1}{\Phi} \int \mathrm{e}^{-i \vec{p} \cdot \vec{r}} \mathrm{~V}(\vec{r}) \mathrm{e}^{\mathrm{i} \vec{p} \cdot \vec{r}} d^{3} \vec{r}= \\
& =-\frac{1}{\Phi} \iiint \frac{z Z \alpha}{r} e^{i \overrightarrow{\mathrm{q} \cdot \vec{r}} r^{2} d r \sin \theta d \theta d \varphi=-\frac{4 \pi}{\Phi} \frac{z Z \alpha}{q^{2}} ; ~ ; ~ ; ~} \\
& \frac{d \sigma}{d \Omega}=\frac{1}{4 \pi}\left[2 \pi\left|\mathcal{M}_{\mathrm{fi}}\right|^{2} \frac{\mathrm{dn}}{\mathrm{dE}} \frac{\Phi}{\mathrm{v}^{\prime}}\right] \xrightarrow{\mathrm{v}^{\prime} \rightarrow \mathrm{c}=1, \mathrm{p}^{\prime}=\mathrm{E}^{\prime}} \\
& =\frac{1}{2}\left|\frac{4 \pi}{\Phi} \frac{z Z \alpha}{q^{2}}\right|^{2} \frac{\Phi E^{\prime 2}}{2 \pi^{2}} \Phi=\frac{4 z^{2} Z^{2} \alpha^{2} E^{\prime 2}}{q^{4}}
\end{aligned}
$$

elastic scattering e-N : $\boldsymbol{\sigma}_{\text {Mott }}{ }^{\left.()^{*}\right)}$

- However, the scattering α-Nucleus takes place between two nuclei (e.g. $\mathrm{He}^{++}-\mathrm{Au}$);
- not suitable for measuring a (possible) nucleus structure \rightarrow replace the α with a better (?) point-like probe: electron (e^{-});
- the dynamics of the eN scattering can be described by the Rutherford formula with an adjustment [later], due to Mott :
$\left[\frac{d \sigma}{d \Omega}\right]_{\text {Mott }}^{*}=\left[\frac{d \sigma}{d \Omega}\right]_{\substack{\text { Ruthe } \\ \text { fford }}} \times\left(1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right) \rightarrow$
$\xrightarrow{\beta=\mid \overline{\mathrm{p}} / \mathrm{E} \rightarrow 1}\left[\frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}\right]_{\substack{\text { Ruthe } \\ \text { rford }}} \cos ^{2} \frac{\theta}{2}=\frac{4 Z^{2} \alpha^{2} \mathrm{E}^{\prime 2}}{|\overrightarrow{\mathrm{a}}|^{4}} \cos ^{2} \frac{\theta}{2}$.

elastic scattering e-N : helicity

The $\cos ^{2}(\theta / 2)$ factor in $[\mathrm{d} \sigma / \mathrm{d} \Omega]_{\text {Mott }}$ comes from Dirac equation; it is understood by considering the extreme case of $\theta^{\sim} 180^{\circ}$.
For relativistic particles $(\beta \rightarrow 1)$, the helicity h (the projection of spin along momentum) is conserved:
$\mathrm{h}=\frac{\overrightarrow{\mathrm{s}} \cdot \overrightarrow{\mathrm{p}}}{|\overrightarrow{\mathrm{s}}| \cdot|\overrightarrow{\mathrm{p}}|}$.
The conservation requires the "spin flip" of the electron between initial and final state, because the momentum also flips at $\theta=180^{\circ}$.
In this condition, the angular momentum is NOT conserved, if the nucleus does NOT absorb the spin variation (e.g. because it is spinless). Therefore the scattering for $\theta \approx 180^{\circ}$ is forbidden.

The factor $\cos ^{2}(\theta / 2)$ in the Mott formula is connected to the spin and describes the magnetic part of the interaction.

elastic scattering e-N : experiment

Is the experiment consistent with the kinematics of the elastic scattering ? Get e $+{ }^{12} \mathrm{C}$ data.

The plot of the number of events, for fixed $E_{\text {init }}$ at fixed θ, shows many peaks:

- the expected elastic ($E^{\prime} \approx \mathrm{p}^{\prime}=482$ MeV),
- a rich structure, due to inelastic scattering:

$$
\mathrm{e}+{ }^{12} \mathrm{C} \rightarrow \mathrm{e}+{ }^{12} \mathrm{C}^{*}
$$

[${ }^{12} \mathrm{C}^{*}=$ excited carbon, mass M^{*}].

- the expected elastic $\left[\mathrm{e}+{ }^{12} \mathrm{C} \rightarrow \mathrm{e}+{ }^{12} \mathrm{C}\right]$ is there;
- but "more things in heaven, than in your philosophy";
- back to elastic scattering !
- kinematics ok, dynamics ?
\rightarrow measure do/d Ω vs θ !!!
- The experimental $\mathrm{d} \sigma / \mathrm{d} \Omega$ agrees with the Mott one only for small θ, i.e. small $|\vec{q}|$;
- otherwise, the cross section is "funny";
- possibly the reason is the structure of the nucleus, which results in a smaller effective charge, as seen by the projectile (Gauss' theorem);
define $\rho(\vec{x})=\operatorname{Zef}(\vec{x}), \quad \int f(\vec{x}) d^{3} x=1$;
\rightarrow define the form factor $\mathcal{F}(\overrightarrow{\mathrm{q}})$, as the Fourier transform of the charge distribution function:

$$
F(\overrightarrow{\mathrm{q}})=\int \mathrm{e}^{\left(\frac{\mathrm{q} \cdot \overline{\mathrm{a}}}{h}\right)} \mathrm{f}(\overrightarrow{\mathrm{x}}) \mathrm{d}^{3} \mathrm{x} ; \quad \overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{p}} ;
$$

- pointlike: $\mathrm{f}(\overrightarrow{\mathrm{x}})=\delta(\overrightarrow{\mathrm{x}}) \quad \rightarrow F(\overrightarrow{\mathrm{q}})=1$.
- if $\rho(\vec{x})$ depends only on $|\vec{x}|$ [next slides]:
$\left[\frac{d \sigma}{d \Omega}\right]_{\text {exp }}=\left[\frac{d \sigma}{d \Omega}\right]_{\text {Mott }}^{*} \times\left|F\left(q^{2}\right)\right|^{2} \cdot \checkmark \begin{aligned} & \text { form factors are } \\ & \text { measurable, at } \\ & \text { least in principle. }\end{aligned}$.
[in the following, we will discuss only the case with spherical symmetry $\rho(\mathrm{r})$, when $F(\overrightarrow{\mathrm{q}})$ depends on $\mathrm{q}=|\overrightarrow{\mathrm{q}}|]$.

q.m. calculation [Thomson, 166]

- non-relativistic q.m. + Born approx.;
- Coulomb potential;
- negligible recoil;
- initial (i) and final (f) particle as plane waves with $\lambda \ll$ nucleus size [see little box];
- charge distribution $f(\vec{r})$, normalized to 1 ;
- $\overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{p}}^{\prime}$ and $F\left(\mathrm{q}^{2}\right)$ as defined before.

$$
\begin{aligned}
& V(\vec{r})=-\int d^{3} \vec{r}^{\prime} \frac{Z \alpha f\left(\vec{r}^{\prime}\right)}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|} ; \\
& \psi_{\mathrm{i}}=\mathrm{e}^{\mathrm{i}(\overline{\mathrm{p}} \cdot \mathrm{x}-\mathrm{Et})} / \sqrt{\Phi} ; \quad \psi_{\mathrm{f}}=\mathrm{e}^{\mathrm{i}\left(\bar{\rho}^{\prime} \cdot \bar{x}-\mathrm{Et}\right)} / \sqrt{\Phi} ; \\
& \mathscr{M}_{\mathrm{fi}}=\left\langle\psi_{\mathrm{f}}\right| \mathrm{V}(\overrightarrow{\mathrm{r}})\left|\psi_{\mathrm{i}}\right\rangle=\frac{1}{\Phi} \int \mathrm{e}^{-i \bar{p}^{\prime} \cdot \vec{r}} \mathrm{~V}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{\mathrm{i} \cdot \overrightarrow{\mathrm{~F}} \mathrm{r}} \mathrm{~d}^{3} \overrightarrow{\mathrm{r}}= \\
& \begin{array}{l}
=-\frac{1}{\Phi} \iint e^{i \bar{q} \cdot \vec{r}} \frac{Z \alpha f\left(\vec{r}^{\prime}\right)}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime} d^{3} \vec{r}= \\
=-\frac{1}{\Phi} \iint e^{i \bar{q}\left(\vec{r}-\overrightarrow{r^{\prime}}\right)} e^{i \bar{q} \overrightarrow{\sigma^{\prime}}} \frac{Z \alpha f\left(\vec{r}^{\prime}\right)}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime} d^{3} \vec{r}=
\end{array} \\
& =\left[-\frac{1}{\Phi} \int e^{i \vec{\sigma} \cdot \vec{R}} \frac{Z \alpha}{4 \pi|\vec{R}|} d^{3}|\vec{R}|\right] \times\left[\int f\left(\vec{r}^{\prime}\right) e^{i \vec{a} \cdot \bar{r}^{\prime}} d^{3} \vec{r}^{\prime}\right]= \\
& =\mathcal{M}_{\mathrm{fi}}^{\text {point }} \times \mathcal{F}\left(\mathrm{q}^{2}\right) \\
& \overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime} \\
& \rightarrow\left[\frac{d \sigma}{d \Omega}\right]_{\text {non- }}=\left[\frac{d \sigma}{d \Omega}\right]_{\text {point }} \times\left|F\left(q^{2}\right)\right|^{2} \text {. }
\end{aligned}
$$

In principle, the function $\rho(r)$ may be computed by measuring $F\left(q^{2}\right)$ and then, e.g. numerically:

$$
\rho(r)=\frac{\mathrm{Ze}}{(2 \pi)^{3}} \int_{\frac{\pi \| q}{}} F\left(\mathrm{q}^{2}\right) \mathrm{e}^{-\mathrm{iqr}} \mathrm{~d}^{3} \mathrm{q} .
$$

However, the range of q accessible to experiments is limited; therefore, the behavior of $F\left(q^{2}\right)$ for q^{2} large (i.e. \underline{r} small, the interesting region) has to be extrapolated with reasonable assumptions. In the next slides, examples of $\rho(r)$ and $F\left(q^{2}\right)$ are computed (e.g. the case of a homogeneous sphere of radius R).

Compute the symmetrical case ${ }^{(1)}$; neglect the nuclear recoil :

$$
\begin{aligned}
& F\left(q^{2}\right)=\frac{1}{S} \int e^{i q \bar{q} x} f(\vec{x}) d^{3} x=\quad[f(\vec{x})=f(r) \rightarrow] \\
&=\frac{2 \pi}{S} \int_{0}^{\infty} f(r) r^{2} d r \int_{-1}^{1} e^{i q r \cos \theta} d \cos \theta= \\
&=\frac{2 \pi}{S} \int_{0}^{\infty} f(r) r^{2} \frac{2}{2} \frac{1}{i q r}\left[e^{i q r}-e^{-i q r}\right] d r= \\
&=\frac{4 \pi}{S} \int_{0}^{\infty} f(r) r^{2} \frac{\sin (q r)}{q r} d r ; \\
& S=4 \pi \int_{0}^{\infty} f(r) r^{2} d r \quad[=1 \text { if normalized }]
\end{aligned}
$$

${ }^{(1)} d \sigma / d \Omega$, both Rutherford and Mott, is scaleindependent. However, if $\rho(\mathrm{r})$ depends on a scale (e.g. by a sphere radius), form factors break the scale invariance of the dynamics.

form factors: examples

$f(\vec{r})=f(\vec{r})$

$$
f(r)=\frac{1}{(2 \pi)^{3}} \int F\left(q^{2}\right) e^{-i q r} d^{3} q \quad F\left(q^{2}\right)=4 \pi \int_{0}^{\infty} f(r) r^{2} \frac{\sin (q r)}{q r} d r
$$

Charge distribution	$\mathrm{f}(\mathrm{r})$	form factor	$F\left(q^{2}\right)$	example
point-like	$\delta(\mathrm{r}) /(4 \pi) \xrightarrow{\square}$	constant	1	$\mathrm{e}^{ \pm}$
exponential	$\left(a^{3} / 8 \pi\right)$ $\exp (-a r)$	dipolar	$1 /\left(1+q^{2} / a^{2}\right)^{2} \quad \square$	$p^{(1)}$
gaussian	$\begin{gathered} {\left[a^{2} /(2 \pi)^{3 / 2}\right]} \\ \exp \left(-a^{2} r^{2} / 2\right) \end{gathered}$	gaussian	$\begin{gathered} \exp \left[-q^{2} /\right. \\ \left.\left(2 a^{2}\right)\right] \end{gathered}$	${ }^{6} \mathrm{Li}$
homog. sphere	$\begin{array}{cc} 3 /\left(4 \pi R^{3}\right) & r \leq R \\ 0 & r>R \end{array}$ \square	oscill.	$\underset{\alpha=\|q\| R}{3 \alpha^{-3}(\sin \alpha-\alpha \cos \alpha)} \longrightarrow \longrightarrow$	- (see)
sphere with soft surface	$\begin{gathered} \rho_{0} / \\ {\left[1+\mathrm{e}^{(r-c) / \mathrm{a}}\right]} \end{gathered}$		oscill. $\xrightarrow{\text { unc }}$	${ }^{40} \mathrm{Ca}$

Fermi (Woods-
Saxon) function
${ }^{(1)}$ the proton shape depends on Q^{2} : from a pointlike body to a quark/gluon composite.

Homogeneous sphere with unit charge :

$$
\begin{aligned}
& \rho(r)=f(r)= \begin{cases}\rho_{0}=\frac{3}{4 \pi R^{3}} & r \leq R \\
0 & r>R\end{cases} \\
& F\left(q^{2}\right)=4 \pi \int_{0}^{\infty} f(r) r^{2} \frac{\sin (q r)}{q r} d r= \\
& =\frac{4 \pi \rho_{0}}{q} \int_{0}^{R} r \sin (q r) d r= \\
& =\frac{4 \pi \rho_{0}}{q^{3}} \int_{0}^{\bar{w}} w \sin w d w=\frac{4 \pi \rho_{0}}{q^{3}}[\sin w-w \cos w]_{0}^{\bar{w}}= \\
& =\frac{4 \pi \rho_{0}}{q^{3}}[\sin (q R)-q R \cos (q R)]= \\
& =\frac{3}{q^{3} R^{3}}[\sin (q R)-q R \cos (q R)]
\end{aligned}
$$

$$
\begin{array}{cl}
\text { if } q R[=t] \rightarrow 0 & \text { first minimum : } \\
F \approx 3 / t^{3}\left[\left(t-t^{3} / 6\right)-\right. & q R=\tan (q R) \\
\left.-t\left(1-t^{2} / 2\right)\right]=1 . & \rightarrow q R \approx 4.5
\end{array}
$$

By comparing the first minimum with the experiment of ${ }^{12} \mathrm{C}\left(\mathrm{q} / \hbar \approx 1.8 \mathrm{fm}^{-1}\right)$, we get :

$$
R \approx 4.5 r_{\min }=4.5 / 1.8 \approx 2.5 \mathrm{fm}
$$

i.e. ${ }^{12} \mathrm{C}$ is approximately a sphere with radius of 2.5 fm .

form factors: $\left\langle\mathrm{r}^{2}\right\rangle$

$$
\begin{aligned}
& F\left(q^{2}\right)=\iiint e^{\mathrm{iqrcos} \theta} f(r) r^{2} d r d \cos \theta d \varphi= \\
& =2 \pi \int_{0}^{\infty} f(r) r^{2} d r \int_{-1}^{1}\left[\begin{array}{l}
1+i q r \cos \theta- \\
-\frac{1}{2}(q r)^{2} \cos ^{2} \theta+\ldots
\end{array}\right] d \cos \theta= \\
& =4 \pi \int_{0}^{\infty} f(r) r^{2} d r+0-\frac{4 \pi}{6} q^{2} \int_{0}^{\infty} f(r) r^{4} d r+\ldots= \\
& =1-\frac{1}{6} q^{2}<r^{2}>+\ldots \\
& \text { with }\left\langle r^{2}\right\rangle \equiv \iiint r^{2} f(\vec{x}) d^{3} x=4 \pi \int_{0}^{\infty} r^{2} f(r) r^{2} d r \text {. } \\
& \rightarrow \quad r_{\text {rass }}=\sqrt{\left\langle r^{2}\right\rangle}=\sqrt{-\left.6 \frac{\mathrm{~d} F\left(q^{2}\right)}{\mathrm{dq}}\right|_{q^{2}=0}}
\end{aligned}
$$

The parameter $\left\langle r^{2}\right\rangle$ is a measure of the $(s i z e)^{2}$ of the [charge of the] particle.

form factors: solution

Simple problem : check that for the homogeneous sphere, both directly and from the definition :

$$
\left\langle r^{2}\right\rangle=3 R^{2} / 5 .
$$

$$
\begin{aligned}
\left\langle r^{n}\right\rangle= & \frac{1}{V} \iiint r^{n} d^{3} x=\frac{4 \pi}{V} \int_{0}^{R} r^{n} r^{2} d r= \\
= & \frac{4 \pi}{V} \frac{R^{n+3}}{n+3}=\frac{4 \pi R^{n+3}}{n+3} \frac{3}{4 \pi R^{3}}= \\
= & \frac{3}{n+3} R^{n} \\
& \xrightarrow{n=2}\left\langle r^{2}\right\rangle=\frac{3}{5} R^{2}
\end{aligned}
$$

[qed, too easy to enjoy]

The limits $\mathrm{q} \rightarrow 0, \rightarrow \infty$ have a deep meaning:

- q is (approximately) the conjugate variable of b, the impact parameter of the projectile wrt the target center:
\rightarrow for q very small (i.e. b very large), the target behave as a point-like object;
\rightarrow for q quite small (i.e. b quite large) it behaves as a coherent homogeneous charged sphere with radius $V\left\langle r^{2}\right\rangle$;
\rightarrow large q probes the nucleus at small b;
- "new physics" (a substructure emerging at very small distance) requires very large q, which in turn is only possible if a large projectile energy is available.

The same story has repeated many times, from Rutherford to the LHC, but at smaller b (i.e. larger q). This fact is the main justification for higher energy accelerators ...
... and (unfortunately) larger experiments, larger groups, more expensive detectors, politics, troubles, ... [the usual "laudatio temporis acti", forgive me]

form factors: shape of nuclei

Summary of systematic study of the form factors for nuclei [just results, no details]:

- heavy nuclei :
> NOT "homogeneous spheres" with a sharp edge;
> similar to spheres with a soft edge;
> charge distribution is well reproduced by a standard Fermi function :

$$
\rho_{\text {charge }}(r)=\rho_{0} /\left[1+\mathrm{e}^{(r-c) / a}\right] ;
$$

$>$ for large A (see figure) :

Compute the nuclear densities of p and n $\left[q_{p} \rho_{Q}=d q / d V, m_{p} \rho_{p}=d m_{p} / d V\right]:$

- assume homogeneous and equal distribution of p and n;
- then:
$\Rightarrow \rho_{\mathrm{Q}}=\rho_{\mathrm{p}}=$ proton density;
$>\rho_{\mathrm{n}}=$ neutron density $=\rho_{\mathrm{p}}$;
$>\rho_{\mathrm{T}}=$ nuclear density $=\rho_{\mathrm{p}}+\rho_{\mathrm{n}} ;$
- compute :
$\Rightarrow \rho_{\mathrm{T}}=\rho_{\mathrm{p}}+\rho_{\mathrm{n}}=\rho_{\mathrm{p}}+\mathrm{N} \rho_{\mathrm{p}} / \mathrm{Z}=\mathrm{A} \rho_{\mathrm{Q}} / \mathrm{Z}$;
$\Rightarrow \mathrm{A}=\mathrm{V} \rho_{\mathrm{T}}=4 / 3 \pi \mathrm{R}^{3} \rho_{\mathrm{T}} ;$
$\Rightarrow \rho_{\mathrm{T}}=0.17$ nucleons $/ \mathrm{fm}^{3}$ (from ρ_{0} of previous slide);
- $\frac{4 \pi}{3} R^{3}=\frac{4 \pi}{3} r_{0}^{3} A \quad \rightarrow$

$$
r_{0}=\frac{R}{\sqrt[3]{A}}=\sqrt[3]{\frac{3 \AA}{4 \pi \rho_{\mathrm{T}}} \frac{1}{\mathrm{~A}}} \approx 1.12 \mathrm{fm}
$$

- in fair agreement with "c" [previous slide] and with the slope of the fig.:

$$
\left.r_{0}\right|^{\exp }=1.23 \mathrm{fm} .
$$

for light nuclei, the model is NOT valid: do NOT plot them.

Probing smaller space scales requires larger energies, both in the initial and final state [today experiments work at the TeV scale \rightarrow $\left.\sim^{\sim} 10^{-18} \mathrm{~m}=10^{-3} \mathrm{fm}\right]$.
High-energy + q.m. corrections to the Rutherford formula [$1^{\text {st }}$ already discussed]:

- consider the electron spin [Rutherford had only bosons !!!];
- include the target recoil in the Mott cross section [Perkins-1971, 197];
- use 4 -vectors p and p^{\prime} to describe the scattering [instead of \vec{p} and \vec{p}^{\prime}]:
$q^{2}=\left(p-p^{\prime}\right)^{2}=2 m^{2}-2\left(E E^{\prime}-|\vec{p}||\vec{p}| \cos \theta\right)$ $\approx-4 E E \cdot \sin ^{2}(\theta / 2)$;
$Q^{2} \equiv-q^{2} \approx 4 E E \cdot \sin ^{2}(\theta / 2)$.
- for scattering eN, consider the magnetic moment of the nucleons, by introducing the parameter $\tau=\mathrm{Q}^{2} /\left(4 \mathrm{M}^{2}\right)$ [next slide].

Description of the scattering

$\downarrow^{\text {no electron spin, no magn. moment, notice E' }}$
$\left[\frac{d \sigma}{d \Omega}\right]_{\text {Ruthe }}^{\text {rford }}<1=\frac{4 Z^{2} \alpha^{2} E^{\prime 2}}{|\overrightarrow{\mathrm{q}}|^{4}} ;$

$\left[\frac{d \sigma}{d \Omega}\right]_{\text {Mott }}^{*}=\left[\frac{d \sigma}{d \Omega}\right]_{\substack{\text { Ruthe } \\ \text { rford }}}$

$$
\begin{aligned}
{\left[\frac{d \sigma}{d \Omega}\right]_{\text {Mott }} } & \downarrow^{+ \text {recoil }} \\
= & {\left[\frac{d \sigma}{d \Omega}\right]_{\text {Mott }}^{*} \times \frac{\mathrm{E}^{\prime}}{\mathrm{E}} ; } \\
& \downarrow{ }^{+ \text {magn. moment }} \\
{\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\text {pooint }}=} & {\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\text {Mott }} \times\left(1+2 \frac{\mathrm{Q}^{2}}{4 \mathrm{M}^{2}} \tan ^{2} \frac{\theta}{2}\right) . }
\end{aligned}
$$

e-N scattering: magnetic moments

For particles of mass m, charge e:
$>$ point-like,
$>\operatorname{spin} 1 / 2$;
the Dirac equation assigns an intrinsic magnetic dipole moment

$$
\begin{aligned}
& \mu_{\mathrm{C}}=\mathrm{g} \mathrm{e} \hbar /(4 \mathrm{~m}) ; \\
& \mathrm{g}=\text { "gyromagnetic ratio" }=2 ;
\end{aligned}
$$

- an ideal "Dirac-electron" has a magnetic dipole moment

$$
\mu_{\mathrm{e}}=\mathrm{e} \hbar /\left(2 \mathrm{~m}_{\mathrm{e}}\right) \approx 5.79 \times 10^{-5} \mathrm{eV} / \mathrm{T} ;
$$

- the first measurements roughly confirmed this value.
- for neutral particles (neutron ?) $\mu_{N}=0$;
- this effect adds to the cross-section a term, corresponding to the "spin flip" probability, proportional to [Povh § 6.1]:
$>\sin ^{2}(\theta / 2)$ [cfr. the "Mott* factor"];
> $1 / \cos ^{2}(\theta / 2)$ (to remove the non-flip dependence);
$>\mu_{N}{ }^{2}\left(\propto 1 / M^{2}\right)$;
$>\mathrm{Q}^{2}$ (mag field induced by the e $)^{2}$;
$>\left[\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}\right]_{\substack{\mathrm{posint}, / 2}}=\left[\frac{\mathrm{d} \sigma}{\mathrm{sp} \Omega}\right]_{\text {Mott }} \times\left(1+2 \frac{\mathrm{Q}^{2}}{4 \mathrm{M}^{2}} \tan ^{2} \frac{\theta}{2}\right)$.
- Therefore the spin-flip is particularly relevant for large Q^{2} and large θ.

${ }^{3 / 5}$ e-N scattering: anomalous magnetic moments

In the nuclei and nucleons sector the experiments measured the following quantities:
(). nuclear magnetism is a combination of the intrinsic magnetic moments of the nucleons and their relative orbital motions;
() all nuclei with $\mathrm{Z}=$ even and $\mathrm{N}=$ even have $\mu_{\text {nuclei }}=0$;
> define for the nucleons (proton and neutron) the Dirac value

$$
\mu_{\mathrm{N}}=\mathrm{e} \hbar /\left(4 \mathrm{~m}_{\mathrm{N}}\right) \approx 3.1525 \times 10^{-14} \mathrm{MeV} / \mathrm{T} ;
$$

> if p and n were ideal Dirac particles, they should have

$$
\mu_{\mathrm{p}}=2 \mu_{\mathrm{N}}, \quad \mu_{\mathrm{n}}=0
$$

i.e. in conventional notation

$$
g_{p} / 2=\mu_{p} / \mu_{N}=1, \quad g_{n} / 2=0
$$

(: instead, experiments found anomalies

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{p}} / 2=+(2.7928473508 \pm 0.0000000085), \\
& \mathrm{g}_{\mathrm{n}} / 2=-(1.91304273 \pm 0.00000045) ;
\end{aligned}
$$

() therefore, there are other effects which contribute to the magnetic moments, i.e. p and n are NOT ideal spin- $1 / 2$ point-like Dirac particles;
() [maybe] they are NOT point-like;
©) in this case, their " g " is due to their (possibly complicated) internal structure, in analogy with the nuclear case.

In the eN scattering, the main contribution is from single photon exchange [see fig.].

The ee γ^{*} vertex is well under control, with three point-like, well-understood particles.

Instead, the NN' γ^{*} vertex is the unknown, due to the internal structure of the proton.

Strategy : assume a simpler process ($\mathrm{N}=$ Dirac fermion), compare it with exp., then modify the theory, inserting parameters which model the nucleon structure.

Take also into account the spin and magnetic moment, both of the electron
and the nucleon.
"Generalize" the cross section by defining the Rosenbluth cross-section, function of TWO form factors, both dependent on Q^{2} :

- $\mathrm{G}_{\mathrm{e}}\left(\mathrm{Q}^{2}\right)$ for the electric part (no spin-flip);
- $\mathrm{G}_{\mathrm{M}}\left(\mathrm{Q}^{2}\right)$ for the magnetic one (spin-flip).
[formerly: $\mathrm{G}_{\mathrm{e}}\left(\mathrm{Q}^{2}\right)=F\left(\mathrm{Q}^{2}\right)$, no G_{M}].
For a charged Dirac fermion f_{D}, proton, neutron :

$$
\begin{array}{ll}
>f_{D}: G_{E}^{f}\left(\text { any } Q^{2}\right)=1, & G_{M}^{f}\left(\text { any } Q^{2}\right)=1 ; \\
>p: G_{E}^{p}\left(Q^{2}=0\right)=1, & G_{M}^{p}\left(Q^{2}=0\right) \approx 2.79 ; \\
>n: G_{E}^{n}\left(Q^{2}=0\right)=0, & G_{M}^{n}\left(Q^{2}=0\right) \approx-1.91 .
\end{array}
$$

$$
\begin{aligned}
& {\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\substack{\text { Rosen } \\
\text { bluth }}}=\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\text {Mott }} \times\left(\frac{\mathrm{G}_{\mathrm{E}}^{2}+\tau \mathrm{G}_{\mathrm{M}}^{2}}{1+\tau}+2 \tau \mathrm{G}_{\mathrm{M}}^{2} \tan ^{2} \frac{\theta}{2}\right) ;} \\
& \tau=\frac{\mathrm{Q}^{2}}{4 \mathrm{M}^{2}} ; \quad \quad \mathrm{G}_{\mathrm{E}}=\mathrm{G}_{\mathrm{E}}\left(\mathrm{Q}^{2}\right) ; \quad \mathrm{G}_{\mathrm{M}}=\mathrm{G}_{\mathrm{M}}\left(\mathrm{Q}^{2}\right) .
\end{aligned}
$$

A non-exhaustive personal classification ${ }^{(*)}$ of "physics formulae":

1. "principles" $[\vec{F}=m \vec{a}]$ - They require the a-priori knowledge of all entities involved; not direct empirical laws;
2. "natural laws" [the gravitational/Hooke law] - (semi-)empirical descriptions of the behavior of the Nature;
3. "positions" $\left[K=1 / 2 m v^{2}\right]$ - They define a new entity, using other well-known entities;
4. "theorems" [the Gauss law] - Relations among well-known entities, math derived from other laws;
5. ... other types (???) ...

The "Rosenbluth formula" is another type of math-logical relation:

- it is a model, which includes some constraints (e.g. the θ dependence cannot be modified);
- but it is "open" (e.g. G_{E} and G_{M} depends on the unknown Nucleon structure);
- it contains in-se no full predictive power;
- but it is a powerful working tool to study the phenomena and incorporate new knowledge in a (quasi-)formal theory.

A "frontier" approach, quite common in modern research, which requires some care by the users/students.

$$
=\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\mathrm{Mott}} \times\left(\frac{\mathrm{G}_{\mathrm{E}}^{2}+\tau \mathrm{G}_{\mathrm{M}}^{2}}{1+\tau}+2 \tau \mathrm{G}_{\mathrm{M}}^{2} \tan ^{2} \frac{\theta}{2}\right) .
$$

Maybe you think that this is old and obsolete; in this case, go and look:
https://home.cern/news/news/physics/meet-amber

Mark 3 electron Linac - Stanford University - 1953

Proton structure: setup

Proton structure: Mark 3 detector

Hofstadter et al., Phys. Rev. 92, 978 (1953)
$\mathrm{p}\left(\mathrm{e}^{-}\right)=125 \mathrm{MeV}$

A summary of Hofstadter
 experiments, see later

Proton structure: MAMI-B

Proton structure: quality check

In 1956 the Hofstadter spectrometer measured the elastic ep \rightarrow ep. It measured θ in the range $35^{\circ}-138^{\circ}$, and therefore Q^{2}, using the relations :

ENERGY IN MEV

Plot E ' for $\mathrm{E}=185 \mathrm{MeV}$ at fixed $\theta\left(60^{\circ}\right.$, $100^{\circ}, 130^{\circ}$) [in a perfect experiment, expect $\delta_{\text {Diraca }}$.

Show the plot $E^{\prime}=E^{\prime}(\theta)$.

Result:

- Kinematics ok. Experiment under control.
- Study the dynamics.

Proton structure: results

Study $[\mathrm{d} \sigma / \mathrm{d} \Omega]_{\text {Lab }}$ (\rightarrow legend):

- small θ (= small $\mathrm{Q}^{2} \rightarrow \mathrm{~d} \sigma / \mathrm{d} \Omega$ independent from $\left.G_{M}\right)$: all formulas agree $\rightarrow G_{E}\left(Q^{2}=0\right) \approx 1$;
- large θ (= large Q^{2}, small distance, $\mathrm{d} \sigma / \mathrm{d} \Omega$ dependent on G_{M}): it disagrees with ANY theoretical prediction $\rightarrow \mathrm{G}_{\mathrm{E}}, \mathrm{G}_{\mathrm{M}}$?;
- the disagreement with (a) and (b) was foreseen (proton $g_{p} \neq 2$);
- the one with (c) shows a dependence on Q^{2} (on scale) \rightarrow proton is NOT point-like;
- Hofstadter measured ($\mathrm{r}_{\mathrm{rms}} \equiv \sqrt{\left\langle\mathrm{r}^{2}\right\rangle}$, see) :

$$
\begin{aligned}
& r_{\text {rms }}^{p}=(0.77 \pm 0.10) \times 10^{-15} \mathrm{~m} ; \\
& r_{\text {rms }}^{\alpha}=(1.61 \pm 0.03) \times 10^{-15} \mathrm{~m} .
\end{aligned}
$$

... and got the 1961 Nobel Prize in Physics.

LEGEND	(a) Mott	(b) Dirac	(c) A-Dirac	(d) Exp.
G_{E}	1	1	1 fix	$G_{E}\left(\mathrm{Q}^{2}\right) \approx 1$
G_{M}	no	1	2.79 fix	$G_{M}\left(\mathrm{Q}^{2}\right)$?
point-like p ?	yes	yes	"yes" ?	no
fit low Q^{2} ?	yes	yes	yes	def.
fit high Q^{2} ?	no	no	no	def.

Write the Rosenbluth formula, at fixed Q^{2}, :
$\left[\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}\right]_{\substack{\text { Rosen } \\ \text { bluth }}} /\left[\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}\right]_{\text {Mott }}=\left(\frac{\mathrm{G}_{\mathrm{E}}^{2}+\tau \mathrm{G}_{\mathrm{M}}^{2}}{1+\tau}+2 \tau \mathrm{G}_{\mathrm{M}}^{2} \tan ^{2} \frac{\theta}{2}\right)$.
\rightarrow Ratio(E, θ, fixed $\left.Q^{2}\right)=A+B \tan ^{2}(\theta / 2)$;
\rightarrow measure (A, B at fixed Q^{2}) vs $\tan ^{2}(\theta / 2)$;
$\rightarrow \operatorname{get} G_{E}^{p}, G_{M}^{p},\left(G_{E}^{n}, G_{M}^{n}\right)$ at fixed Q^{2} (example shown)

By repeating it at many Q^{2}, the full dependence can be measured (SLAC, '60s).

- The fig. shows that the electric and magnetic form factors tend to a "universal" function of Q^{2}, with a dipolar shape:

$$
\begin{aligned}
G_{E}^{p}\left(Q^{2}\right) & \approx \frac{G_{M}^{p}\left(Q^{2}\right)}{2.79} \approx \frac{G_{M}^{n}\left(Q^{2}\right)}{-1.91} \approx G\left(Q^{2}\right)= \\
& =\frac{1}{\left(1+Q^{2} / A^{2}\right)^{2}} ; \quad A^{2} \approx 0.71 \mathrm{GeV}^{2}
\end{aligned}
$$

- From the curve, it is possible to derive the function $\rho(r)$, at least where the 3 - and 4 momentum coincide, i.e. at small Q^{2}. It turns out:

$$
\rho(r) \approx \rho_{0} \mathrm{e}^{-\mathrm{ar}}, \quad \mathrm{a} \approx 4.27 \mathrm{fm}^{-1} .
$$

- The nucleons do NOT look like point like particles, nor homogeneous spheres, but like diffused non-homogeneous systems.
- From the values at $\mathrm{Q}^{2}=0$:

$$
\left\langle r^{2}\right\rangle_{\text {dipole }}=-\left.6 \hbar^{2} \frac{d G\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}=
$$

$$
=\frac{12}{a^{2}} \approx 0.66 \mathrm{fm}^{2} ;
$$

$$
\sqrt{\left\langle\mathrm{r}^{2}\right\rangle_{\text {dipole }}} \approx 0.81 \mathrm{fm}
$$

$\left[\frac{d \sigma}{d \Omega}\right]_{\text {Rosen }} /\left[\frac{d \sigma}{d \Omega}\right]_{\text {Mott }}=$
$=\left(\frac{\mathrm{G}_{\mathrm{E}}^{2}+\tau \mathrm{G}_{\mathrm{M}}^{2}}{1+\tau}+2 \tau \mathrm{G}_{\mathrm{M}}^{2} \tan ^{2} \frac{\theta}{2}\right) ; \quad\left[\tau=\frac{\mathrm{Q}^{2}}{4 \mathrm{M}^{2}}\right]$.
Notice also that, if the proton were pointlike, one would find :
$\mathrm{G}_{\mathrm{E}}^{\mathrm{p}}\left(\mathrm{Q}^{2}\right)=\mathrm{G}_{\mathrm{M}}^{\mathrm{p}}\left(\mathrm{Q}^{2}\right)=1$, independent of Q^{2}
[and in addition would not understand why "2.79"].
therefore $\lim _{\substack{Q^{2} \rightarrow 0}}\left(\frac{d \sigma}{d \Omega}\right)_{\substack{\text { Rosen } \\ \text { bluth }}}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}$.
The form factors of the nucleons show three different ranges :

1. $\mathrm{Q}^{2} \ll \mathrm{~m}_{\mathrm{p}}{ }^{2}: \tau$ small, G_{E} dominates the cross section; in this range we measure the average radius of the electric charge : $\left\langle\mathrm{r}_{\mathrm{E}}\right\rangle=0.85 \pm 0.02 \mathrm{fm}$;
2. $0.02 \leq \mathrm{Q}^{2} \leq 3 \mathrm{GeV}^{2}$:
G_{E} and G_{M} are equally important;
3. $\mathrm{Q}^{2}>3 \mathrm{GeV}^{2}: \mathrm{G}_{\mathrm{M}}$ dominates.

Differences between nuclei and nucleons :

1. nuclei exhibit diffraction maxima/ minima; this fact corresponds to charge distributions similar to homogeneous spheres with thin skin;
2. nucleons have diffused, dipolarly distributed form factors \rightarrow exp. charge;
3. at this level, it is unclear whether the nucleons have substructure(s) \rightarrow need experiments at smaller value of
 distances (i.e. larger values of Q^{2});
4. [maybe that] the structure of the nucleons in the elastic scattering, described by the Rosenbluth formula, is an average with insufficient resolution;
5. at higher Q^{2}, one can expect a wider variety of phenomena :
a. elastic scattering : ep $\rightarrow \mathrm{ep}$;
b. excitation : ep $\rightarrow e$ "p*" (e.g. ep $\rightarrow \mathrm{e} \Delta^{+}, \Delta^{+} \rightarrow \mathrm{p} \pi^{0}$);
c. new states : ep $\rightarrow \mathrm{eX}^{+}$ ($\mathrm{X}^{+}=$system of many particles).

Send 246 MeV electrons \rightarrow water vapor. The scattering shows a complex distribution, with different phenomena in the same plot. At fixed θ of the electron in the final state, with increasing E^{\prime} :

- ep \rightarrow e Δ^{+}(excitation of p from H);
- e $\mathrm{p} / \mathrm{n} \rightarrow \mathrm{e} \mathrm{p} / \mathrm{n}$ ("elastic" on ${ }^{16} \mathrm{O}$ nucleons);
- ep \rightarrow ep (elastic on $H, \mathrm{E}^{\prime} \approx 160 \mathrm{MeV}$);
- ep \rightarrow e X+ (nuclear excitations);
- $\mathrm{e}^{16} \mathrm{O} \rightarrow \mathrm{e}^{16} \mathrm{O}$ (nucl. exc. / elastic)

The distribution depends also on the electron energy E and the final state angle θ.
[Problem: the Δ^{+}has $\mathrm{m} \approx 1230 \mathrm{MeV}, \Gamma \approx 120 \mathrm{MeV}$. In the plot only the tail of ep $\rightarrow e \Delta^{+}$is shown. "Compute" the effect of the Breit-Wigner in mass in the E' variable. Is it sufficient to predict the E' plot ?]

higher $\mathrm{Q}^{2}: \mathrm{He}^{4}, \theta=45^{\circ}$

Another of these experiments (Hofstadter 1956, see fig.). Observe :
-- the elastic peak for ep \rightarrow ep at the same E ㅇo and θ, shown for comparison [no problem];
A. the elastic scattering e ${ }^{4} \mathrm{He}[\mathrm{ok}$, expected];

BCDEF. the elastic scattering ep / en (p / n acting as free particles in ${ }^{4} \mathrm{He}$) [maybe unexpected, but understandable]; notice the peak width, due to the Fermi motion of nucleons inside the nucleus;

G. the production of π^{-}(i.e. of Δ 's), which enhances the cross section (otherwise F.); notice : smaller E' \rightarrow larger energy transfer [the new entry in the game].

$$
\left(E^{\prime}=\frac{M^{2}+2 M E-W^{2}}{2\left[M+2 E \sin ^{2}(\theta / 2)\right]^{2}}, \quad \text { i.e. }\left\{\begin{array}{l}
W^{2} \uparrow \Rightarrow E^{\prime} \downarrow \\
M \uparrow \Rightarrow E^{\prime} \uparrow
\end{array}\right)\right.
$$

Same as before, but $\theta=60^{\circ}$, i.e. larger Q^{2} $\left[Q^{2} \approx 4 E E \sin ^{2}(\theta / 2)\right]$. Notice :
 and (e^{-p});

- wider ep/en (p / n inside ${ }^{4} \mathrm{He}$) peak;
- (roughly) constant π production (seems independent from Q^{2}, as expected for point-like (?) particles;

Possible conclusions [possibly wrong] :

- everything under control for elastic and quasi-elastic data;
- the high- Q^{2} part shows no evidence for sub-structures;
- maybe Q^{2} is still too small (or maybe there are no substructures ... !?);
\rightarrow go to even higher Q^{2} !!!

Follow [BJ 444] to understand the dependence of $d \sigma / d \Omega$ on Q^{2} :

- scattering electron ("e-") nucleus ("A");
- A with "N" nucleons (use "p", but neutrons similar);
- p with " n " hypothetical components ("q");
- plot vs adimensional variable $x=Q^{2} /(2 M v), 0<x<1$;
- from (a) to (d), Q^{2} increases;
a) at small Q^{2}, there are both scatterings with A and p;
b) increasing Q^{2}, the eA scattering disappears, while the ep scattering stays constant;
c) increasing Q^{2}, the constituents (if any) appears as eq \rightarrow eq;

[just a sketch, not a reproduction of real experiments]
d) finally, at very large Q^{2}, the most (\sim only) important process is eq \rightarrow eq (with all the possible inelastic companions).

Scattering ep \rightarrow eX (DESY 1968) :

- Electron energy $\approx 5 \mathrm{GeV}$ (higher than SLAC);
- resonances (R) production ep \rightarrow eR clearly visible;
- new region at small E' (= high W);
- in this "new" region :
> continuum (NO peaks);
> rich production of hadrons;
> NO new particles, only (p n π 's); i.e. the proton breaks, but (different from the nucleus) NO constituent appears;
> the constituents, if any, do not show up as free particles;

\rightarrow Do quarks exist ??? are they confined ??? why ???
[NB in 1968 color was proposed but not really understood, QCD did not exist]

Deep inelastic scattering: structure functions

The usual parameterization of the cross section in the DIS region is the formula:

$$
\begin{aligned}
& {\left[\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right]_{\mathrm{DIS}}=\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\text {Mott }}\left[\mathrm{W}_{2}\left(\mathrm{Q}^{2}, v\right)+2 \mathrm{~W}_{1}\left(\mathrm{Q}^{2}, v\right) \tan ^{2} \frac{\theta}{2}\right]=} \\
& =\frac{4 Z^{2} \alpha^{2}(\hbar c)^{2} E^{\prime 2}}{|\mathrm{qc}|^{4}} \cos ^{2} \frac{\theta}{2} \times\left[\mathrm{W}_{2}\left(\mathrm{Q}^{2}, v\right)+2 \mathrm{~W}_{1}\left(\mathrm{Q}^{2}, v\right) \tan ^{2} \frac{\theta}{2}\right]= \\
& =\frac{4 \alpha^{2} E^{12}}{\mathrm{Q}^{4}} \times\left[\mathrm{W}_{2}\left(\mathrm{Q}^{2}, v\right) \cos ^{2} \frac{\theta}{2}+2 \mathrm{~W}_{1}\left(\mathrm{Q}^{2}, v\right) \sin ^{2} \frac{\theta}{2}\right] .
\end{aligned}
$$

- the inelastic cross section requires 2 final-state variables; since Q^{2} and v are Linvariant, they are more convenient;
- W_{1} and W_{2} are combinations of G_{E} and G_{M} for DIS [next slide]; sometimes a different normalization is used:

$$
\begin{aligned}
& F_{1}\left(x, Q^{2}\right)=M W_{1}\left(Q^{2}, v\right) ; \\
& F_{2}\left(x, Q^{2}\right)=v W_{2}\left(Q^{2}, v\right) .
\end{aligned}
$$

- the dynamics of the scattering depend on the structure of the target; $W_{1,2}\left(F_{1,2}\right)$ are the "containers" of this information;
- they are known as structure functions and must be measured (or computed in a deeper theory);
- [no deep difference $W_{1,2} \leftrightarrow F_{1,2}$; \rightarrow use the most convenient, but modern papers at high V_{s} use only $F_{1,2}$.]

Deep inelastic scattering : $G_{E, M}$ vs $W_{1,2}$

Summary of σ 's for p :

- Mott and Rosenbluth σ 's;
- the relation $G_{E, M}$ vs $\mathrm{W}_{1,2}$ and $\mathrm{F}_{1,2}$.
- notice:

$$
\begin{array}{ll}
(\mathrm{Q}, \mathrm{v}, \mathrm{M}) & \sim \mathrm{E}^{1} ; \\
\left(\tau, \mathrm{G}_{\mathrm{E}, \mathrm{M}}, \mathrm{~F}_{1,2}\right) & \sim \mathrm{E}^{0} ; \\
\left(\mathrm{W}_{1,2}\right) & \sim \mathrm{E}^{-1} ; \\
\sigma, \mathrm{d} \sigma / \mathrm{d} \Omega & \sim \mathrm{E}^{-2} .
\end{array}
$$

- also:

$$
\left(G_{E, M}, F_{1,2}, W_{1,2}\right)=f\left(Q^{2}\right)
$$

$$
\begin{aligned}
& {\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\text {Mott }}=\left\lfloor\frac{4 \alpha^{2} E^{\prime 2}}{Q^{4}}\right\rfloor_{\substack{\text { Ruthe } \\
\text { rford }}}\left[\cos ^{2} \frac{\theta}{2}\right]_{\rightarrow \text { Mott* }}\left[\frac{E^{\prime}}{\mathrm{E}}\right]_{\rightarrow \text { Mott }}=\frac{4 \alpha^{2} E^{13}}{E Q^{4}} \cos ^{2} \frac{\theta}{2} ;} \\
& {\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\substack{\text { Rosen } \\
\text { bluth }}}=\left[\frac{4 \alpha^{2} \mathrm{E}^{\prime 3}}{\mathrm{EQ}^{4}} \cos ^{2} \frac{\theta}{2}\right]_{\text {Mott }}\left[\frac{\mathrm{G}_{\mathrm{E}}^{2}+\tau \mathrm{G}_{\mathrm{M}}^{2}}{1+\tau}+2 \tau \mathrm{G}_{\mathrm{M}}^{2} \tan ^{2} \frac{\theta}{2}\right]_{\substack{\rightarrow \text { Rosen } \\
\text { bluth }}} ;} \\
& {\left[\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{dE}^{1}}\right]_{\substack{\text { Rosen } \\
\text { bluth }}}=\frac{12 \alpha^{2} \mathrm{E}^{12}}{\mathrm{EQ}^{4}}\left(\frac{\mathrm{G}_{\mathrm{E}}^{2}+\tau \mathrm{G}_{\mathrm{M}}^{2}}{1+\tau} \cos ^{2} \frac{\theta}{2}+2 \tau \mathrm{G}_{\mathrm{M}}^{2} \sin ^{2} \frac{\theta}{2}\right) ;} \\
& {\left[\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right]_{\mathrm{DIS}}=\frac{4 \alpha^{2} E^{\prime 2}}{Q^{4}} \times\left[W_{2}\left(Q^{2}, v\right) \cos ^{2} \frac{\theta}{2}+2 W_{1}\left(Q^{2}, v\right) \sin ^{2} \frac{\theta}{2}\right] ;} \\
& W_{1}\left(Q^{2}, v\right)=\frac{F_{1}(x, y)}{M}=\frac{3}{E} \tau G_{M}^{2}=\frac{3 Q^{2}}{4 E M_{p}^{2}} G_{M}^{2} ; \\
& W_{2}\left(Q^{2}, v\right)=\frac{F_{2}(x, y)}{v}=\frac{3}{E}\left(\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}\right)=\frac{3}{E}\left(\frac{4 M_{p}^{2} G_{E}^{2}+Q^{2} G_{M}^{2}}{4 M_{p}^{2}+Q^{2}}\right) \text {. }
\end{aligned}
$$

An interesting question.

 Do you understand why?Rutherford, Mott* and Mott do/d Ω 's do NOT depend on the proton mass.
Rosenbluth $d \sigma / d \Omega$ depends on $\tau\left(Q^{2} / 4 M^{2}\right)+$ any hidden dependence in $G_{E, M}$. $F_{1,2}$ do *NOT* depend: wait'n see.

SLAC

Stanford Linear Accelerator Center
the beginning of the story (1960)
... and this is NOT the end (1990)

The 8 GeV spectrometer - 1968
(notice the men at the bottom)

Deep inelastic scattering : layout

Layout of the three spectrometers : they can be rotated about their pivot, as shown in the figure. $\quad[75 \mathrm{ft} \approx 23 \mathrm{~m}$]

Deep inelastic scattering : layout details

Draw of the 8 GeV spectrometer [the 20 GeV is NOT shown]:

B : bending magnets (dipoles);

Q : quadrupoles;
Čerenkov counters;
scintillation
hodoscopes,
shower counters for $\mathrm{e}-\pi$ discrimination;
$\mathrm{dE} / \mathrm{dx}$ counters.
a big effort for physics and engineering of 50 years ago !!! not to be compared with modern experiments ...
$\mathrm{ep} \rightarrow \mathrm{eX}, \theta=4^{\circ}, \mathrm{d}^{2} \sigma / \mathrm{d} \Omega \mathrm{dE}^{\prime}$ vs W (= hadr. mass)

Notice :

- the intervals in W and Q^{2}, due to fixed E and θ;
- the elastic scattering $\left(W=M_{p}\right)$ is out of scale;
- the decrease in cross section (the vertical scale) when E increases;
- the presence of excited states of the nucleon (resonances \rightarrow peaks), e.g. Δ^{+}(1232);
- the "fading out" of resonances, when W increases at fixed E and θ;
- the continuum at high W , with ~const σ (1-2 $\mu \mathrm{b} / \mathrm{GeV}$ sr, independent from E and Q^{2}).
???

Deep inelastic scattering : $d \sigma / d \theta$ vs $d \sigma / d \theta_{\text {Mott }}$

Ratio $R=\exp . /$ Mott $=W_{2}+2 W_{1} \tan ^{2} \theta / 2=R\left(Q^{2}\right)$.
Notice that the structure functions appear to be nearly independent of Q^{2}. Instead, the elastic scattering for a non-pointlike target has a strong Q^{2} dependence !!!
I.e., for DIS, the target (whatever it be), behaves like a point-like particle $\left[F\left(Q^{2}\right)=\right.$ const , cfr the Rutherford formula] !!! [NB constant, but <<1 \rightarrow charge < 1]

This Q^{2} independence is another confirmation that the DIS "breaks" the proton : the scattering happens with one of its constituents. The constituents looks "quasifree" and "quasi-pointlike", at least at this scale of Q^{2}.

Bjorken scaling: $\left(F_{1}, F_{2}\right)$ vs $\left(x, Q^{2}\right)$

Plot the data as F_{1} and F_{2} vs x and Q^{2} :

- F_{2} depends on x, but NOT on Q^{2};
- are F_{1} and F_{2} correlated ? if the nucleons are made by point-like, spin $1 / 2$ objects,
from the DIS formula the Callan-Gross relation can be derived [next slide] :

$$
2 x F_{1}(x)=F_{2}(x)
$$

Seen as functions of x and $Q^{2}, F_{1,2}$ appear NOT to depend on Q^{2} for a large range of it.

Bjorken scaling : Callan-Gross formula

a) the cross sections of pointlike spin $1 / 2$ particle of mass m (à la Rosenbluth with $G_{E}=G_{M}=1$) :

$$
\left|\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{dE} E^{\prime}}\right|_{\substack{\text { point-like, } \\ \text { spin } 1 / 2}}=\frac{12 \alpha^{2} \mathrm{E}^{12}}{\mathrm{EQ}^{4}}\left[\cos ^{2} \frac{\theta}{2}+2 \tau \sin ^{2} \frac{\theta}{2}\right]
$$

$$
\left[\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right]_{\mathrm{DIS}}=\frac{4 \alpha^{2} E^{12}}{Q^{4}}\left[\mathrm{~W}_{2} \cos ^{2} \frac{\theta}{2}+2 \mathrm{~W}_{1} \sin ^{2} \frac{\theta}{2}\right]
$$

$$
W_{2} \cos ^{2} \frac{\theta}{2}+2 W_{1} \sin ^{2} \frac{\theta}{2}=\frac{3}{E}\left[\cos ^{2} \frac{\theta}{2}+2 \tau \sin ^{2} \frac{\theta}{2}\right]
$$

$$
\mathrm{W}_{1}=\frac{3 \tau}{E} ; \quad \mathrm{W}_{2}=\frac{3}{E} ; \quad \frac{\mathrm{W}_{1}}{\mathrm{~W}_{2}}=\frac{\mathrm{F}_{1}(\mathrm{x})}{\mathrm{F}_{2}(\mathrm{x})} \frac{\nu}{M}=\tau=\frac{\mathrm{Q}^{2}}{4 \mathrm{~m}^{2}} ;
$$

b) from the kinematics of elastic scattering of point-like constituents of mass m :
$Q^{2}=2 m v=2 M v x \rightarrow m=x M ;$
$\frac{F_{1}(x)}{F_{2}(x)}=\frac{Q^{2}}{4 m^{2}} \frac{M}{v}=\frac{2 m v}{4 m^{2}} \frac{M}{v}=\frac{M}{2 m}=\frac{1}{2 x} ; \quad \rightarrow$
$2 x F_{1}(x)=F_{2}(x)$. Callan-Gross

Assume the nucleon (mass M , spin $1 / 2$) be made of pointlike costituents q (mass m , spin $1 / 2$).

Warnings :

- don't confuse the inelastic scattering ep with the elastic scattering eq;
- x refers to the inelastic case;
- an hypothetical [nobody uses it] variable ξ, analogous to x but for the constituent scattering; in this case, $\mathrm{Q}^{2}=2 \mathrm{mv} \boldsymbol{\xi}, \xi=1$;
- we learn that $x=m / M$ [REMEMBER].

Assume that the nucleon be made of partons (point-like, spin $1 / 2$, mass m_{i}), which scatter elastically in the ep process.

Then the DIS cross section
$\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{12}}{Q^{4}}\left[W_{2} \cos ^{2} \frac{\theta}{2}+2 W_{1} \sin ^{2} \frac{\theta}{2}\right] ;$
reduces to an incoherent sum of constituent cross sections, $q_{\text {electron }} \mathrm{e}_{\mathrm{i}}$ being the charge of each of them :
$\left.\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right|_{m_{i}}=\frac{4 \alpha^{2} E^{12}}{Q^{4}} \sum_{i}\left[\begin{array}{l}e_{i}^{2}\left(\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 m_{i}^{2}} \sin ^{2} \frac{\theta}{2}\right) \\ \delta\left(v-\frac{Q^{2}}{2 m_{i}}\right)\end{array}\right] ;$
where the $\delta()$ means that, at the constituent level, the scattering is elastic, i.e. $Q^{2}=2 m_{i} v$.

For such partons [next 2 slides]:
$F_{1}\left[x=\frac{Q^{2}}{2 m v}\right]=M W_{1}\left(Q^{2}, v\right)=\frac{1}{2} \sum_{j} e_{j}^{2} f_{j}(x)$ $F_{2}\left[x=\frac{Q^{2}}{2 m v}\right]=v W_{2}\left(Q^{2}, v\right)=x \sum_{j} e_{j}^{2} f_{j}(x)$
i.e. F_{1} and F_{2} do NOT depend on Q^{2} and v separately, but only on their ratio. F_{1} and F_{2} are also related by the Callan-Gross equation.

This mechanism (the Bjorken scaling) was interpreted by Feynman in 1969 as the dominance of partons in the nucleon dynamics (the parton model).

$\begin{aligned} & \text { If } B\left(x=x_{0}\right)=0 \rightarrow \\ & \int A(x) \delta[B(x)] d x=A\left(x_{0}\right) / / B^{\prime}\left(x_{0}\right) \mid, \end{aligned}$
$\left.\rightarrow \mathrm{B}^{\prime}\left(\mathrm{x}_{0}\right)=\frac{\mathrm{Q}^{2}}{2 \mathrm{Mx}^{2}} \right\rvert\,=\frac{2 \mathrm{M} v^{2}}{\mathrm{Q}^{2}}$

DIS formula for ep, p NOT pointlike, mass=M:

$$
\left[\frac{d^{2} \sigma}{d \Omega d E^{1}}\right]_{\mathrm{DIS}}=\frac{4 \alpha^{2} E^{12}}{Q^{4}}\left[W_{2}\left(Q^{2}, v\right) \cos ^{2}\left(\frac{\theta}{2}\right)+2 W_{1}\left(Q^{2}, v\right) \sin ^{2}\left(\frac{\theta}{2}\right)\right]
$$

Elastic scattering e"q", pointlike, spin $1 / 2$, charge e , mass $\mathrm{m}=\mathrm{Mx}$: $\left[\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right]_{e^{\prime \prime} q^{\prime \prime}}=\frac{4 \alpha^{2} E^{\prime 2}}{\mathrm{Q}^{4}}\left[\mathrm{e}^{2} \cos ^{2}\left(\frac{\theta}{2}\right)+\mathrm{e}^{2} \frac{\mathrm{Q}^{2}}{2 \mathrm{~m}^{2}} \sin ^{2}\left(\frac{\theta}{2}\right)\right] \delta\left(v-\frac{\mathrm{Q}^{2}}{2 \mathrm{~m}}\right)$
$\left.W_{1}\right|_{\mathrm{x}}=\frac{\mathrm{e}^{2} \mathrm{Q}^{2}}{4 \mathrm{~m}^{2}} \delta\left(v-\frac{\mathrm{Q}^{2}}{2 \mathrm{~m}}\right)=\frac{\mathrm{e}^{2} \mathrm{Q}^{2}}{4 \mathrm{M}^{2} x^{2}} \delta\left(v-\frac{\mathrm{Q}^{2}}{2 M \mathrm{M}}\right) ; \quad$ [at fixed x]
$f(x)$: x-distribution of (a single) substructure;

$$
\begin{aligned}
W_{1} & =\int \frac{e^{2} Q^{2}}{4 M^{2} x^{2}} \delta\left(v-\frac{Q^{2}}{2 M x}\right) f(x) d x=\frac{e^{2} Q^{2}}{4 M^{2}} \int \frac{f(x) d x}{x^{2}} \delta\left(v-\frac{Q^{2}}{2 M x}\right)= \\
& \left.=\left.\frac{e^{2} Q^{2}}{4 M^{2}} f(x)\right|_{x=\frac{Q^{2}}{2 M v}} ^{2 M v}\right)^{Q^{2}} \frac{Q^{2}}{2 M v^{2}}= \\
& =e^{2} f(x)\left(2^{-2+2-1}\right)\left(M^{-2+2-1}\right)\left(Q^{2-4+2}\right)\left(v^{2-2}\right)=\frac{e^{2} f(x)}{2 M}
\end{aligned}
$$

Bjorken scaling : $W_{1,2} \rightarrow F_{1,2}$

previous

page

$$
\begin{aligned}
& {\left[\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right]_{\mathrm{DIS}}=\frac{4 \alpha^{2} E^{\prime 2}}{Q^{4}}\left[W_{2}\left(Q^{2}, v\right) \cos ^{2}\left(\frac{\theta}{2}\right)+2 W_{1}\left(Q^{2}, v\right) \sin ^{2}\left(\frac{\theta}{2}\right)\right]} \\
& {\left[\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right]_{e^{\prime \prime} q^{\prime \prime}}=\frac{4 \alpha^{2} E^{\prime 2}}{Q^{4}}\left[e^{2} \cos ^{2}\left(\frac{\theta}{2}\right)+e^{2} \frac{Q^{2}}{2 m^{2}} \sin ^{2}\left(\frac{\theta}{2}\right)\right] \delta\left(v-\frac{Q^{2}}{2 m}\right)}
\end{aligned}
$$ a single substructure $\{e, m=M x\} \rightarrow W_{1}=\frac{e^{2} f(x)}{2 M} ; \quad W_{2}=\frac{e^{2} x f(x)}{v}$.

this form (" $\sum \ldots$...) is actually very important (why ?)

Summary: the nucleons are made up of partons, later identified with quarks; partons are:

- point-like (at least at the scale of Q^{2} accessible to the experiments, both then and now);
- spin $1 / 2$ fermions;
- define : $\mathrm{x}_{\text {Feynman }}=\mathrm{x}_{\mathrm{F}}=\left|\overrightarrow{\mathrm{p}}_{\text {parton }}\right| /\left|\overrightarrow{\mathrm{p}}_{\text {nucleon }}\right|=$

$$
\approx\left|p_{\text {parton }}^{\text {long }}\right| /\left|\vec{p}_{\text {nucleon }}\right|
$$

[cfr. $\left.\quad x_{\text {Bjorken }}=x_{B}=Q^{2} /(2 M v)=m / M\right]$;

- the interaction e-parton is so fast and violent, that they behave like free particles (similar, mutatis mutandis, to the collision approximation in classical mechanics);
- the other partons [at least in $1^{\text {st }}$ approx.] do NOT take part in the interaction ("spectators");
- it follows $\mathrm{X}_{\mathrm{F}}=\mathrm{x}_{\mathrm{B}}=\mathrm{x}$ [next slide];
- the DIS is an incoherent sum of processes on the partons; at high Q^{2} the nucleons as such are mere containers, with no role $\left[F_{1,2}=\Sigma \ldots\right]$.

Despite the formal identity between x_{F} and x_{B}, they have a different dynamical origin :

- X_{F} is defined in the hadronic system (= fraction of the nucleon momentum);
- x_{B} comes from the lepton part (momentum transfer and lepton energies).

Show: $\mathrm{X}_{\text {Feynman }} \equiv \mathrm{X}_{\mathrm{F}}=\mathrm{X}_{\text {Bjorken }} \equiv \mathrm{X}_{\mathrm{B}}$
In the "infinite momentum frame" (IMF), where all the masses are negligible :
$\left.p_{\text {nucleon }}^{\text {init }}\right|_{\text {IMF }}=(p, p, 0,0)$;

$$
\begin{aligned}
& p_{\text {parton }}^{\text {inimF }^{\text {nim }}}=x_{\mathrm{F}} \mathrm{p}_{\text {nucleon }}^{\text {init }}=\left(\mathrm{x}_{\mathrm{F}} \mathrm{p}, \mathrm{x}_{\mathrm{F}} \mathrm{p}, \sim 0, \sim 0\right) ; \\
& \left.\mathrm{p}_{\text {parton }}^{\text {fin }}\right|_{\text {IMF }}=p_{\text {parton }}^{\text {init }}+q_{\text {transf }} ; \\
& \left(p_{\text {parton }}^{\text {fin }}\right)^{2}=0=\left(p_{\text {parton }}^{\text {init }}+q_{\text {transf }}\right)^{2}= \\
& \\
& =0+q_{\text {transf }}^{2}+2\left(p_{\text {parton }}^{\text {init }} \cdot q_{\text {transf }}\right) ;
\end{aligned}
$$

($p_{\text {parton }}^{\text {init }} \cdot q_{\text {transf }}$) is L-invariant; compute it in the lab frame:

$$
\begin{aligned}
\left.p_{\text {proton }}^{\text {init }}\right|_{L A B} & =(M, \overrightarrow{0}) ;\left.\quad p_{\text {parton }}^{\text {init }}\right|_{L A B}=\left(M x_{F}, \overrightarrow{0}\right) ; \\
\left.q_{\text {transf }}\right|_{L A B} & =\left(E-E^{\prime}=v, \vec{q}\right) ; \\
--q_{\text {transf }}^{2} & =Q^{2}=2\left(p_{\text {parton }}^{\text {init }} \cdot q_{\text {transf }}\right)=2 M x_{F} v \rightarrow \\
x_{F} & =Q^{2} /(2 M v) \equiv x_{B} .
\end{aligned}
$$

Warning : the equality holds only in the IMF. It is also a reasonable approx. in the "ultra-relativistic" case, when the masses are negligible wrt momenta.

In the following (also next chapters):

- drop the subscript $x_{F}=x_{B}=x$;
- usually interpret x à la Feynman, as the fraction of the nucleon 4-mom. carried by the parton.

The parton model : sum rules

Remarks and comments (discuss the proton, the neutron is similar):

- experimentally, it is enough to control the initial state $\left(\mathrm{E}_{\mathrm{e}-}, \mathrm{M}\right)+$ measure the leptonic final state (E^{\prime}, θ);
- the model implies that $\sum_{i} x_{i}=1$, when the sum runs over ALL the partons;
- at the time there was no clue about the nature of the partons, nor if they are charged or neutral (i.e. not interacting with the electrons); therefore:

$$
\sum_{i}^{\prime} x_{i} \leq 1
$$

(the sum is only over those partons, which interact with the electron);

- given the intrinsic q.m. structure of the nucleon, the values x_{i} are not fixed, but described by a distribution $f_{j}^{p}(x)$ for partons of type " j " in the proton:

$$
\rightarrow \sum_{j} \int \mathrm{dx}\left[\mathrm{xf} f_{j}^{\mathrm{p}}(\mathrm{x})\right]=\sum_{\mathrm{j}}^{\prime}<\left|\overrightarrow{\mathrm{p}}_{\mathrm{j}}\right|>/\left|\vec{p}_{\mathrm{p}}\right| \leq 1,
$$ with the same caveats over the sum.

- if partons are spin $1 / 2$, then the CallanGross relation $2 \mathrm{xF}_{1}(\mathrm{x})=\mathrm{F}_{2}(\mathrm{x})$ holds;
- instead, spin $=0 \rightarrow \tau=0 \rightarrow \mathrm{~F}_{1}(\mathrm{x})=0$;
- but ... can we measure it ? YES, it's OK !!!

A summary of the model, with final formulæ [box and next slide]:

- at high Q^{2}, a hadron (p / n) behaves as a mixture of small components, the partons.
- partons are pointlike, spin $1 / 2$;
- each parton in each interaction is described by its fraction of the 4 -momentum of the hadron, i.e. $\left|\overrightarrow{\mathrm{p}}_{\mathrm{i}}^{\text {parton }}\right| /\left|\overrightarrow{\mathrm{p}}^{\text {hadron }}\right|=\mathrm{x}_{\mathrm{i}}$;

- the x_{i} are $q m$ variables, described by their distribution functions $f_{i}{ }^{p}(x)$ [called "PDF"];
- in principle the PDF are different for each parton and each hadron;
- $\sum_{j} \int d x x f_{j}^{p}(x) \leq 1$;
- parton spin $=1 / 2 \rightarrow$ Callan-Gross $2 x F_{1}(x)=F_{2}(x)$.

$$
\left[\begin{array}{rr}
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{\prime 2}}{Q^{4}}\left[W_{2}\left(Q^{2}, v\right) \cos ^{2} \frac{\theta}{2}+2 W_{1}\left(Q^{2}, v\right) \sin ^{2} \frac{\theta}{2}\right] ; \\
\frac{d^{2} \sigma}{d x d y}=\frac{4 \pi \alpha^{2} s}{Q^{4}}\left[x y^{2} F_{1}\left(x, \not Q^{2}\right)+(1-y) F_{2}\left(x, \not \mathscr{Q}^{2}\right)\right] ; \\
F_{1}\left(x, \not Q^{2}\right)=M W_{1}\left(Q^{2}, v\right)=\frac{1}{2} \sum_{j} e_{j}^{2} f_{j}(x) ; & \text { next } \\
F_{2}\left(x, \not Q^{2}\right)=v W_{2}\left(Q^{2}, v\right)=x \sum_{j} e_{j}^{2} f_{j}(x) . & \text { slide }
\end{array}\right]
$$

$$
\begin{array}{|lc|}
\hline s=2 E M ; \quad v=E-E^{\prime} ; \quad y=\frac{v}{E}=1-\frac{E^{\prime}}{E} ; \quad E^{\prime}=E(1-y) ; & Q^{2}=4 E E^{\prime} \sin ^{2}\left(\frac{\theta}{2}\right)=4 E^{2}(1-y) \sin ^{2} \frac{\theta}{2} ; \\
x=\frac{Q^{2}}{2 M v}=4 E^{2}(1-y) \sin ^{2}\left(\frac{\theta}{2}\right) \frac{1}{2 M E y}=\frac{2 E(1-y)}{M y} \sin ^{2}\left(\frac{\theta}{2}\right) ; & \frac{d^{2} \sigma}{d \Omega d^{\prime}}= \\
\sin ^{2}\left(\frac{\theta}{2}\right)=\frac{M x y}{2 E(1-y)} ; \cos ^{2}\left(\frac{\theta}{2}\right)=1-\sin ^{2}\left(\frac{\theta}{2}\right) \approx 1 . & =\frac{4 \alpha^{2} E^{\prime 2}}{Q^{4}}\left(W_{2} \cos ^{2} \frac{\theta}{2}+2 W_{1} \sin ^{2} \frac{\theta}{2}\right) .
\end{array}
$$

[YN1], probl. 17.7 : page 697, 698, 911.

L-inv : s, M, v, x, y, Q^{2}. Labo: E, E', θ, Ω.
link
$\frac{d^{2} \sigma}{d x d y}=\frac{2 \pi}{|J|} \frac{d^{2} \sigma}{d \cos \theta d E^{\prime}}=\frac{2 \pi M y}{1-y} \frac{4 \alpha^{2} E^{2}(1-y)^{2}}{Q^{4}} \times\left[\frac{F_{2}(x, y)}{v} \cos ^{2}\left(\frac{\theta}{2}\right)+\frac{2 F_{1}(x, y)}{M} \frac{M x y}{2 E(1-y)}\right]=$ result

$$
=\frac{s \pi y 4 \alpha^{2} E(1-y)}{Q^{4}}\left[\frac{F_{2}(x, y)}{E y}+A_{1}(x, y) \frac{x y}{R^{\prime}(1-y)}\right]=\frac{4 \pi \alpha^{2}}{Q^{4}} s\left[(1-y) F_{2}(x, y)+x y^{2} F_{1}(x, y)\right] .
$$

partons = quarks ???

In the SM the answer is YES: the quark-parton model.

Which is the dynamical meaning of $\mathrm{F}_{1,2}$? Can we measure them ? [yes, of course]

- in principle the proton and the neutron have different structure functions;
- also a given process could result in a different structure [e.g. the electron scattering could "see" different $F_{1,2}$ from neutrino- or hadron-hadron interactions];
- in this picture, e.g. we will refer to " $F_{1}^{e p}(x)$ ", meaning $\underline{F}_{1}(x)$ for the proton, when probed in DIS by an electron;
- similarly " $F_{2}^{e p}(x)$ ", " $F_{2}^{e n}(x)$ ", " $F_{2}^{\mathrm{vp}}(x)$ ", ...
- however, these functions are NOT independent : if they parametrize the actual structure of nucleons, they must be correlated.
- assume that the nucleons are made by three quarks [Nature is much more complicated, but wait ...];
- call them "valence quarks" [why ???];
- each of them is described by a x distribution, identified with $" f_{j}{ }^{p}(x)$ " [e.g. " $u^{p}(x)$ " = the x distribution for u-quarks in the proton];
- e.g. $u^{p}(x) d x=$ number of u quarks in the proton, with x in the interval ($x, x+d x$);
- then $\mathrm{d}^{\mathrm{p}}(\mathrm{x}), \bar{u}^{\mathrm{p}}(\mathrm{x}), \overline{\mathrm{u}}^{\bar{p}}(\mathrm{x}), \mathrm{u}^{\mathrm{n}}(\mathrm{x}), \overline{\mathrm{u}}^{\bar{n}}(\mathrm{x}), \ldots$;
\rightarrow the $q^{N}(x)\left[q=u, d, u \bar{u}, \ldots ; N_{n}=p\right]$, the PDF (parton distribution functions), tell the structure of nucleons at high Q^{2}.

The q-p model: $u^{p}, u^{n}, d^{p}, d^{n}, \ldots$

(... continue)

Some obvious relations hold [the green ones with a $\left(^{*}\right)$ are provisional, we'll modify them] :

- particle-antiparticle symmetry: $\mathrm{u}^{\mathrm{p}}(\mathrm{x})=\bar{u}^{\bar{p}}(\mathrm{x})$;
- quark model + isospin invariance : $u^{p}(x) \approx \mathrm{d}^{\mathrm{n}}(\mathrm{x})$;
- ditto : $u^{p}(x) \approx 2 u^{n}(x)$;
- ditto : $\mathrm{d}^{\mathrm{n}}(\mathrm{x}) \approx 2 \mathrm{~d}^{\mathrm{p}}(\mathrm{x})$;
- (*) for valence quarks only, $\bar{u}^{\mathrm{p}}(\mathrm{x})=0$;

- $\left(^{*}\right)$ for valence quarks only, $s^{p}(x)=0$;
- ${ }^{*}$) therefore, e.g.

$$
F_{2}^{e p}(x)=x \sum_{j} e_{j}^{2} f_{j}(x)=x\left(\frac{4 u^{p}(x)+d^{p}(x)}{9}\right) ;
$$

... many more formulæ, all quite intuitive.

- According to the uncertainty principle, for short intervals q.m. allows quarkantiquark pairs to exist in the nucleons;
- in the hadrons some neutral particles exist, called gluons [??? ... wait].
Therefore, let us modify the scheme:
- in the nucleons, 3 types of particles :
> valence quarks [already seen] with distribution $\mathrm{q}_{\mathrm{v}}(\mathrm{x})$ [e.g $\mathrm{u}_{\mathrm{v}}^{\mathrm{p}}(\mathrm{x})$ [already defined with the simpler notation $\left.u^{p}(x)\right]$;
> sea quarks, i.e. the quark-antiquark pairs, described by distributions $\mathrm{q}_{s}(x)$ [e.g $\left.u_{s}^{p}(x), s_{s}^{p}(x), \bar{u}_{s}^{p}(x), s_{s}^{p}(x)\right]$;
$>$ gluons, described by the distributions $g^{p}(x)$ and $g^{n}(x)$.
Obviously only sums can be measured:
$u^{p}(x) \equiv u_{v}^{p}(x)+u_{s}^{p}(x) ;$
$d^{p}(x) \equiv d_{v}^{p}(x)+d_{s}^{p}(x) ;$

$$
\begin{aligned}
\bar{u}^{p}(x) & \equiv \bar{u}_{v}^{p}(x)+\bar{u}_{s}^{p}(x)=\bar{u}_{s}^{p}(x) ; \\
s^{p}(x) & \equiv s_{v}^{p}(x)+s_{s}^{p}(x)=s_{s}^{p}(x) ;
\end{aligned}
$$

Relations (final, no further refinement) :

- particle-antiparticle constraint :

$$
u^{p}(x)=\bar{u}^{\bar{p}}(x) ;
$$

- from quark model + isospin invariance :

$$
\begin{aligned}
& u_{v}^{p}(x) \approx d_{v}^{n}(x) \equiv u_{v}(x) ; \\
& d_{v}^{p}(x) \approx u_{v}^{n}(x) \equiv d_{v}(x) ;
\end{aligned}
$$

- from quark model : $u_{v}^{p}(x) \approx 2 u_{v}^{n}(x)$;
- from quark model : $d_{v}^{n}(x) \approx 2 d_{v}^{p}(x)$;
- from quantum mechanics and isospin invariance [and neglecting quark masses] :

$$
\begin{aligned}
u_{s}^{p}(x) & =\bar{u}_{s}^{p}(x) \approx d_{s}^{p}(x)=\bar{d}_{s}^{p}(x) \approx \\
& \approx s_{s}^{p}(x)=\bar{s}_{s}^{p}(x) \equiv q_{s}^{p}(x) \approx q_{s}^{n}(x) ;
\end{aligned}
$$

... many more, all quite intuitive.
the "valence-ness" is not an observable, i.e. a u-quark "does not know" whether (s)he is vor s.

Putting everything together, we have [neglecting heavier quarks] :

$$
\begin{aligned}
F_{2}^{e p}(x) & =x\left\{\frac{4}{9}\left[u^{p}(x)+\bar{u}^{p}(x)\right]+\frac{1}{9}\left[d^{p}(x)+\bar{d}^{p}(x)\right]+\frac{1}{9}\left[s^{p}(x)+\bar{s}^{p}(x)\right]\right\}= \\
& =x\left\{\frac{4}{9}\left[u_{v}(x)+2 q_{s}(x)\right]+\frac{1}{9}\left[d_{v}(x)+2 q_{s}(x)\right]+\frac{1}{9}\left[2 q_{s}(x)\right]\right\}=\text { drop } \\
& =x\left\{\frac{4}{9} u_{v}(x)+\frac{1}{9} d_{v}(x)+\frac{4}{3} q_{s}(x)\right\} ; \quad \text { the "p" }
\end{aligned}
$$

 In other words, there are plenty of $q \bar{q}$ pairs at $F_{2}^{e n} / F_{2}^{e p}=R_{n p}= \begin{cases}1 & (a) ; \\ {\left[4 d_{v}(x)+u_{v}(x)\right] /\left[4 u_{v}(x)+d_{v}(x)\right]} & \text { (b). }\end{cases}$
(a) if sea dominates (see little sketch);
(b) if valence dominates [if $\left.\left(u_{v} \gg d_{v}\right) \rightarrow R_{n p} \approx 1 / 4\right]$.

The measurement shows that case (a) happens at low x, while (b) dominates at high x. small momentum, while valence is important at high x....

The q-p model : toy models for $F_{2}(x)$

$$
\begin{aligned}
& \sum_{\text {partons }} \int_{0}^{1} x f_{j}(x) d x<1 \\
& \sum_{\text {partons }} \int_{0}^{1} f_{j}(x) d x=\text { undefined (but large) }
\end{aligned}
$$

Sum rules (from momentum conservation) :

$$
\begin{aligned}
& \int_{0}^{1} d x\left[u^{p}(x)-\bar{u}^{p}(x)\right]=\int_{0}^{1} d x u_{v}^{p}(x)=2 ; \\
& \int_{0}^{1} d x\left[d^{p}(x)-\bar{d}^{p}(x)\right]=\int_{0}^{1} d x d_{v}^{p}(x)=1 ; \\
& \int_{0}^{1} d x\left[s^{p}(x)-\bar{s}^{p}(x)\right]=0
\end{aligned}
$$

Hypothetical (NOT CORRECT) shapes of $F_{2}(x)$ from naïve dynamical models :

The q-p model : $F_{2}{ }^{e p}(x)-F_{2}{ }^{e n}(x)$

From :
$F_{2}^{e p}(x)=x\left[4 u_{v}(x)+d_{v}(x)+12 q_{s}(x)\right] / 9 ;$
$F_{2}^{e n}(x)=x\left[u_{v}(x)+4 d_{v}(x)+12 q_{s}(x)\right] / 9 ;$
we get
$F_{2}^{e p}(x)-F_{2}^{e n}(x)=x\left[u_{v}(x)-d_{v}(x)\right] / 3 ;$
If, moreover, from the naïve quark model
$u_{v}(x) \approx 2 d_{v}(x)$
we get
$F_{2}^{e p}(x)-F_{2}^{e n}(x)=x d_{V}(x) / 3 ;$
i.e. this difference, which is an observable, roughly corresponds to $1 / 3 x \times$ [the x distribution of the "lone" valence quark ($\mathrm{d}_{\mathrm{v}}^{\mathrm{p}}$ or $\left.\left.u_{v}^{n}\right)\right]$.

Friedman, Kendall - Ann.Rev.Nucl.Sci. 22, 203 (1972)

no valence at $\mathrm{x}=0$

The integrals of $F_{2}(x)$ are both calculable and measurable. By neglecting the small contribution of $s \bar{s}$:

$$
\begin{aligned}
\int_{0}^{1} d x F_{2}^{e p}(x) & =\frac{4}{9} \int_{0}^{1} x\left[u^{p}(x)+\bar{u}^{p}(x)\right] d x+ \\
& +\frac{1}{9} \int_{0}^{1} x\left[d^{p}(x)+\overline{d^{p}}(x)\right] d x=\frac{4}{9} f_{u}+\frac{1}{9} f_{d} ;
\end{aligned}
$$

$$
\int_{0}^{1} d x F_{2}^{\mathrm{en}}(x)=\frac{4}{9} \int_{0}^{1} x\left[\mathrm{~d}^{\mathrm{p}}(\mathrm{x})+\overline{\mathrm{d}}^{\mathrm{p}}(\mathrm{x})\right] \mathrm{dx}+
$$

$$
+\frac{1}{9} \int_{0}^{1} x\left[u^{p}(x)+\bar{u}^{p}(x)\right] d x=\frac{4}{9} f_{d}+\frac{1}{9} f_{u} ;
$$

where $f_{u, d}$ are the fractions of the proton momentum carried by the quark u, d (+ the respective $\overline{\mathrm{q}})$.
From direct measurement, we get
$\int_{0}^{1} d x F_{2}^{\text {ep }}(x)=\frac{4}{9} f_{u}+\frac{1}{9} f_{d} \approx 0.18 ;$
$\int_{0}^{1} d x F_{2}^{\text {en }}(x)=\frac{4}{9} f_{d}+\frac{1}{9} f_{u} \approx 0.12 ;$$\Rightarrow\left\{\begin{array}{r}f_{u} \approx 0.36 ; \\ f_{d} \approx 0.18 ; \\ f_{u}+f_{d} \approx 0.54 .\end{array}\right.$

Result (important) :

$$
f_{u}+f_{d} \approx 50 \% .
$$

Only $\approx 1 / 2$ of the nucleon momentum is carried by quarks and antiquarks.

The rest is "invisible" in the DIS by a charged lepton.

This was one of the first (and VERY convincing) evidences for the existence of the gluons, the carriers of the hadronic force.

The gluons are neutral and do not "see" the e.m. interactions.

Compute $\mathrm{F}_{2}^{\mathrm{eN}}(\mathrm{x})$ for an isoscalar target \mathbf{N}, i.e. a target with $\mathrm{n}_{\text {protons }}=$ $\mathrm{n}_{\text {neutrons }}$, both quasi-free (Fermi-gas approx) :

$$
\begin{aligned}
F_{2}^{e p}(x) & =x\left\{\frac{4}{9}\left[u^{p}(x)+\bar{u}^{p}(x)\right]+\frac{1}{9}\left[d^{p}(x)+\bar{d}^{p}(x)\right]+\frac{1}{9}\left[s^{p}(x)+\bar{s}^{p}(x)\right]\right\} \\
F_{2}^{e n}(x) & =x\left\{\frac{4}{9}\left[d^{p}(x)+\bar{d}^{p}(x)\right]+\frac{1}{9}\left[u^{p}(x)+\bar{u}^{p}(x)\right]+\frac{1}{9}\left[s^{p}(x)+\bar{s}^{p}(x)\right]\right\} ; \\
F_{2}^{e N}(x) & \equiv \frac{F_{2}^{e p}(x)+F_{2}^{e n}(x)}{2}= \\
& =x\left\{\frac{5}{18}\left[u^{p}(x)+\bar{u}^{p}(x)+d^{p}(x)+\bar{d}^{p}(x)\right]+\frac{1}{9}\left[s^{p}(x)+\bar{s}^{p}(x)\right]\right\} \xrightarrow[\text { neglect } s]{ } \\
& \rightarrow \frac{5 x}{18}\left[u^{p}(x)+\bar{u}^{p}(x)+d^{p}(x)+\bar{d}^{p}(x)\right] .
\end{aligned}
$$

Notice that in neutrino DIS (see) the dynamics is different, but the effective structure function for an isoscalar target turns out to be very similar, up to a factor, as in the purely e.m. case :

$$
F_{2}^{v N}(x)=x\left[u^{p}(x)+\bar{u}^{p}(x)+d^{p}(x)+\bar{d}^{p}(x)\right]=F_{2}^{e N}(x) / \frac{5}{18} .
$$

i.e. the structure functions depend on real properties of the nucleon structure, and are not dependent on the interaction.

The experimental value (see) is $F_{2}{ }^{e N} / F_{2}{ }^{v N}=0.29 \pm 0.02$, very compatible with this prediction $(5 / 18=0.278)$.

The q-p model : hadrons in the final state

Consider the hadrons on the on the bottom right: is it possible ?

- free quarks do NOT exists (§ 2 and § 6);
- only (qqq) ($\bar{q} \bar{q} \bar{q})$ ($q \bar{q}$) hadrons observable (§ 6);
- therefore some "recombination" must occur [see a possible example, in general it is more complicated];
- these effects are called "final state interactions" [f.s.i.];
- usually f.s.i. are factorized, i.e. they are treated as a "phase 2" process, which does NOT interfere with "phase 1" (i.e. the DIS);
- at higher energy and higher Q^{2}, quarks in the final state fragment into hadron jets.
[all that - and much more - for next semester, e.g. in the "Collider Physics" course: see you there].

Modern experiments have probed the nucleon to very high values of Q^{2}. Now electrons are often replaced with muons, which have the advantage of intense beams of higher momenta. Or, even better, the experiments are carried out at $\mathrm{e}^{-} \mathrm{p}$ Colliders (HERA).

There are data up to $\mathrm{Q}^{2} \approx 10^{5} \mathrm{GeV}^{2}$: when plotting F_{2} as function of Q^{2} at fixed x, some Q^{2}-dependence appears, incompatible with Bjorken scaling [see plot and sketch, and the next slides].

$F_{2}\left(x, Q^{2}\right): Q^{2}$ evolution

However, this effect (scaling violations), is NOT attributed to sub-structures or other novel physics, but to a dynamical change in F_{2}, well understood in QCD.

In QCD :

- higher Q^{2}
\rightarrow smaller size probed
\rightarrow more qq̄ and gluons \rightarrow less valence quarks.

Quark *Antiquark
$\sum_{\text {partons }} \int_{0}^{1} f_{j}(x) d x=$ undefined (but large).

a modern parameterization of the PDF [NNPDF3.0(NNLO)] shows clearly the difference in the PDF when $\mathrm{Q}^{2}=10 \div 10^{4} \mathrm{GeV}^{2}$:

- $u_{\mathrm{v}}, \mathrm{d}_{\mathrm{v}} \rightarrow$ down;
- $\bar{u}, \mathrm{a}_{\mathrm{d}}\left[=\mathrm{u}_{\mathrm{s}}, \mathrm{d}_{\mathrm{s}}\right.$, $\mathrm{g} \rightarrow \mathrm{up} ;$
- $s, c, b \rightarrow$ up (more phase space)

For modern experiments with hadrons the knowledge of $F_{2}^{p, n}(x)$ is a necessary ingredient of the data analysis.

- The structure functions are an effect of the hadronic forces. However, being a complicated result of an ill-defined number of bodies in non-perturbative regime, they cannot be reliably computed with today's technology (lattice QCD is still a hope).
- Similar to the chemistry of complicated molecules, which is a difficult subject, although the fundamental interactions are [supposed to be] well understood.
- When studying hadron interactions at large Q^{2}, the initial state is parameterized by its structure function, as an incoherent sum of all the PDF's, including the gluon.
- In practice, all the computations (e.g. the Higgs production) must use a numerical parameterization of the PDF's, and take into account their uncertainties.
- the PDF's are probabilistic, i.e. the value of x is different for each event !!!
- consequence: the 4-mom conservation at parton level is a difficult constraint in the computation !!! (see later)

An artist's view of the pp interaction [from the CERN ATLAS www site]

$$
\begin{aligned}
& {\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\substack{\text { Ruthe } \\
\text { rford }}}=\frac{4 Z^{2} \alpha^{2} E^{\prime 2}}{|q|^{4}} ;} \\
& {\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\text {Mott }}^{*}=\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\substack{\text { Ruthe } \\
\text { rford }}} \times\left(1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right) \xrightarrow{\beta \rightarrow 1}\left[\frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}\right]_{\substack{\text { Ruthe } \\
\text { rford }}} \times \cos ^{2} \frac{\theta}{2} ;} \\
& {\left[\frac{d \sigma}{d \Omega}\right]_{\text {Mott }}=\left[\frac{d \sigma}{d \Omega}\right]_{\text {Mott }}^{*} \times \frac{E^{\prime}}{E} ; \quad\left[\frac{d \sigma}{d \Omega}\right]_{\substack{\text { non- } \\
\text { point. }}}=\left[\frac{d \sigma}{d \Omega}\right]_{\text {Mott }}^{(*)} \times\left|F\left(q^{2}\right)\right|^{2} .} \\
& {\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\substack{\text { point-like } \\
\text { spin } 1 / 2}}=\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\text {Mott }} \times\left(1+2 \tau \tan ^{2} \frac{\theta}{2}\right) ; \quad\left[\tau=\frac{\mathrm{Q}^{2}}{4 \mathrm{M}^{2} \mathrm{c}^{2}}\right] ;} \\
& {\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\substack{\text { Rosen } \\
\text { bluth }}}=\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right]_{\text {Mott }} \times\left(\frac{\mathrm{G}_{\mathrm{E}}^{2}\left(\mathrm{Q}^{2}\right)+\tau \mathrm{G}_{\mathrm{M}}^{2}\left(\mathrm{Q}^{2}\right)}{1+\tau}+2 \tau \mathrm{G}_{\mathrm{M}}^{2}\left(\mathrm{Q}^{2}\right) \tan ^{2} \frac{\theta}{2}\right) ;} \\
& {\left[\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right]_{\text {DIS }}=\frac{4 \alpha^{2} E^{\prime 2}}{Q^{4}} \times\left[W_{2}\left(Q^{2}, v\right) \cos ^{2} \frac{\theta}{2}+2 W_{1}\left(Q^{2}, v\right) \sin ^{2} \frac{\theta}{2}\right] ;} \\
& {\left[\frac{d^{2} \sigma}{d x d y}\right]_{\text {DIS }}=\frac{4 \pi \alpha^{2} s}{Q^{4}} \times\left[x y^{2} F_{1}\left(x, Q^{2}\right)+(1-y) F_{2}\left(x, Q^{2}\right)\right] .}
\end{aligned}
$$

Q^{2} scale

1

References

1. [Povh, $6,7,8]$
2. [BJ, 12]
3. M. N. Rosenbluth, Phys.Rev. 79 (1950) 615.
4. R. Hofstadter, Rev. Mod. Phys. 28 (1956) 214.
5. J.Friedman, H.Kendall, Ann. Rev. Nucl. Sci. 22 (1972) 203.

End of chapter 2

[^0]: - popular understanding: higher $\mathrm{Q}^{2} \rightarrow$ smaller distance \rightarrow
 \rightarrow "better microscope".

