Particle Physics - Chapter 3 Heavy flavors – e⁺e⁻ low energy

Paolo Bagnaia SAPIENZA UNIVERSITÀ DI ROMA

AA 211-22

last mod. 4-Apr-22

3 – Heavy flavors – e⁺e⁻ low energy

- 1. Mandelstam variables
- 2. <u>Collisions e⁺e⁻</u>
- 3. The November Revolution
- 4. Charmonium
- 5. Open charm
- 6. The 3rd family
- 7. The τ lepton
- 8. The b quark
- 9. The t quark
- 10. <u>Summary</u>

much of h.f. studies have been performed in e^+e^- collisions; therefore this chapter contains also a discussion of this subject.

Mandelstam variables^(*)

Mandelstam variables: m_i ≠ 0

General case $ab \rightarrow cd$, masses NOT negligible: [p_i and p_j are 4-mom, $p_ip_j = dot product$] $> s \equiv (p_a + p_b)^2 = (p_c + p_d)^2 = m_a^2 + m_b^2 + 2p_ap_b;$ $> t \equiv (p_a - p_c)^2 = (p_b - p_d)^2 = p_a^2 + m_c^2 - 2p_ap_c;$ $> u \equiv (p_a - p_d)^2 = (p_b - p_c)^2 = p_a^2 + m_d^2 - 2p_ap_d;$ $> s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2 + 2p_a(p_a + p_b - p_c - p_d) = m_a^2 + m_b^2 + m_c^2 + m_d^2 = \sum_i m_i^2.$

In addition, the <u>crossing symmetry</u> correlates the processes which are symmetric wrt time (s-, t-, and u-channels [see box]). If the c.s. is conserved in the interaction, the same amplitude is valid for all the channels, in their appropriate physical domains (an example on next page).

an old approach (1950-80), now almost forgotten, especially important for strong interactions at low energies (see the example $\bar{p}p \rightarrow \bar{n}n$), where the dynamics was not calculable (still is not).

Mandelstam variables: example

Example : $m_a = m_b = m_c = m_d = m$;

• $s = 4E^2 \ge 4m^2$;

- $u = -4p^2 \cos^2(\theta/2);$
- in a xy plane draw an equilateral triangle of height 4m², and label s-tu the three sides and the lines through them (drawn in red);
- remember Viviani's theorem and its extension ("the sum of the signed distances between a point and the lines of a triangle is a constant");
- find the physical regions (i.e. the allowed values of s-t-u) for the given process (i.e. the "s-channel") and for the t and u channels;
- among s-t-u, only two variables are independent → the "space of the parameters" is 2D.

- in a "s-channel" process (e.g. $e^+e^- \rightarrow \mu^+\mu^-$), the |4-momentum $|^2$ of the mediator γ^* is exactly s [i.e. m(γ^*) = \sqrt{s} , $\sqrt{s} > 0$];
- in a "t-channel" process (e.g. $e^+e^+ \rightarrow e^+e^+$), the |4-momentum $|^2$ of the mediator (γ^* also in this case) is t [t < 0 !!!];
- some processes (e.g. $e^+e^- \rightarrow e^+e^-$, called "Bhabha scattering") have more than one Feynman diagrams; some of them are of type s and some others of type t; in such a case we say it is a sum of "s-type diagrams" and "t-type diagrams" + the interference,

... although, *needless to say*, on an event-byevent basis, the observer does **NOT** know whether the event was *s* or *t*. However, it is sufficient for the experimental results of this chapter.

Mandelstam variables: 1/s

in absence of polarization, the cross sections of a process "X" does NOT depend on the azimuth φ :

$$\frac{d\sigma_{x_{X''}}}{d\Omega} = \frac{1}{2\pi} \frac{d\sigma_{x_{X''}}}{d\cos\theta} = \frac{s}{4\pi} \frac{d\sigma_{x_{X''}}}{dt}$$

For m² << s, if 𝓜_{"X"} is the matrix element of the process^(*):

$$\frac{\mathrm{d}\sigma_{\mathbf{w}_{X^{\mathbf{w}}}}}{\mathrm{d}t} = \frac{\left|\mathcal{M}_{\mathbf{w}_{X^{\mathbf{w}}}}\right|^{2}}{16\pi \mathrm{s}^{2}}.$$

5/5

> in lowest order QED, if $m^2 \ll s$:

$$\frac{\mathrm{d}\sigma_{\mathbf{w}_{\mathbf{X}^{\mathbf{w}}}}}{\mathrm{d}\cos\theta} = \frac{\left|\mathcal{M}_{\mathbf{w}_{\mathbf{X}^{\mathbf{w}}}}\right|^{2}}{32\pi\mathrm{s}} = \frac{\alpha^{2}}{\mathrm{s}}f(\cos\theta).$$

- \succ when $\theta \rightarrow$ 0, cos $\theta \rightarrow$ 1 :
 - s-channel : $f(\cos \theta) \rightarrow constant;$
 - t-channel : $f(\cos \theta) \rightarrow \infty$.
- (*) also by dimensional analysis : $[c = \hbar = 1], [\sigma] = [\ell^2]; [t] = [s] = [\ell^{-2}];$ therefore, <u>in absence of any other dimensional scale</u>, σ [and $d\sigma/d\Omega$] = [number] × 1/s.

Collisions e⁺e⁻ : initial state

- At low energy^(*), the main processes happen with annihilation into a virtual γ^* .
- The initial state is :
 - > charge = 0;

> lepton (+ baryon + other additive) number = 0;

- ≻ spin = 1 ("γ*");
- CM kinematics :

≻ e⁺ [E, p, 0, 0];

> e⁻ [E, -p, 0, 0];

> m(γ^*) = \sqrt{s} = 2E [virtual photon, short lived].

^(*) "low energy" ($m_f \ll \sqrt{s} = E_{CM} = 2E = m_{\gamma*} \ll m_z$), where m_f are the masses of all (initial+final) fermions. When $E_{CM} \sim m_z$, a Z^(*) may also be formed; the process $e^+e^- \rightarrow Z$ resonates at $\sqrt{s} = m_z$ and becomes dominant (see Collider Physics, § LEP).

Collisions e⁺e⁻ : QED cross sections

Consider some QED processes in lowest order [$\sqrt{s} \ll m_7$, only γ^* exchange] :

3/12

Collisions e^+e^- : QED $d\sigma/dcos\theta$

Collisions e^+e^- : QED $d\sigma/dcos\theta$

some little gymnastics:

• compute a value, just to understand:

$$s \frac{\sigma(e^+e^- \rightarrow e^+e^-)}{d\cos\theta} \bigg|_{\substack{s=1 \text{GeV}^2\\\cos\theta=-1}} = (\hbar c)^2 2\pi \alpha^2 =$$
$$\approx \frac{0.389 \times 10^3 \times 2 \times 3.14}{137^2} \approx 0.13 \text{ GeV}^2 \mu b.$$

• limits of d\sigma/dcos θ for $\cos\theta \rightarrow 1$ (i.e. $\theta \rightarrow 0$): $e^{\pm}e^{\pm} \rightarrow e^{\pm}e^{\pm}$: $\frac{2\pi\alpha^{2}}{s}\left(\frac{3+1}{\sin^{2}\theta}\right)^{2} = \left(\frac{2\pi\alpha^{2}}{s}\right)\left(\frac{16}{\theta^{4}}\right);$ $e^{\pm}e^{\pm} \rightarrow \gamma\gamma$: $\frac{2\pi\alpha^{2}}{s}\frac{1+1}{\sin^{2}\theta} = \left(\frac{2\pi\alpha^{2}}{s}\right)\left(\frac{2}{\theta^{2}}\right);$ $e^{\pm}e^{-} \rightarrow e^{\pm}e^{-}$: $\frac{\pi\alpha^{2}}{2s}\left(\frac{3+1}{2\sin^{2}(\theta/2)}\right)^{2} = \left(\frac{2\pi\alpha^{2}}{s}\right)\left(\frac{16}{\theta^{4}}\right);$ $e^{\pm}e^{-} \rightarrow \mu^{\pm}\mu^{-}$: $\frac{\pi\alpha^{2}}{2s}(1+1) = \left(\frac{2\pi\alpha^{2}}{s}\right)\left(\frac{1}{2}\right).$

Collisions e^+e^- : $e^+e^- \rightarrow \mu^+\mu^-$, $q\bar{q}$

• kinematics, computed in CM sys, $\sqrt{s} \gg m_e$, m_μ :

e⁺ (E, p, 0, 0); e⁻ (E, -p, 0, 0); μ^+ (E, p cos θ , p sin θ , 0); μ^- (E, -p cos θ , -p sin θ , 0); p \approx E = $\sqrt{s/2}$; $\vec{p}(e^+) \cdot \vec{p}(\mu^+) \approx E^2 \cos \theta \approx s \cos \theta / 4$;

 $p(e^+) p(\mu^+) \approx E^2 (1 - \cos \theta) = s \sin^2 (\theta/2) = -t;$

 the case e⁺e⁻ → qq is similar at parton level; however free (anti-)quarks do NOT exist → quarks hadronize, producing collimated jets of hadrons [+ subtleties due to the fact that hadrons and leptons, unlike quarks, are color singlets with integer charge].

Collisions
$$e^+e^- : \sigma(e^+e^- \rightarrow \mu^+\mu^-, q\bar{q})$$

• $e^+e^- \rightarrow \mu^+\mu^-$
 $\sigma_{\mu\mu} = \int_{-1}^{1} d\cos\theta \left[\frac{d\sigma_{\mu\mu}}{d\cos\theta} \right] = \frac{\pi\alpha^2}{2s} \int_{-1}^{1} d\cos\theta (1 + \cos^2\theta) = \left[1 + \cos^2\theta \right] = \left[1 + \cos^2\theta \right] = \rho_1 \text{ tegendre}(\cos\theta) \text{ [spin 1 } \rightarrow 2 \text{ spin 1/s]}$
• $e^+e^- \rightarrow q\bar{q}$
 $e^+e^- \rightarrow q\bar{q}$
 $\frac{d\sigma_{q\bar{q}}}{d\cos\theta} = \frac{d\sigma_{\mu\mu}}{d\cos\theta} \times c_f e_f^2 = \frac{\pi\alpha^2}{2s} c_f e_f^2 (1 + \cos^2\theta); c_f = \begin{cases} 3 & quarks \\ 1 & leptons \end{cases} \text{ [color]}$
 $\sigma_{q\bar{q}} = \sigma_{\mu\mu}c_f e_f^2 = \frac{4\pi\alpha^2}{3s} c_f e_f^2; e_f^2 (1 + \cos^2\theta); c_f = \begin{cases} 1 & leptons \\ 2/3 & u \in t \\ -1/3 & d s & b \end{cases} \text{ [charge].}$
In the approx $m_e << \sqrt{s}, m_f << \sqrt{s}$ (i.e. light quarks).
If m_f NOT negligible, use the complete formula [see next slide].

Previous formulæ NOT correct if m_f NOT negligible, e.g. near the threshold for the production of heavy quarks/leptons, $\sqrt{s} \approx 2m_f$.

 \rightarrow list (no proof) the formulæ for $e^+e^- \rightarrow f\overline{f}$

 $(2m_e \ll \sqrt{s} \approx 2m_f)$:

•
$$\beta_{f} = \sqrt{1 - \frac{4m_{f}^{2}}{s}}$$
 (see blue curve);
• $\frac{d\sigma_{f\bar{f}}}{d\cos\theta} = \frac{\pi\alpha^{2}c_{f}e_{f}^{2}}{2s}\beta_{f}\left[\left(1 + \cos^{2}\theta\right) + \left(1 - \beta_{f}^{2}\right)\sin^{2}\theta\right];$
• $\sigma_{f\bar{f}} = \left[\frac{4\pi\alpha^{2}}{3s}\right]\beta_{f}\frac{3 - \beta_{f}^{2}}{2} = \left[\sigma_{0}\right]\beta_{f}\frac{3 - \beta_{f}^{2}}{2}$ (see red curve).

Clearly:

•
$$\sqrt{s} < 2m_f \rightarrow no f production;$$

•
$$\sqrt{s} \gg 2m_f \rightarrow 2m_f / \sqrt{s} \rightarrow 0$$
, $\beta_f \rightarrow 1$, $\sigma_{f\bar{f}} \rightarrow \sigma_0$.

Collisions e^+e^- : $\sigma_{large\sqrt{s}}(e^+e^- \rightarrow \mu^+\mu^-, q\bar{q})$

9/12

Collisions e^+e^- : R = $\sigma(q\bar{q})/\sigma(\mu^+\mu^-)$

define the quantity, both simple conceptually and easy to measure:

$$R = \frac{\sigma(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 3\sum_{quarks} e_i^2 = R(\sqrt{s});$$

- sum over all the quarks, produced at energy \sqrt{s} (i.e. $2m_q < \sqrt{s}$) :
- > 0 < $\sqrt{s} < 2 m_c$: $R = R_{uds}$ = 3 × [$(2/_3)^2 + (-1/_3)^2 + (-1/_3)^2$] = 2; > 2 m_c < \sqrt{s} < 2 m_b : $R = R_{udsc} = R_{uds} + 3 \times (^2/_3)^2 = 3 + \frac{1}{3};$ > 2 $m_b < \sqrt{s} < 2 m_t$: $R = R_{udscb} = R_{udsc} + 3 \times (-1/3)^2 = 3 + 2/3;$ > 2 $m_t < \sqrt{s} < \infty$: $R = R_{udscbt} = R_{udscb} + 3 \times (2/3)^2 = 5;$
- but reality is more complicated :
 - > the step at $\sqrt{s} = 2m_q$ is rounded [see before]; > qq̄ resonances are formed at $\sqrt{s} \approx 2m_a$; their decay modes affects the measurement of R;
 - > at $\sqrt{s} \approx m_7$ [and $\sqrt{s} \approx 2m_w$] the weak interactions change completely the scenario \rightarrow for $\sqrt{s} \ge 50$ GeV, R has a different explanation [*e.g. LEP*];
 - > also notice that $m_z < 2m_t$; therefore the "t step" happens at higher \sqrt{s} than the Z resonance.

en passant, a powerful test of the existence of the color

quantum number

Collisions e^+e^- : R vs \sqrt{s} (small \sqrt{s})

Plot R vs \sqrt{s} (=2E):

10/12

- resonances uū, dd, ss at 1-2 GeV (only those with J^P=1⁻) (→"vector dominance");
- step at $2m_c (J/\psi)$;
- step at 2m_b (Υ);
- slow increase at √s > 50 GeV
 (Z, next slide);
- [lot of effort required, as demonstrated by the number of detectors and accelerators];
- strong evidence for the color (factor 3 necessary).

plots from

[PDG, 588]

Collisions e^+e^- : R vs \sqrt{s} (large \sqrt{s})

 The full range 200 MeV < √s < 200 GeV (3 orders of magnitude !!!). • For $\sqrt{s} > 50$ GeV new phenomenon: electroweak interactions and the Z pole.

Collisions e^+e^- : $e^+e^- \rightarrow e^+e^-$

The case $e^+e^- \rightarrow e^+e^-$ (<u>Bhabha scattering</u>) is different, as seen before:

- two Feynman diagrams with a spin-1 boson exchange (γ^* [+ Z at higher energy]) :
 - s-channel, similar to μ⁺μ⁻;
 - t-channel, like e⁺e⁺;
 - interference between the two diagrams [four at higher energies];
- the angular distribution (see before) reflects these differences;
- [*il va sans dire que*] on an event-by-event basis it is NOT possible to determine whether an event belongs to s- or t-channel; however, different regions of the final state parameter space are actually dominated by s- or tchannel [therefore physicists speak of "schannel" physics (e.g. the <u>formation</u> of resonances) or t-channel physics (e.g. Bhabha at small θ)].

The November Revolution

- The <u>u,d,s quarks</u> have not been predicted; in fact the mesons and baryons have been discovered, and later interpreted in terms of their quark content [§ 1];
- Some theoreticians had predicted another quark, based on (no $K^0 \rightarrow \mu^+\mu^-$), but people did not believe it.
- In November 1974, the groups of Burton Richter (SLAC) and Samuel Ting (Brookhaven) discovered simultaneously a <u>new state</u> with a mass of ≈ 3.1 GeV and a <u>tiny width</u>, much smaller than their respective mass resolution.
- Ting & coll. had the name "J", while Richter & coll. called it " ψ ". Today's name is "J/ ψ ".
- We split the discussion : start with the hadronic experiment.

the two experiments are quite different: we will review first the "J" and then the " ψ ".

• The width was measured, after some time, to be 0.087 MeV, a surprisingly <u>small value</u> for a resonance of 3 GeV mass.

The November Revolution : J

- The group of Ting at the AGS proton accelerator measured the inclusive production of e⁺e⁻ pairs in interactions of 30 GeV protons on a plate of beryllium :
 - $p Be \rightarrow e^+ e^- X.$

- The experiment was searching mass resonances with J^P = 1⁻ (= γ), decaying into (e⁺e⁻) pairs with the "Drell-Yan" process [see later].
- The key feature of the experiment was the very good resolution in m(e⁺e⁻): Δ m(e⁺e⁻) \approx 10 MeV.
- This resolution allowed for a much higher sensitivity wrt other previous exp.'s (e.g. Lederman's), which studied $\mu^+\mu^-$ pairs in the same range. Lederman had a "shoulder" in $d\sigma/dm(\mu^+\mu^-)$, but no conclusive evidence [*next slide*].

- Ting called the new particle "J", because of the e.m. current.
 - Measured quantum numbers of the J:
 - mass ~<u>3.1 GeV;</u>
 - width < 5 MeV (see fig., it is $\sigma_{meas.}$, not Γ_{BW});
 - charge = 0;
 - J^P = 1⁻;
 - no meas. of isospin, Γ , other decay modes ...

^{3/8} The November Revolution : the J experiment

- The Ting experiment used a two arm magnetic spectrometer, to measure separately the electron and the positron.
- Leptonic events are rare → very intense beams (2×10¹² ppp ^(*)) → high rejection power (~10⁸) to discard hadrons, that can fake <u>e⁺e⁻</u> or <u>μ⁺μ⁻</u>.
- Advantage in the <u>µ⁺µ⁻ case</u>: µ penetration
 → select leptons from hadrons with a
 thick absorber in a large solid angle →
 larger acceptance, higher counting rate.
- Disadvantage : thick absorber → multiple scattering → worst mass resolution.

^(*) "ppp" : "particles (or protons) per pulse", i.e. once per accelerator cycle every few seconds; it is the typical figure of merit of a beam from an accelerator.

- Benefit in the <u>e⁺e⁻ case</u>: electron identification with Čerenkov counter(s) + calorimeters → simpler setup.
- Disadvantage : small instrumented solid angle → smaller yield.

The November Revolution : the J exp.

"p, θ independent concept" \rightarrow vary $|\vec{B}|$

$$p^{+} = [E^{+}, p^{+}\cos(\theta/2), p^{+}\sin(\theta/2), 0] = \\ \approx [E^{+}, E^{+}\cos(\theta/2), E^{+}\sin(\theta/2), 0] \\ p^{-} \approx [E^{-}, E^{-}\cos(\theta/2), -E^{-}\sin(\theta/2), 0]; \\ \boxed{m_{+-}^{2}} = (p^{+} + p^{-})^{2} = [m_{+}^{2} + [m_{+}^{2} + 2p^{+} \cdot p^{-}] = \\ \approx 2E^{+}E^{-}[1 - \cos^{2}(\theta/2) + \sin^{2}(\theta/2)] = \\ \boxed{= 4E^{+}E^{-}\sin^{2}(\theta/2)}.$$

The November Revolution : $\Delta m_{c\bar{c}}$

Problem (see previous slides)

Three similar exp. distributions:

$d\sigma$ (hadron Nucleus $\rightarrow \ell^+ \ell^- X$) / $dm_{\ell\ell}$.

Similar dynamics:

5/8

- continuum, exponentially falling [yes, even in Ting's plot];
- resonance(s) on top [look Michelini's].

Differences:

- m_{ee} resolution [*!!! why ?*];
- horizontal scale (i.e. mass interval);
- vertical scale (i.e. resonance size)
 Please comment on:
- effect of these differences on ratio resonance/continuum (→ discovery ?);
- "quality" of the experiments.

The November Revolution : Mark I

[back to 1974 : they did not know]

6/8

- Mark I at the e⁺e⁻ collider SPEAR was studying collisions at $\sqrt{s} = 2.5 \div 7.5$ GeV.
- The detector was made by a series of concentrical layers ("onion shaped").
- Starting from the beam pipe :
 - > magnetostrictive spark chambers
 (tracking),
 - > time-of-flight counters (particles' speed + trigger),
 - ➢ coil (solenoidal magnetic field, 4.6 kG),
 - > electromagnetic calorimeter (energy and identification of γ 's and e^{\pm} 's),
 - > proportional chambers interlayered with iron plates (identification of μ^{\pm} 's).

 [Notice the strong similarity among all the Collider detectors : CMS – 40 years later – has the same "onion" structure, with a scale factor > 10, i.e. a volume ~1000 times larger. However, ATLAS is different].

The November Revolution : Mark I at SLAC

The November Revolution : ψ

- In 1974, up to the highest available energies, R = $\sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-) \approx 2.$
- Measurements at the Cambridge Electron Accelerator (CEA, Harvard) in the region of energies of SPEAR had found R \cong 6 (a mixture of continuum and resonances). Also ADONE at LNF, which could reach an energy just sufficient, was not pushed to its max energy [At the time the large amount of information carried by R was not completely clear].
- At the novel Collider SPEAR, the scanning in energy was performed in steps of 200 MeV.
- The measured cross-section appeared to be a constant, NOT with expected trend \propto 1/s.
- When a drastic reduction in the step $(200 \rightarrow 2.5 \text{ MeV})$ increased the "resolving power", a resonance appeared, with width compatible with the beam dispersion (even compatible with a δ -Dirac).
- The particle was called " ψ " (see fig. on page 2).

Charmonium: J/ψ properties

- After some discussion, the correct interpretation emerged :
 - the resonance, now called J/ψ, is a bound state of a new quark, called <u>charm</u> (c), and its antiquark;
 - the c had been proposed in 1970 to exclude FCNC [GIM mechanism, § 4];
 - > the J/ ψ has J^P = 1⁻ [*next slide*];
 - the name "charmonium" is an analogy with positronium ("onium" : bound state particle-antiparticle);
- The cross-section (Breit-Wigner) for the formation of a state (J_R = 1) from e⁺e⁻ (S_a = S_b = ½), followed by a decay into a final state, shows that [see § intro.]:

$$\sigma(ab \to J/\psi \to f\overline{f}, \sqrt{s}) =$$

$$=\frac{16\pi}{s}\frac{(2J_{R}+1)}{(2S_{a}+1)(2S_{b}+1)}\left[\frac{\Gamma_{ab}}{\Gamma_{R}}\right]\left[\frac{\Gamma_{f\bar{f}}}{\Gamma_{R}}\right]\left[\frac{\Gamma_{R}^{2}/4}{(\sqrt{s}-M_{R})^{2}+\Gamma_{R}^{2}/4}\right]$$

$$\sigma(e^{+}e^{-} \rightarrow J/\psi \rightarrow f\overline{f}, \sqrt{s}) = \\ = \frac{12\pi}{s} \left[\frac{\Gamma_{e}}{\Gamma_{tot}} \right] \left[\frac{\Gamma_{f}}{\Gamma_{tot}} \right] \frac{\Gamma_{tot}^{2}/4}{\left(m_{J/\psi} - \sqrt{s}\right)^{2} + \Gamma_{tot}^{2}/4};$$

• $\Gamma_f = \text{ width for the } \left(J/\psi \leftrightarrow f\overline{f}\right) \text{ coupling;}$

•
$$\Gamma_{tot} = \Gamma_{e} + \Gamma_{\mu} + \Gamma_{had} =$$
full width of J/ ψ ;

- $\Gamma_{f}/\Gamma_{tot} = BR(J/\psi \rightarrow f\overline{f})$ [very useful].
- After 1974, many exclusive decays have been precisely measured, all confirming the above picture; the last PDG has 227 decay modes; the present most precise value of the mass and width is m(J/ψ) = 3097 MeV, Γ_{tot}(J/ψ) = 93 keV.

$$\begin{array}{c} e^+ & & \\ & \gamma^* & & \\ & c \\ & e^- \end{array} \right\} J/\psi$$

Charmonium : J/ψ quantum numbers

At SPEAR they were able to measure many of the J/ ψ quantum numbers :

2/7

- the resonance is asymmetric (the right shoulder is higher); therefore there is interference between J/ ψ formation and the usual γ^* exchange in the s-channel; therefore the J/ ψ and the γ have the same J^P = 1⁻;
- from the cross section, by measuring σ_{had} , σ_{μ} and σ_{e} , they have 3 equations + a constraint (see the box, three $\sigma_{f} + \Gamma_{tot}$) for the 4 unknowns (three $\Gamma_{f} + \Gamma_{tot}$); therefore they measured everything, obtaining a Γ_{tot} very small (~90 keV, a puzzling results, see next slides);
- the equality of the BR $(J/\psi \rightarrow \rho^0 \pi^0)$ and $(\rightarrow \rho^{\pm} \pi^{\mp})$ implies isospin I = 0;
- the J/ ψ decays into an odd (3, 5) number

of π , not in an even (2, 4) number; this fact has two important consequences :

> the G-parity is conserved in the decay (so the J/ψ decays via strong inter.).
 > G-parity = -1 [also (−1)^{I+ℓ+s} = −1].

$$\sigma(e^{+}e^{-} \rightarrow J/\psi \rightarrow f\overline{f}) =$$

$$= \frac{3\pi}{s} \frac{\Gamma_{e}\Gamma_{f}}{(m_{q\overline{q}} - \sqrt{s})^{2} + \Gamma_{tot}^{2}/4}$$

$$= \sigma_{f}(\Gamma_{e}, \Gamma_{f}, \Gamma_{tot}, \sqrt{s});$$
measure $\sigma_{had}, \sigma_{\mu\mu}, \sigma_{ee};$
put $\Gamma_{tot} = \Gamma_{e} + \Gamma_{\mu} + \Gamma_{had}.$

4 equations (f = had, μ , e + Γ_{tot}), 4 unknowns; NO direct measurement of "width" required, but assume that ALL decays detected (e.g. no v)

Charmonium : the GIM mechanism

- The weak neutral current processes between quarks of different flavor (FCNC, "<u>F</u>lavor <u>C</u>hanging <u>N</u>eutral <u>C</u>urrent") are strongly suppressed [e.g. $\Gamma(K^0_L \rightarrow \mu^+\mu^-)$ $<< \Gamma(K^{\pm} \rightarrow \mu^{\pm}\nu)$].
- This fact was explained in 1970 by S. Glashow, J. Iliopoulos and L. Maiani by introducing the <u>charm quark</u> (*Phys. Rev. D2, 1285*);
- they predicted:

3/7

- > a fourth quark (c), identical to the u quark (but m_c >> m_u), carrying a new quantum number C, "charm";
- > as for the strangeness, C is conserved in strong and electromagnetic interactions and violated in weak interactions;
- ➤ the lightest charmed mesons are cq̄ or c̄q pairs (q = uds), and have a mass of 1500 - 2000 MeV and J^P = 0⁻;

- > these mesons decay weakly; because of their larger mass, their lifetimes are O(ps), an order of magnitude shorter than those of the K mesons;
- > the positive meson with open charm (cd, now called D⁺) decays preferably in final states with negative strangeness (c → sff, Δ S = Δ C).

[see § 4 for more details]

Charmonium : QCD decay

Q \overline{Q} states $^{(*)}$ [e.g. ϕ (ss), J/ ψ (cc), Υ (bb)] :

- <u>decay preferentially</u> 1 $[(Q\overline{Q}) \rightarrow (Q\overline{q}) (\overline{Q}q)],$ e.g. $\phi \rightarrow \overline{K}K$, i.e. $[(s\overline{s}) \rightarrow (d\overline{s}) (d\overline{s})];$
- $J/\psi \rightarrow D^+D^-$ (or $D^0\overline{D}^0$) [($c\bar{c}$) \rightarrow ($d\bar{c}$) ($d\bar{c}$) or ($\bar{u}c$) ($u\bar{c}$)] <u>forbidden</u> ($m_{J/\psi} < 2m_D$);
- then $c\bar{c}$ annihilate into gluons (J/ $\psi \rightarrow \pi$'s **2**):
 - I gluon forbidden by color;
 - > 2 gluons forbidden by C-parity [$C_{2g} = +1$; $C_{J/\psi} = C_{\gamma} = -1$];
 - > 3 gluons allowed :

4/7

$$\Gamma(Q\overline{Q} \rightarrow 3g \rightarrow \pi's) = \frac{160(\pi^2 - 9)}{81m_{0\overline{0}}^2} \alpha_s^3 |\psi(0)|^2;$$

• The value α_s^3 (and its "running" [§ 6]) produces a smaller width for larger masses :

> $\alpha_s^3(m_{\phi}^2) \approx 0.5^3 = .125;$ > $\alpha_s^3(m_{J/\psi}^2) \approx 0.3^3 = .027;$ > $\alpha_s^3(m_{\Upsilon}^2) \approx 0.2^3 = .008.$

(*) in these slides: q = u/d, Q = s/c''.

Charmonium : the Zweig rule (OZI)

The "Zweig rule" was set out empirically in a qualitative way before the advent of QCD :

- compare $(\phi \rightarrow 3\pi) \leftrightarrow (\phi \rightarrow KK) \leftrightarrow (\omega \rightarrow 3\pi);$
- in the decay of a bound state of heavy quarks Q, the final states without Q's ("decays with disconnected diagrams" (2) have suppressed amplitude wrt "connected decays" (1);
- if only the decays 2 are kinematically allowed (ex. J/ ψ or Υ), the total width is small and the bound state is "narrow";

1963-1966 : Susumu Okubo (大久保 進 *Ōkubo Susumu*), George Zweig, Jugoro lizuka (飯塚)

6/7

Charmonium: ψ

- After the discovery of the J/ ψ , at SPEAR they performed a systematic energy scanning with a very small step. After ten more days a second narrow resonance was found, called ψ ', with the same quantum numbers of the J/ ψ .
- The analysis shows that the J/ ψ was the 1S state of $c\bar{c}$, while the ψ' is the 2S.
- Both particles have J^P = 1⁻, I=0.
- The next page gives a scheme of the cc̄ levels.
- They offer a reasonable agreement with the solution of the Schrödinger equation of a hypothetical QCD potential [see § Standard Model]

$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr = -\frac{A}{r} + Br$$

• Notice that this approximation should become more realistic for heavier quarks, when the non-relativistic limit gets better.

Charmonium : cc̄ levels

Open charm : discovery

- If the J/ ψ is a bound cc̄ state, then mesons cq̄ and c̄q must exist, with a mass $\approx m_{J/\psi}/2 + 100\div 200 \text{ MeV} [3690/2 < m_D < 3770/2 \text{ MeV}].$
- In 1976, the Mark I detector started the search for charmed pseudoscalar mesons (D⁰ D⁰), the companions of π's and K's.
- They looked at $\sqrt{s} = 4.02$ GeV in the channels $e^+e^- \rightarrow D^0 \overline{D}^0 X^0; \rightarrow D^+ D^- X^0.$
- According to theory, D-mesons lifetimes are small, with a decay vertex not resolved (<u>with</u> <u>1976 detectors</u>) wrt the e⁺e⁻ one.
- Therefore the strategy of selection was the presence of "narrow peaks" in the combined mass of the decay products.
- A first bump at 1865 MeV with a width compatible with the experimental resolution was observed in the combined mass ($K^{\pm}\pi^{\mp}$), corresponding to the D⁰ and \overline{D}^{0} decay.

Open charm: "C-allowed, suppressed"

- Also the mass (K[∓]π[±]π[±]) had a bump at 1875 MeV, corresponding to the D⁺ and D⁻ decays.
- Moreover, in perfect agreement with the GIM predictions, no bump was found in (K[±]π⁺π⁻), which is forbidden ("Cabibbo doubly suppressed", in this language).
- i.e. mainly $D^+ \rightarrow K^- \pi^+ \pi^+$, $D^- \rightarrow K^+ \pi^- \pi^-$ (!!!).

the so-called " $\Delta S = \Delta C$ " rule : $c \rightarrow \overline{K} : (C : +1 \rightarrow 0) \leftrightarrow (S : 0 \rightarrow -1)$ $\overline{c} \rightarrow K : (C : -1 \rightarrow 0) \leftrightarrow (S : 0 \rightarrow +1)$

Open charm: meson multiplets

The 3rd family

- "who ordered that ?" [*I.I.Rabi about the* μ];
- in modern terms : "why consecutive families of quarks/leptons, differing only in mass ? why/how they mix ?" [see § 4-5]
- as of today, nobody knows : the number of families and the mixing matrix are <u>free</u> <u>parameters of the SM</u> [maybe one day some theory bSM will constrain it];
- "non-QCD" constraints in the SM:
 - > <u>families must be complete</u> : the existence of a single member (e.g. the v or the ℓ^-) implies the existence of all the others, to avoid <u>anomalies</u> (Adler-Bell-Jackiw); it requires $\Sigma_i e_i = 0$, where the sum runs on all members i and colors c of the family F [see box];
 - the Z full width Γ^Z_{tot} constrains the <u>number of "light v's"</u> [Coll. Phys. § LEP];

in the SM, (at least) three families are necessary to generate a natural mechanism of <u>CP violation</u> in the quark decays [see § K⁰];

in the SM, n_F is free, but n_c must be 3.

$$\begin{cases} \begin{pmatrix} e^{-} \\ v_{e} \end{pmatrix} \begin{pmatrix} \mu^{-} \\ v_{\mu} \end{pmatrix} \begin{pmatrix} \tau^{-} \\ v_{\tau} \end{pmatrix} e_{i} = -1, c = 1 \\ e_{i} = 0, c = 1 \\ \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} e_{i} = 2/3, c = 3 \\ e_{i} = -1/3, c = 3 \end{cases}$$

 $\sum_{F} \left(\sum_{i} e_{i} \right) = n_{F} \times \left\{ \begin{array}{c} \left(-1\right) + \left(0\right) + \\ + 3_{c} \times \left[\left(\frac{2}{3}\right) + \left(\frac{-1}{3}\right) \right] \right\} = 0 \\ \end{array} \right\}$

The τ lepton : discovery

The analysis of Mark I data produced another beautiful discovery : the τ lepton (M. Perl won the 1995 Nobel Prize):

1/2

 the selection followed a method well known, pioneered at LNF-Frascati : the "unbalanced pairs e[±]µ[∓]":

- events from this process are extremely clean and free from background [see fig.];
- the e⁺e⁻ / $\mu^+\mu^-$ <u>unbalanced pairs</u>, which have to be present in the correct number

$$N_{unb}(e^+e^-) = N_{unb}(\mu^+\mu^-) =$$

$$= N(e^{+}\mu^{-}) = N(e^{-}\mu^{+}),$$

are only used to cross-check the sample.

In principle the τ lepton has very little to do with the c quark. However collider, detector, energy, selection and analysis are closely linked. Therefore, in experimental reviews, the τ lepton is usually treated together with the charm quark.

The τ lepton : identification

Simple method: the yield of $e^{\pm}\mu^{\mp}$ pairs vs \sqrt{s} : it immediately points to the threshold $\sqrt{s} = 2m_{\tau}$.

- therefore : $m_{\tau} \approx 1780$ MeV. [best present value 1776.8 MeV]
- why is the τ^{\pm} a lepton ?

- > at the time, the evidence came from the lack of any other plausible explanation;
- today, the evidence is solid :
 - the Z and W decays into (e μ τ) with the same BR and angular distribution;
 - the τ lifetime and decays have been measured and found in agreement with predictions ...
- the discovery of the τ started the hunt for the particles of the new (3rd) family, still unknown:
 - > the v_{τ} (possibly mixed with the others);
 - ≻ the pair of quarks q_{up} q_{down}, similar to ud (now called top and bottom).

 $e^+e^- \rightarrow \tau^+\tau^ \rightarrow \mu^{-} \overline{\nu}_{\mu} \nu_{\tau}$

The b quark : discovery

- The down quark of the 3rd family was called b (= beauty, <u>bottom</u>).
- In 1977 Leon Lederman and collaborators built at Fermilab a spectrometer with two arms, designed to study μ⁺μ⁻ pairs produced by interactions of 400 GeV protons on a copper (or platinum) target.
- The reaction under study was again the Drell-Yan process. As already pointed out, this type of events is rare, therefore requiring intense beams (in this case 10¹¹ ppp) and high rejection power against charged hadrons.

Leon Lederman

The b quark : $d\sigma/dm$

- The usual price of the absorber technique is a loss of resolution in the muon momenta, which was $\Delta m_{\mu\mu} / m_{\mu\mu} \approx 2\%$.
- The figures show the distribution of $m_{\mu\mu}$. Between 9 and 10 GeV : there is a clearly visible excess.
- When the $\mu\mu$ continuum is subtracted, the excess appears as the superimposition of three separate states.
- The states, called Υ(1S), Υ(2S), Υ(3S) are bound states bb.

The b quark : open b

- Precision measurement, carried out at DESY and Cornell with e⁺e⁻ Colliders, soon confirmed the results. After two years, also "open beauty", i.e. bound states bq, was identified and called B^{0,±}.
- The figure in the next page shows an updated compilation of the bb states.
- Bottomonium (beauty in not used anymore, don't know why) is a very interesting system. Recently, a lot of

studies (BaBar, Belle) have been performed on the \mathbb{CP} violation in the B⁰ \overline{B}^{0} system (similar to the K⁰'s, but different from the charms) [see § K⁰].

 Leon Lederman together with Mel Schwartz and Jack Steinberger got the 1988 Nobel Prize, NOT for his bb discovery, but for his neutrino studies (the "two neutrino experiment" in 1962).

The b quark : bottomonia

The t quark : search

- The top quark was directly searched in hadron (SppS, Fermilab) and lepton (Tristan, LEP) colliders, but was NOT found until 1990's;
- at the time the mass limit was $m_t \ge 90$ GeV;
- at $m_t \approx m_w \pm m_b$ ($\approx 80 \text{ GeV}$), the search changes: the "golden discovery channel" moves from $(W^+ \rightarrow t\bar{b} \rightarrow W^{+*}b\bar{b})$ to $(t \rightarrow W^+b)$ [fig. 1];
- m_t was first <u>computed</u> from the radiative corrections for m_w and m_z [Coll.Phys. § LEP];
- the LEP data, together with all other e.w. measurements, allowed for a prediction of m_t
 ≈ 175 GeV [fig. 2];
- in the 1990's the search was finally concluded at the Tevatron, by the CDF and D0 experiments.
- At present, we measure $m_t = 173 \pm 0.4$ GeV.

The t quark : production

- in a hadronic collider [*see Coll.Phys.*], the top is produced in pairs, via hadronic interactions;
- in pp and pp the PDF of initial state partons are different (valence / sea): the qq channel decreases from 90% (pp at Tevatron, Vs=1.8 TeV) to 5% (pp at LHC, Vs=14 TeV) [qualitatively understandable];
- in the same range, the total cross section increases from 5 to 600 pb [also quite understandable].

The t quark : decay

- the top quark decays weakly in a (real) W and a "down-type" quark (q=d/s/b), with a coupling \propto V_{tq} [CKM, see § 5];
- therefore the most common decay is $t \rightarrow bW^+$ ($t \rightarrow \overline{b}W^-$);
- since $\Gamma \approx G_F m_t^3 / (8\pi \sqrt{2}) \sim 2 \text{ GeV}, \tau_t \sim 4 \times 10^{-25} \text{ s} [2 m^{3''}?];$
- therefore the top decays <u>before</u> any hadronic process (hadronization, toponium formation) may happen;
- in turn the W decays "democratically" [see Coll.Phys.] into all the (ℓv) (qq̄) pairs (hadrons × 3 because of color);
- in summary, the decays for (tt \rightarrow W⁺ W⁻X) are :
 - \blacktriangleright both W's into e/μ : the golden channel, but rare;
 - > only one W into e/μ : more common, less easy;
 - both W's into quarks (i.e. jets) : most common, difficult;
 - > (one or more) τ^{\pm} in the final state : v's \rightarrow almost impossible with present technology.

The t quark : discovery (1992-4)

main tools for tt events at Tevatron (1992-4) :

- multibody final states;
- lepton id (e^{\pm} , μ^{\pm});
- secondary b vertices;
- mass fits.

The t quark : results (1992-4)

- in may 1994, with 20 pb⁻¹ of data, the CDF collaboration was able to claim the top "evidence" (3σ) and, one year after, its "discovery" (5σ);
- [for the latest results on top, see Coll.Phys. § LHC].

Summary

	_	
6 -2	_	11
	_	ш
		ш
		19
		24

Finally, a simple table with all the quarks and their quantum numbers [antiquarks have same I and opposite \mathcal{B} , Q, I₃, S, C, B,

	d	u	S	С	b	t
B: baryon number	1⁄3	1⁄3	1⁄3	1⁄3	1⁄3	1⁄3
Q : electric charge	-1⁄3	+2⁄3	-1⁄3	+2⁄3	-1/3	+2⁄3
l : Isospin	1⁄2	1⁄2	0	0	0	0
I ₃ : Isospin 3-component	-1/2	+1⁄2	0	0	0	0
S : strangeness	0	0	-1	0	0	0
C : charm	0	0	0	+1	0	0
B : bottomness	0	0	0	0	-1	0
T : topness	0	0	0	0	0	+1

conventional rules:
in Gell-Mann–Nishijima all +ve;
I₃ –ve for d / +ve for u;
S/B –ve for s/b;
C/T +ve for c/t;
(if different rule, please stay consistent).

Gell-Mann – Nishijima (revised) formula : $Q = I_3 + \frac{1}{2} (B + S + C + B + T)$.

Is this the REAL end of the story, i.e. no other quark exists ?

- the SM does not answer: discoveries or mass limits are left to the experiments;
- LEP measurement of n_v [see];
- present mass limits [mainly LHC];
- a bSM theory could predict the number
 - of families (or any other constraint).

References

- **1**. [BJ, 10];
- 2. [Bettini, 4];
- 3. [YN1 14], [YN2 11.9]
- 4. the process $e^+e^- \rightarrow f\bar{f}$: [MQR 14];
- 5. the CKM mixing and the GIM mechanism : [§ 4] and refs. therein;
- 6. the LEP fit to $m_t : [\S 6];$
- 7. Tevatron results : Ann. Rev. Nucl. Part. Sci. 2013. 63:467–502 [notice that the LEP fit to m_t is NOT mentioned].

Giuseppe Arcimboldo - Rudolf II as Vertumnus ~1590-1 - Skokloster Castle, Sweden

SAPIENZA Università di Roma

End of chapter 3

Paolo Bagnaia - PP - 03