Particle Physics - Chapter 5 K^{0} mesons - CKM matrix

Paolo Bagnaia
SAPIENZA
AA 21-22

5 - K^{0} mesons - CKM matrix

1. Introduction

2. K^{0} processes
3. The K^{0} and $\overline{\mathrm{K}}^{0}$ decays
4. K^{0} decays in $\mathbb{C P}$ eigenstates
5. K^{0} oscillations
6. K^{0} regeneration

7. $\mathbb{C P}$ violation
8. Direct/indirect $\mathbb{C P}$ violation
9. CKM matrix
10. Unitarity triangle
11. V Oscillations
12. $\mathbb{C P T}$ theorem
this section logically belongs to another chapter: It is here because of the similarity between \vee and K^{0} oscillations.

- The neutral mesons K^{0} and $\overline{\mathrm{K}}^{0}$ are special quark systems, in which unusual and surprising phenomena are generated.
- The mathematical interpretation of these phenomena is based almost exclusively on the application of the fundamental principles of q.m., in particular the principle of quantum superposition.
- The experimental observation of the effects of oscillation and regeneration is a further elegant confirmation of the validity of these principles.
- The successes of the experimental physics of the '50s and '60s have been based both on the confirmation of accurate theoretical predictions (like oscillations) and to new and unexpected phenomena (like $\underline{\mathbb{C P}}$ violation).
- They have been possible thanks to new techniques (e.g. regeneration), and to new experimental methods (e.g. the new accelerators, bubble / spark chambers) and by data analysis via computer.
- The study of these particles is possible only by analyzing the symmetry of Nature; ${ }^{0}$ physics emerges from the analysis of CPT symmetries, strangeness and isospin.
- In successive years, the K^{0} meson system has been replicated by the B^{0} mesons, with further fundamental studies.
- The interpretation in the SM of the flavor and $\mathbb{C P}$ violations requires the weak interactions theory and the CKM matrix.
- ... but we hope that experiments show also physics bSM !!!
- Quarks and antiquarks of the u and d type can form two different neutral mesons : (uū) (da), or linear combinations like π^{0} or η [see §quark model].
- The same mechanism holds when heavier families, like (cs) (tb), are considered. Each heavy flavor has a quantum number which identifies it and its $\overline{\mathrm{q}}$.
- These states make sense in a quantum basis of distinct conserved flavors, as in strong interactions.
- In different quantum bases (e.g. the one where $\mathbb{C P}$ is conserved, but not \mathbb{C} and \mathbb{P} separately), different states appear, which are linear superposition of the above.
- These states may offer a more natural description of the phenomena.

	K^{0}	$\overline{\mathbf{K}}^{0}$	D^{0}	$\overline{\mathrm{D}}^{0}$	$\mathrm{B}_{\mathrm{d}}^{0}$	$\bar{B}_{\text {d }}{ }^{\text {d }}$	$\mathrm{B}_{\mathrm{s}}^{0}$	\bar{B}_{s}^{0}
q $\bar{\square}$	dş	sd	cū	uc̄	db	bd	sб	bs
S	+1	-1	0	0	0	0	-1	+1
C	0	0	+1	-1	0	0	0	0
B	0	0	0	0	+1	-1	+1	-1
quantum numbers of $q \bar{q}$ neutral mesons.								

Warning: K^{0} and K^{+}are in the same doublet and contain $\overline{\mathrm{s}}$; $\mathrm{B}^{0} / \mathrm{B}^{+}$contain $\overline{\mathrm{B}}$, while D^{0} and D^{+}contain c (not $\overline{\mathrm{c}}$).

Question (easy):

- why states like tū, tc̄, ..., are not listed ? (see §3)
- The K^{0}-mesons are produced by strong interactions with a fixed strangeness S :

$$
\left|K^{0}\right\rangle=|d \bar{s}\rangle, S=+1 ;\left|\bar{K}^{0}\right\rangle=|s d\rangle, S=-1 ;
$$

- simple kinematics [next slide] shows that a pure sample of $\mathrm{K}^{01} \mathrm{~s}$ can be produced;
- e.g. $\left(\pi^{-} p \rightarrow \Lambda K^{0}\right)$ with a threshold energy:

$$
\mathrm{E}_{\pi^{-}}^{\min }=\frac{\left(\mathrm{m}_{\Lambda}+\mathrm{m}_{\mathrm{K}}\right)^{2}-\left(\mathrm{m}_{\pi}^{2}+\mathrm{m}_{\mathrm{N}}^{2}\right)}{2 \mathrm{~m}_{\mathrm{N}}}=0.91 \mathrm{GeV},
$$

to be compared with ($\pi^{-} \mathrm{p} \rightarrow \mathrm{K}^{0} \overline{\mathrm{~K}}^{0} \mathrm{n}$):

$$
\mathrm{E}_{\pi^{-}}^{\min }=\frac{\left(2 \mathrm{~m}_{\mathrm{K}}+\mathrm{m}_{\mathrm{N}}\right)^{2}-\left(\mathrm{m}_{\pi}^{2}+\mathrm{m}_{\mathrm{N}}^{2}\right)}{2 \mathrm{~m}_{\mathrm{N}}}=1.50 \mathrm{GeV},
$$

- Since $\mathrm{K}^{0} / \bar{K}^{0}$ cannot be produced by a lower energy π^{0}, with $0.91<\mathrm{E}_{\pi}<1.50 \mathrm{GeV}$ only $\mathrm{K}^{0} \mathrm{~s}$ are produced [the conservation of S is confirmed by direct observation].
- However, even when selecting pure $\mathrm{K}^{0} \mathrm{~s}$, some unexpected $\overline{\mathrm{K}}^{0}$ mesons show up in subsequent processes;
- this effect demonstrates that production and "life" (i.e. decay) of $\mathrm{K}^{0} / \bar{K}^{0}$ mesons follow complicated rules.
- [the weak interactions do NOT conserve S, therefore they do NOT distinguish K^{0} from $\bar{K}^{0} \rightarrow$ once produced, their S is "forgotten" and the particle behaves as a quantum superposition of states with different S]

Study the reaction $a b \rightarrow c d$ (e.g. $\left.\pi^{-} p \rightarrow \Lambda K^{0}\right)$. If $\left(m_{c}+m_{d}\right)>\left(m_{a}+m_{b}\right)$, it requires some kinetic energy to happen.
Study the process in the LAB system, i.e. the system where b (the proton) is at rest:
> the projectile a hits the target b, producing c and d;
> in the $L A B E_{a}^{\text {min }}=$ the minimum energy of a, such that the process happens;
> in the CM in the min. energy case, c and d are at rest.

LAB
system $\left\{\begin{array}{llll}a & \left(E_{a}^{\text {min }},\right. & p_{a}, & 0, \\ b & \left(m_{b},\right. & 0, & 0,\end{array}\right)$
$\underset{\text { system }}{C M}\left\{\begin{array}{lllll}c & \left(m_{c},\right. & 0, & 0, & 0) \\ d & \left(m_{d},\right. & 0, & 0, & 0)\end{array}\right.$
$\left.s\right|_{\text {LAB }} ^{\text {ini }}=m_{a}^{2}+m_{b}^{2}+2 E_{a}^{m i n} m_{b}=\left.s\right|_{C M} ^{\text {fin }}=\left(m_{c}+m_{d}\right)^{2}$; $E_{a}^{\min }=\frac{\left(m_{c}+m_{d}\right)^{2}-\left(m_{a}^{2}+m_{b}^{2}\right)}{2 m_{b}}$.

- (an easy question) what, if in the formula " $\mathrm{E}_{\mathrm{a}}^{\text {min }}<\mathrm{m}_{\mathrm{a}}$ (e.g. $\overline{\mathrm{p}} \mathrm{p} \rightarrow \pi^{+} \pi^{-}$) ???
- this result does NOT depend on the dynamics, but only on general kinematical constraints : it will be used in similar cases.

K^{0} processes: an "impossible" event

A nice oscillation $\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$:

1. beam of K^{+};
2. $\pi^{-} p \rightarrow X$;
3. $\Lambda \rightarrow \mathrm{p} \pi^{-}$(decay);
4. $\overline{\mathrm{K}}^{0} \mathrm{p} \rightarrow \Lambda \pi^{+} \pi^{0}$;
5. identified $\overline{\mathrm{K}}^{0}$;
6. main vertex $\mathrm{K}^{+} \mathrm{p} \rightarrow \mathrm{K}^{0} \mathrm{p} \pi^{+} \pi^{0}$;
7. identified K^{0} (???);
$\rightarrow \mathrm{K}^{0}$ and $\overline{\mathrm{K}}^{0}$ unambiguously identified, no other explanation.

To be specific, these strong interactions are allowed, because they conserve S :
a. $\mathrm{K}^{+} \mathrm{n} \rightarrow \mathrm{K}^{0} \mathrm{p}$;
b. $\mathrm{K}^{-} \mathrm{p} \rightarrow \overline{\mathrm{K}}^{0} \mathrm{n}$;
c. $\mathrm{K}^{0} \mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{n}$;
d. $\overline{\mathrm{K}}^{0} \mathrm{p} \rightarrow \pi^{0} \Sigma^{+}$;

- instead, the following s.i. are forbidden :
e. $\mathrm{K}^{+} \mathrm{n} \rightarrow \overline{\mathrm{K}}^{0} \mathrm{p}$;
f. $K^{-} p \rightarrow K^{0} n$;
g. $\bar{K}^{0} \mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{n}$;
h. $K^{0} p \rightarrow \pi^{0} \Sigma^{+}$.

- Reactions (e-h) are only forbidden by S conservation;
- for a particle-antiparticle pair, because of the $\mathbb{C P T}$ symmetry, all the intrinsic properties are exactly correlated (equal or opposite mass, spin, charge, baryonlepton number, decay channels, BR's).
- However, sometimes, the K^{0} particle, generated via reaction (a), re-interacts as a $\overline{\mathrm{K}}^{0}$ via reaction (d), or (b) \rightarrow (c):
i. $\mathrm{K}^{+} \mathrm{n} \rightarrow$ " $\mathrm{X}^{0 "} \mathrm{p}, \quad$ " $\mathrm{X}^{0 "} \mathrm{p} \rightarrow \pi^{0} \Sigma^{+}$;
ii. $K^{-} p \rightarrow Y^{0 "} n, \quad " Y^{0 "} p \rightarrow K^{+} n$;

$$
\left[\mathrm{X}^{0} / \mathrm{Y}^{0}=\mathrm{K}^{0} \text { or } \mathrm{X}^{0} / \mathrm{Y}^{0}=\bar{K}^{0}\right. \text { ?] }
$$

- it seems that there are transitions "in flight" (i.e. oscillations) $\mathrm{K}^{0} \leftrightarrow \overline{\mathrm{~K}}^{0}$.
- Can this effect show up also in their decay?

NB Transitions ($\mathrm{n} \leftrightarrow \overline{\mathrm{n}}$) are forbidden because of baryon number, ($\mathrm{e}^{+} \leftrightarrow \mathrm{e}^{-}$) because of electric charge and lepton number. All these "charges" are conserved by all interactions. Instead the oscillations ($\mathrm{K}^{0} \leftrightarrow \overline{\mathrm{~K}}^{0}$) are only forbidden by S conservation (i.e. in strong interactions).

In addition, the decay of K^{0} and $\overline{\mathrm{K}}^{0}$ was not understood and created a puzzle.

- Both K^{0} and $\overline{\mathrm{K}}^{0}$ can decay into ($\pi^{+} \pi^{-}$) and $\left(\pi^{+} \pi^{-} \pi^{0}\right)$ [2π and 3π states have different G-parity, but G is NOT conserved in w.i.].
- The explanation was provided by GellMann and Pais [Phys. Rev. 97, 1387 (1955)], before the discovery that w.i. violate parity:
$>\mathrm{K}^{0}$ and $\overline{\mathrm{K}}^{0}$ are eigenstates of the strong interactions;
> each is the antiparticle of the other, the \mathbb{C} operator transforms ($\mathrm{K}^{0} \leftrightarrow \overline{\mathrm{~K}}^{0}$);
> they have opposite strangeness S ;
$>$ if S were not there, they would mix (like in π^{0} and η);
> w.i. do not conserve S ;
$>$... and see a mixture of K^{0} and $\overline{\mathrm{K}}^{0}$.

Consequences:

- the mixture is interpreted as two new states, quantum superpositions of $\mathrm{K}^{0} / \bar{K}^{0}$;
- if w.i. conserve $\mathbb{C P}$, the two new states must be $\mathbb{C P}$ eigenstates(*);
- since the new states are NOT a particleantiparticle pair, they may have different properties (masses, lifetimes, decays);
- if the mass difference allows for that, the states oscillate between themselves;
- the only known decay was (" $\mathrm{K}^{0 "} \rightarrow \pi^{+} \pi^{-}$); a possible transition, generated via w.i., is then $\left[\mathrm{K}^{0} \leftrightarrow\left(\pi^{+} \pi^{-}\right) \leftrightarrow \overline{\mathrm{K}}^{0}\right]$;
- another " K^{0} " must exist, " K^{0} " $\rightarrow \pi \pi \pi$.
${ }^{(*)}$ Today we know that the w.i. violate also $\mathbb{C P}$, but this violation is small, so provisionally we do not take it into account.

the K^{0} and $\overline{\mathrm{K}}^{0}$ decays: predictions

(more formally ...)

TWO "K" STATES:

- different values of $\mathrm{CP} \rightarrow \mathrm{CP}= \pm 1$;
- one with $\mathrm{CP}=+1$ and decay $\rightarrow(\pi \pi)$, another with $\mathrm{CP}=-1$ and decay $\rightarrow(\pi \pi \pi)$;
- other decays are allowed for both states, but they have to conserve $\mathbb{C P}$ (e.g. no $\rightarrow \pi \pi$ for the state $C P=-1$);
- the state $(\pi \pi \pi)$ is near the kinematical threshold $\left(\mathrm{m}_{\mathrm{K}} \approx 3 \mathrm{~m}_{\pi}+70 \mathrm{MeV}\right) \rightarrow$ the lifetime of the $(\pi \pi \pi)$ state is much longer than the lifetime of the $(\pi \pi)$ one.
- the obvious proposal was to call "short" the $C P=+1$ state and "long" the $C P=-1$;
- so, two new particles have born:
> they have been discovered;
> their lifetimes and properties have been measured and found in agreement with the predictions:

1) $\mathrm{K}_{\mathrm{S}}^{0}: \mathrm{CP}=+1, \tau=0.895 \times 10^{-10} \mathrm{~s}$, decay $\rightarrow \pi^{+} \pi^{-}, \rightarrow \pi^{0} \pi^{0} ;$
2) $\mathrm{K}_{\mathrm{L}}^{0}: \mathrm{CP}=-1, \tau=0.512 \times 10^{-7} \mathrm{~s}$, decay $\rightarrow \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \pi^{0} \pi^{0}$.
J.W. Cronin and M.S. Greenwood, Physics Today (July 1982) :
"So these gentlemen, Gell-Mann and Pais, predicted that in addition to the short-lived K mesons, there should be long-lived K mesons. They did it beautifully, elegantly and simply.

I think theirs is a paper one should read sometime just for its pure beauty of reasoning. It was published in Physical Review in 1955. A very lovely thing ! You get shivers up and down your spine, especially when you find you understand it. At the time many of the most distinguished theoreticians thought this prediction was really baloney."

the K^{0} and \bar{K}^{0} decays: oscillations

In q.m. + quark model language:

- Both the K^{0} and $\overline{\mathrm{K}}^{0}$ decay via w.i. in the same final states; the $\pi^{+} \pi^{-}$diagram is shown in the figure, while the others ($\pi^{0} \pi^{0} ; \pi^{+} \pi^{-} \pi^{0} ; \pi \ell v$) are similar :

- The oscillations can be understood as a continuous transformation between the K^{0} and $\overline{\mathrm{K}}^{0}$ themselves, via the second order box-diagrams, or as a mixture, with time-dependent coefficients $\alpha(\mathrm{t}), \beta(\mathrm{t})$:

$$
\begin{aligned}
& |K(t)\rangle=\alpha(t)\left|K^{0}\right\rangle+\beta(t)\left|\bar{K}^{0}\right\rangle ; \\
& \alpha(t)^{2}+\beta(t)^{2}=1 \quad[\times \text { a decreasing function of } t, \\
& \\
& \text { to account for their decay }]
\end{aligned}
$$

- The $\mathbf{K}_{\mathrm{L}}^{0}$ was first observed in 1956 by Lande and coll. with a cloud chamber.
- Brookhaven Cosmotron (3 GeV protons).
- Path between the beam and the cloud chamber (6 meters) is $\sim 100 \mathrm{~K}_{\mathrm{s}}^{0} / \Lambda$ lifetimes.
- This path is therefore sufficient for the decay of all strange particles known at the time.
- A few months later the same authors confirmed the result. They also observed in the cloud chamber interactions of these particles with the nuclei of He , producing final states with total $S \neq 0$, like ($\overline{\mathrm{K}}^{0}{ }^{4} \mathrm{He} \rightarrow \Sigma^{-} \mathrm{ppn} \pi^{+}$).
- These states cannot be generated by a K^{0}, because of the value of S .
- However, no $\overline{\mathrm{K}}^{0}$ should be present, because the primary proton energy was chosen to be below the energy threshold for $\overline{\mathrm{K}}^{0}$ production, which is higher than for K^{0} [same argument as before] .
- For some reason, $\overline{\mathrm{K}}^{0}$ mesons have "appeared" \rightarrow oscillation.

- The $\mathrm{K}_{\mathrm{L}}^{0}$ was first observed in 1956 by Lande and coll. with a cloud chamber.
- They found 26 events with a "V-zero", incompatible to be ($\pi^{+} \pi^{-}$) because of their Q^{2} (one shown on the right).
- [today we interpret these events as decays $\left.\left(\pi^{ \pm} e^{\mp} v_{e}\right),\left(\pi^{ \pm} \mu^{\mp} v_{\mu}\right),\left(\pi^{ \pm} \pi^{\mp} \pi^{0}\right)\right]$.

Observation of Long-Lived Neutral V Particles*
K. Lande, E. T. Booth, J. Impeduglia, and L. M. Lederman, Columbia University, New York, New York
and
W. Chinowsky, Brookhaven National Laboratory,

Upton, New York
(Received July 30, 1956)

- Events consistent with 3 body decays of neutral mesons of mass $\sim 500 \mathrm{MeV}$.
- First estimate of the lifetime : $10^{-9} \mathrm{~s}<\tau<$ $10^{-6} \mathrm{~s}$, now $\tau=0.53 \times 10^{-7} \mathrm{~s}$.
- Another beautiful and "impossible" event (no \bar{K}^{0} in the beam, see previous pages).

- In the following slides we assume that the K^{0} decay conserve $\mathbb{C P}$, i.e. that both K_{S}^{0} and K_{L}^{0} are $\mathbb{C P}$ eigenstates with eigenvalues $= \pm 1$.
- Although this is not true (see later), the violation is small and therefore the results obtained with this approximation are in fair agreement with (almost) all observations.
- To remember that, the next pages are marked by a little sign "CPP in the upper right corner.
warning: the sign of C in
$\left.\mathbb{C}\left|\mathrm{K}^{0}\right\rangle=\mathrm{C}\left|\bar{K}^{0}>; \mathbb{C}\right| \overline{\mathrm{K}}^{0}\right\rangle=\mathrm{C} \mid \mathrm{K}^{0}>$;
is non-physical; in literature both $\mathrm{C}= \pm 1$;
here we (try to) stick to $\mathrm{C}=-1$.

A formal solution for the previous puzzle:

- the states $\left|K^{0}\right\rangle$ and $\left|\bar{K}^{0}\right\rangle$ are strong interactions (s.i.) and \mathbb{P} eigenstates:
$\mathbb{P}\left|K^{0}\right\rangle=-\left|K^{0}\right\rangle ; \quad \mathbb{P}\left|\bar{K}^{0}\right\rangle=-\left|\bar{K}^{0}\right\rangle ;$
- ... but NOT \mathbb{C} or $\mathbb{C P}$ eigenstates:
$\mathbb{C}\left|K^{0}\right\rangle=-\left|\bar{K}^{0}\right\rangle ; \quad \mathbb{C}\left|\bar{K}^{0}\right\rangle=-\left|K^{0}\right\rangle ;$
$\mathbb{C P}\left|K^{0}\right\rangle=+\left|\bar{K}^{0}\right\rangle ; \quad \mathbb{C P}\left|\bar{K}^{0}\right\rangle=+\left|K^{0}\right\rangle ;$
- define $\left|K_{1}^{0}\right\rangle$ and $\left|K_{2}^{0}\right\rangle$, linear combinations of $\left|K^{0}\right\rangle$ and $\left|\bar{K}^{0}\right\rangle$, and $\mathbb{C P}$ eigenstates :

$$
\begin{aligned}
& \left|K_{1}^{0}\right\rangle=1 / \sqrt{2}\left[\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right] ; \\
& \left|K_{2}^{0}\right\rangle=1 / \sqrt{2}\left[\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right] ; \\
& \left|K^{0}\right\rangle=1 / \sqrt{2}\left[\left|K_{1}^{0}\right\rangle+\left|K_{2}^{0}\right\rangle\right] ; \\
& \left|\bar{K}^{0}\right\rangle=1 / \sqrt{2}\left[\left|K_{1}^{0}\right\rangle-\left|K_{2}^{0}\right\rangle\right] .
\end{aligned}
$$

$\mathbb{C P}\left|K_{1}^{0}\right\rangle=+\left|K_{1}^{0}\right\rangle ; \mathbb{C P}\left|K_{2}^{0}\right\rangle=-\left|K_{2}^{0}\right\rangle ;$

- since [next slide] for $(\pi \pi)$ and $(\pi \pi \pi)$:

$$
\begin{array}{ll}
\mathbb{C P}|2 \pi>=+| 2 \pi>; \\
\mathbb{C P}|3 \pi>=-| 3 \pi>;
\end{array} \quad \begin{aligned}
& \mathrm{K}_{1}^{0} \rightarrow 2 \pi \\
& \mathrm{~K}_{2}^{0} \rightarrow 3 \pi
\end{aligned}
$$

- therefore :

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{S}}^{0} \equiv \mathrm{~K}_{1}^{0} ; \quad \mathrm{K}_{\mathrm{L}}^{0} \equiv \mathrm{~K}_{2}^{0} . \quad \text { if } \mathbb{C P} \text { not conserved, } \\
\text { NOT true !!! }
\end{array}
$$

$>\mathrm{K}^{0}$ and $\overline{\mathrm{K}}^{0}$ are eigenstates of the strong interactions;
$>$ therefore, the production process generates one of them [NOT the other];
> but, as soon as they are created, they behave as a linear combination of K_{S}^{0} and K_{L}^{0};
> therefore they "live" (i.e. decay) as them;
$>$ then $K_{s}^{0} \rightarrow 2 \pi \quad$ (lot of phase space, small τ);
$>$ and $K_{L}^{0} \rightarrow 3 \pi \quad$ (small phase space, long τ);
$>$ if $K_{S, L}^{0}$ interact via strong interactions, they come back to the s.i. eigenstates, as K^{0} or \bar{K}^{0} with a given probability each.
\mathbf{K}^{0} decays in $\mathbb{C P}$ eigenstates : eigenvalues
Compute the eigenvalues of $\mathbb{C P}$.

For 2π systems :

- Since $\mathrm{JPC}^{\mathrm{PC}}\left(\pi^{0}\right)=0^{-+}$:
$\mathbb{P}\left|\pi^{0} \pi^{0}\right\rangle=(-)^{2}(-)^{2}\left|\pi^{0} \pi^{0}\right\rangle=+\left|\pi^{0} \pi^{0}\right\rangle$;
C $\left|\pi^{0} \pi^{0}\right\rangle=(+)^{2}\left|\pi^{0} \pi^{0}\right\rangle=+\left|\pi^{0} \pi^{0}\right\rangle$;
$\mathbb{C P}\left|\pi^{0} \pi^{0}\right\rangle=+\left|\pi^{0} \pi^{0}\right\rangle$;
- if $L=S_{1}=S_{2}=0$:
$\mathbb{P C}\left|\pi^{+} \pi^{-}\right\rangle=\mathbb{P}\left|\pi^{-} \pi^{+}\right\rangle \quad=+\left|\pi^{+} \pi^{-}\right\rangle ;$
- i.e. $\mathrm{CP}(2 \pi)=+1$, both for the ($\pi^{0} \pi^{0}$) and $\left(\pi^{+} \pi^{-}\right)$systems.

For 3π systems :

- $\mathrm{P}\left(\pi^{0} \pi^{0} \pi^{0}\right)=(-)^{3}(-)^{\mathrm{L1}}(-)^{\mathrm{L2}}=-1$;
$C\left(\pi^{0} \pi^{0} \pi^{0}\right)=(+)^{3}=+1 ;$
$\mathrm{CP}\left(\pi^{0} \pi^{0} \pi^{0}\right)$

$$
=-1 ;
$$

- $\mathrm{P}\left(\pi^{+} \pi^{-} \pi^{0}\right)=(-)^{3}(-)^{\mathrm{L1}}(-)^{\mathrm{L2}}=-1$;
$\mathrm{C}\left(\pi^{+} \pi^{-} \pi^{0}\right)=(+)(-)^{\mathrm{L}}=\quad=+1 ;$
$\mathrm{CP}\left(\pi^{+} \pi^{-} \pi^{0}\right)$
$=-1 ;$
- i.e. $\mathrm{CP}(3 \pi)=-1$, both for the $\left(\pi^{0} \pi^{0} \pi^{0}\right)$ and $\left(\pi^{+} \pi^{-} \pi^{0}\right)$ systems.

Conclusion : after strange particle production, expect two neutral particles of (not exactly, but almost) equal mass [actually 498 MeV] :

- the shorter $\left(\mathrm{K}_{\mathrm{s}}^{0}\right)$ with
> $\mathrm{CP}=+1$;
$>$ decay into 2π;
> "short" lifetime;
$>\left[\tau_{\mathrm{s}}=0.895 \times 10^{-10} \mathrm{~s}=7.4 \mu \mathrm{eV}^{-1}\right.$, $\left.\ell_{\mathrm{S}}=\mathrm{c} \tau_{\mathrm{s}}=2.68 \mathrm{~cm}\right] ;$
- the longer $\left(\mathrm{K}_{\mathrm{L}}^{0}\right)$ with

$$
>C P=-1 ;
$$

$>$ decay into 3π;
$>$ "long" lifetime [570 $\times \tau_{s}$];
$>\left[\tau_{\mathrm{L}}=0.512 \times 10^{-7} \mathrm{~s}=0.013 \mu \mathrm{eV}^{-1}\right.$,
$\ell_{\mathrm{L}}=15.3 \mathrm{~m}$]

- therefore:
$>\Delta \Gamma_{\mathrm{K}} \equiv \Gamma_{\mathrm{L}}-\Gamma_{\mathrm{S}} \approx-\Gamma_{\mathrm{S}}=-7.4 \mu \mathrm{eV}=$ $=-11.2 \mathrm{~ns}^{-1}$.

$$
\begin{aligned}
& 1 \mu \mathrm{eV}=1.52 \mathrm{~ns}^{-1} \\
& 1 \mathrm{~ns}^{-1}=0.66 \mu \mathrm{eV} .
\end{aligned}
$$

- While the K^{0} and $\overline{\mathrm{K}}^{0}$ masses are equal because of $\mathbb{C P T}$, no symmetry equalizes the masses and lifetimes of K_{S}^{0} and K_{L}^{0};
- the measurement gives [see later] :

$$
\begin{aligned}
\Delta \mathrm{m}_{\mathrm{K}} & =\mathrm{m}\left(\mathrm{~K}_{\mathrm{L}}^{0}\right)-\mathrm{m}\left(\mathrm{~K}_{\mathrm{S}}^{0}\right)=3.51 \pm 0.018 \mu \mathrm{eV} \\
& =5.303 \pm 0.009 \mathrm{~ns}^{-1} ;
\end{aligned}
$$

- $\Delta \mathrm{m}_{\mathrm{K}} \approx-1 / 2 \Delta \Gamma_{\mathrm{K}}$ [not from theory, but deep phenomenological consequences];
- the mass difference means that the two states $\left[K_{L}^{0}\right.$ and $\left.K_{s}^{0}\right]$ evolve with different time constants;
- following the evolution on the basis (K^{0}, $\overline{\mathrm{K}}^{0}$), a "desynchronization" is observed between the $\mathrm{K}_{\mathrm{S}}^{0}$ and $\mathrm{K}_{\mathrm{L}}^{0}$ components, interpreted as oscillations ($\mathrm{K}^{0} \leftrightarrow \overline{\mathrm{~K}}^{0}$);
- a little algebra shows that, instead of a pure evolution of a particle of width Γ,
which would give rise to an intensity $\mathrm{N}(\mathrm{t})$ $\propto \exp (-\Gamma \mathrm{t})=\exp (-\mathrm{t} / \tau)$, we have a different phenomenon:

$$
\begin{aligned}
& \psi_{S}(t)=\psi_{S}^{0} \exp \left[-\left(\Gamma_{S} / 2+i m_{S}\right) t\right] ; \\
& \psi_{L}(t)=\psi_{L}^{0} \exp \left[-\left(\Gamma_{L} / 2+i m_{L}\right) t\right]
\end{aligned}
$$

- take a pure K^{0} at $\mathrm{t}=0$: then, in case of no decay $\left(\Gamma_{S, L}=0, \tau_{S, L}=\infty\right)$, the probability \mathscr{P} to find a K^{0} or a $\overline{\mathrm{K}}^{0}$ is a function of t :

$$
\begin{aligned}
& \mathscr{P}_{\mathrm{k}^{0}}(\mathrm{t})=\frac{1}{4}\left|\mathrm{e}^{\left(-\mathrm{i} m_{\mathrm{s}} \mathrm{t}\right)}+\mathrm{e}^{\left(-\mathrm{i} \mathrm{~m}_{\mathrm{t}} \mathrm{t}\right.}\right|^{2}=\cos ^{2}\left(\frac{\Delta \mathrm{~m}_{\mathrm{k}}}{2} \mathrm{t}\right) ; \\
& \mathscr{P}_{\overline{\mathrm{k}}^{0}}(\mathrm{t})=\frac{1}{4}\left|\mathrm{e}^{\left(-\mathrm{i} \mathrm{~m}_{\mathrm{s}} \mathrm{t}\right)}-\mathrm{e}^{\left(-\mathrm{i} \mathrm{~m}_{\mathrm{L}} \mathrm{t}\right.}\right|^{2}=\sin ^{2}\left(\frac{\Delta \mathrm{~m}_{\mathrm{k}}}{2} \mathrm{t}\right) .
\end{aligned}
$$

- In addition, the oscillations are damped by the occurrence of the decays $\left(\tau_{L}=1 / \Gamma_{L}\right.$ $\left.\gg \tau_{\mathrm{s}}=1 / \Gamma_{\mathrm{s}}\right) ; \Gamma_{\mathrm{s}}$ dominates, because of the shorter lifetime [next slide].

Some (simple and tedious) algebra. Start with $f K^{0}$ and (1-f) \bar{K}^{0}. Then put $f=1$:

$$
\begin{aligned}
& |\psi(\mathrm{t}=0)\rangle=f\left|\mathrm{~K}^{0}\right\rangle+(1-\mathrm{f})\left|\bar{K}^{0}\right\rangle=\frac{f}{\sqrt{2}}\left(\left|\mathrm{~K}_{\mathrm{s}}^{0}\right\rangle+\left|\mathrm{K}_{\mathrm{L}}^{0}\right\rangle\right)+\frac{1-\mathrm{f}}{\sqrt{2}}\left(\left|\mathrm{~K}_{\mathrm{L}}^{0}\right\rangle-\left|\mathrm{K}_{\mathrm{s}}^{0}\right\rangle\right)=\frac{2 \mathrm{f}-1}{\sqrt{2}}\left|\mathrm{~K}_{\mathrm{s}}^{0}\right\rangle+\frac{1}{\sqrt{2}}\left|\mathrm{~K}_{\mathrm{L}}^{0}\right\rangle ; \\
& |\psi(t)\rangle=\frac{2 f-1}{\sqrt{2}} e^{-\left(\frac{\Gamma_{s}}{2}+i m_{s}\right) t}\left|K_{s}^{0}\right\rangle+\frac{1}{\sqrt{2}} e^{-\left(\frac{\Gamma_{\mathrm{L}}}{2}+i m_{\mathrm{L}}\right) \mathrm{t}}\left|\mathrm{~K}_{\mathrm{L}}^{0}\right\rangle \xrightarrow{[\mathrm{f}=1} \frac{1}{\sqrt{2}} \mathrm{e}^{-\left(\frac{\Gamma_{\mathrm{s}}}{2}+i m_{\mathrm{s}}\right) \mathrm{t}}\left|\mathrm{~K}_{\mathrm{s}}^{0}\right\rangle+\frac{1}{\sqrt{2}} \mathrm{e}^{-\left(\frac{\Gamma_{\mathrm{L}}}{2}+\mathrm{m}_{\mathrm{L}}\right) \mathrm{t}}\left|\mathrm{~K}_{\mathrm{L}}^{0}\right\rangle ;
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left[e^{\frac{-t}{\tau_{S}}}+\mathrm{e}^{\frac{-\mathrm{t}}{\tau_{\mathrm{L}}}}+2 \mathrm{e}^{-\frac{\left(\tau_{\mathrm{L}}+\tau_{s}\right) \mathrm{t}}{2 \tau_{\mathrm{L}} \tau_{S}}} \cos \left(\Delta \mathrm{~m}_{\mathrm{K}} \mathrm{t}\right)\right] \underset{\tau_{s} \rightarrow \infty, \tau_{\mathrm{L}} \rightarrow \infty}{ } \cos ^{2}\left(\frac{\Delta \mathrm{~m}_{\mathrm{K}} \mathrm{t}}{2}\right) \text {. } \\
& \cos \alpha \cos \beta+\sin \alpha \sin \beta= \\
& =\cos (\alpha-\beta)
\end{aligned}
$$

Damped oscillation. If both τ_{L} and $\tau_{\mathrm{S}} \gg 1 / \Delta \mathrm{m}_{K}$ (not true) \rightarrow simple oscillation.
The computations for $\mathscr{P}_{\overline{\mathrm{K}}}{ }^{0}(\mathrm{t})$ and for $\mathrm{f} \neq 1$ are left to the (patient) reader.

Conclusion:

- the amount of K^{0} and $\overline{\mathrm{K}}^{0}$ can be computed as a function of (proper) time, by simple considerations of quantum mechanics;
- e.g. starting with pure K^{0} (fig.), there is an "oscillation" between the two states, according to $\tau_{\mathrm{s}}, \tau_{\mathrm{L}}, \Delta \mathrm{m}\left(=\left|\mathrm{m}_{\mathrm{s}}-\mathrm{m}_{\mathrm{L}}\right|\right)$;
- the figure is made with $\tau_{\mathrm{L}} \gg \tau_{\mathrm{S}}$ and $\Delta \mathrm{m}=$ $1 /\left(2 \tau_{\mathrm{s}}\right)$ (not exact, but realistic and simple);
- the mechanism is due to q.m., but the size and visibility of the phenomenon are
$\mathscr{S}_{(\mathrm{t})}$
 regulated by free parameters.

$$
\begin{aligned}
& \mathscr{P}_{\mathrm{K}^{0}}(\mathrm{t})=\left|\left\langle\mathrm{K}^{0} \mid \psi(\mathrm{t})\right\rangle\right|^{2}=\frac{1}{4}\left[\exp \left(-\frac{\mathrm{t}}{\tau_{\mathrm{S}}}\right)+\exp \left(-\frac{\mathrm{t}}{\tau_{\mathrm{L}}}\right)+2 \exp \left(-\frac{\tau_{\mathrm{L}}+\tau_{\mathrm{S}}}{2 \tau_{\mathrm{L}} \tau_{\mathrm{S}}} \mathrm{t}\right) \cos \left(\Delta \mathrm{m}_{\mathrm{K}} \mathrm{t}\right)\right] ; \\
& \mathscr{P}_{\overline{\mathrm{K}}^{0}}(\mathrm{t})=\left|\left\langle\overline{\mathrm{K}}^{0} \mid \psi(\mathrm{t})\right\rangle\right|^{2}=\frac{1}{4}\left[\exp \left(-\frac{\mathrm{t}}{\tau_{\mathrm{S}}}\right)+\exp \left(-\frac{\mathrm{t}}{\tau_{\mathrm{L}}}\right)-2 \exp \left(-\frac{\tau_{\mathrm{L}}+\tau_{\mathrm{S}}}{2 \tau_{\mathrm{L}} \tau_{\mathrm{S}}} \mathrm{t}\right) \cos \left(\Delta \mathrm{m}_{\mathrm{K}} \mathrm{t}\right)\right] .
\end{aligned}
$$

- To test the prediction, the problem is to single out $\mathrm{K}^{0} \leftrightarrow \overline{\mathrm{~K}}^{0}$ in the decay. It is not possible from the 2π or 3π decays, because they have definite $C P$, not definite strangeness.
- However, there are other decays of $\mathrm{K}^{0} / \bar{K}^{0}$; e.g. select semileptonic decays of K_{\perp}^{0}, which are different for $s \leftrightarrow \bar{s}$ [see K^{0} case in the box]:

$$
\begin{aligned}
& \bar{s} \rightarrow \bar{u} \ell^{+} v_{\ell} \Rightarrow \mathrm{K}^{0} \rightarrow \pi^{-} \ell^{+} v_{\ell} ; \mathrm{K}^{0} \rightarrow \pi^{+} \ell^{-} \bar{v}_{\ell} \\
& \mathrm{s} \rightarrow \mathrm{u} \ell^{-} \bar{v}_{\ell} \Rightarrow \overline{\mathrm{K}}^{0} \rightarrow \pi^{+} \ell^{-} \bar{v}_{\ell} ; \overline{\mathrm{K}}^{0} \rightarrow \pi^{-} \ell^{+} v_{\ell} .
\end{aligned}
$$

- The sign of the charged lepton flags the strangeness of the $\mathrm{K}^{0} / \bar{K}^{0}$. The semileptonic decays are called $\mathrm{K}_{\mathrm{e} 3}^{0}$ and $\mathrm{K}^{0}{ }_{\mu 3}$ depending on the lepton. Their branching ratios are large:

$$
\mathrm{BR}\left(\mathrm{~K}_{\mathrm{e} 3}^{0}\right)=41 \%, \mathrm{BR}\left(\mathrm{~K}^{0}{ }_{\mu 3}\right)=27 \% .
$$

- The experimental measure regards the charge asymmetry δ, i.e. the difference between +ve and -ve leptons, which is directly related to the oscillations. The results agree very well with the expectations, but the tail.

The regeneration (Pais and Piccioni, 1956) consisted in a clever use of an absorber (the "regenerator"), positioned at a distance determined by τ_{s} and τ_{L}, to demonstrate the superposition of K^{0} and $\overline{\mathrm{K}}^{0}$.
[explanation on the next slide]

- Start with a pure K^{0} beam in vacuum (equal amounts of K_{S}^{0} and K_{L}^{0}).
- After $\mathrm{t} \approx 10 \tau_{\mathrm{s}}$ the $\mathrm{K}_{\mathrm{S}}^{0}$ intensity down by factor $\mathrm{e}^{(-\mathrm{t} / \mathrm{s})}=\mathrm{e}^{-10} \approx 45 \times 10^{-6}$ (none left).
- [For K^{0} with 1 GeV momentum this corresponds to $\sim 0.5 \mathrm{~m}$.]
- The K_{L}^{0} intensity is down by $e^{(-t / \tau L)} \approx 0.98$, i.e. all left.
- After $0.5 \mathrm{~m}, 100 \% \mathrm{~K}_{\mathrm{L}}^{0}\left(50 \% \mathrm{~K}^{0}+50 \% \bar{K}^{0}\right)$.
- If we put another target at [say] $\mathrm{t}=20 \tau_{\mathrm{s}}$ [1 m downstream], we will get K^{0} interactions as well as $\overline{\mathrm{K}}^{0}$.
- K^{0} and $\overline{\mathrm{K}}^{0}$ interact (strongly) differently in the target :

$$
\begin{aligned}
& \mathrm{K}^{0} \mathrm{p} \rightarrow \mathrm{~K}^{0} \mathrm{p}, \mathrm{~K}^{+} \mathrm{n} ; \\
& \mathrm{K}^{0} \mathrm{n} \rightarrow \mathrm{~K}^{0} \mathrm{n} ; \\
& \overline{\mathrm{K}}^{0} \mathrm{p} \rightarrow \overline{\mathrm{~K}}^{0} \mathrm{p}, \Lambda \pi^{+} ; \rightarrow \Sigma^{0} \pi^{+}, \Sigma^{+} \pi^{0} ; \\
& \overline{\mathrm{K}}^{0} \mathrm{n} \rightarrow \overline{\mathrm{~K}}^{0} \mathrm{n}, \Lambda \pi^{0} ; \rightarrow \Sigma^{+} \pi^{-}, \Sigma^{0} \pi^{0}, \Sigma^{-} \pi^{+} ;
\end{aligned}
$$

- The s quark from the \bar{K}^{0} can swap with one of the quarks in the proton or neutron, but the \bar{s} from the K^{0} cannot [e.g. $\bar{K}^{0} p \rightarrow \Lambda X$, but $\left.K^{0} p \rightarrow \Lambda X\right]$.
- Hence there are more \bar{K}^{0} processes, so the \bar{K}^{0} are more strongly absorbed.
- Then, no longer $50 \% \mathrm{~K}^{0}+50 \% \bar{K}^{0}$ (as in $\left.K_{L}^{0}\right)$, but an amount of K_{S}^{0} has "born".
- So will have some K_{S}^{0} decays again.

A study of the phenomenon by M. Good (1957) considered three types of regeneration, with different distributions of the angle θ between the incoming and the regenerated particle :

1. Regeneration for transmission ("forward") : $\theta=0$. No momentum transfer to the nucleus : coherent.
2. Regeneration for diffraction : elastic scattering, θ distribution as in diffraction.
3. Inelastic regeneration : interaction with individual nucleons, θ distribution as in scattering.

- The relative amount of the three depends on the small mass difference $\Delta \mathrm{m}_{\mathrm{K}}=\mathrm{m}\left(\mathrm{K}_{\mathrm{L}}^{0}\right)-\mathrm{m}\left(\mathrm{K}_{\mathrm{S}}^{0}\right)$;
- 200 observed 2π decays;
- they were able to confirm oscillations and regeneration;
- ... and to measure the mass difference (units \hbar / τ_{s}) :

$$
\Delta m_{K}=0.84_{-0.22}^{+0.89} ;
$$

[very clever result, despite present best value is 2σ smaller]

Redefine the K^{0} mesons system :

- K^{0} and $\overline{\mathrm{K}}^{0}$ as the particle produced in strong interactions (i.e. s.i. eigenstates):
$>\left|K^{0}\right\rangle=|d \bar{s}\rangle, \mathrm{S}=+1 ;\left|\bar{K}^{0}\right\rangle=|s d\rangle, \mathrm{S}=-1$;
$>\mathbb{C}\left|K^{0}\right\rangle=-\left|\bar{K}^{0}\right\rangle ; \quad \mathbb{C}\left|\bar{K}^{0}\right\rangle=-\left|K^{0}\right\rangle$;
- K_{1}^{0} and K_{2}^{0} as the $\mathbb{C P}$ eigenstates:
$>\left|K_{1}^{0}\right\rangle=1 / \sqrt{ } 2\left[\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right]$;
$>\left|K_{2}^{0}\right\rangle=1 / \sqrt{ } 2\left[\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right] ;$
$>\mathbb{C P}\left|\mathrm{K}_{1}^{0}\right\rangle=+\mid \mathrm{K}_{1}^{0}>;$
$>\mathbb{C P}\left|K_{2}^{0}\right\rangle=-\mid K_{2}^{0}>;$
- K_{S}^{0} and K_{L}^{0} as the states with lifetimes τ_{S}, τ_{L} [NOT necessarily $\mathbb{C P}$ eigenstates];
- the $\left(\pi^{+} \pi^{-}\right),\left(\pi^{0} \pi^{0}\right),\left(\pi^{+} \pi^{-} \pi^{0}\right)$ systems are $\mathbb{C P}$ eigenstates:
$>\mathbb{C P}|2 \pi>=+|2 \pi>; \mathbb{C P}| 3 \pi>=-| 3 \pi>;$
- Clearly, if $K_{1}^{0}=K_{S}^{0}, K_{2}^{0}=K_{L}^{0}$, then $\mathbb{C P}$ is conserved in the K^{0} decays; i.e. $\mathbb{C P}$ conservation implies

$$
\mathrm{K}_{\mathrm{S}}^{0} \rightarrow 2 \pi, \mathrm{~K}_{\mathrm{L}}^{0} \rightarrow 3 \pi ;
$$

- On the contrary, decays

$$
\mathrm{K}_{\mathrm{L}}^{0} \rightarrow 2 \pi, \mathrm{~K}_{\mathrm{S}}^{0} \rightarrow 3 \pi
$$

with small, but non-0 BR, would be an experimental evidence of the NONCONSERVATION of $\mathbb{C P}$.

- In this case $\left(K_{\mathrm{S}}^{0}, \mathrm{~K}_{\mathrm{L}}^{0}\right) \neq\left(\mathrm{K}_{1}^{0}, \mathrm{~K}_{2}^{0}\right)$. Other parameters (ε, \ldots...) are introduced (see later).

In the following slides we do NOT assume $\mathbb{C P}$ conservation in K^{0} decays. The little "CP" in the upper right

Consider three possible interactions:
a. \mathbb{C} and \mathbb{P} conserved ["strong i."] :
$>\mathbb{C}, \mathbb{P}$ conserved separately,
> strangeness conserved;
$>$ eigenstates $\mathrm{K}^{0}, \overline{\mathrm{~K}}^{0}$;
b. $\mathbb{C P}$ conserved :
> \mathbb{C}, \mathbb{P} not conserved separately, but $\mathbb{C P}$ conserved;
> strangeness NOT conserved;
> eigenstates $\mathrm{K}_{1}^{0} \rightarrow 2 \pi, \mathrm{~K}_{2}^{0} \rightarrow 3 \pi$
[because 2π and 3π states are $\mathbb{C P}$ eigenstates];
c. $\mathbb{C P}$ non conserved ["weak i."] :
$>K_{S}^{0}, K_{L}^{0}$ decay with lifetimes τ_{S}, τ_{L};
> strangeness NOT conserved;
> eigenstates $K_{S}^{0}, K_{\mathrm{L}}^{0}\left[\mathrm{~K}_{\mathrm{S}}^{0}\right.$ and $\mathrm{K}_{\mathrm{L}}^{0}$ NOT $\mathbb{C P}$ eigenstates].

Strong interactions follow [a].
If weak interactions conserve $\mathbb{C P}$, then they follow [b]:
$\left|K_{1}^{0}\right\rangle=\left|K_{S}^{0}\right\rangle,\left|K_{2}^{0}\right\rangle=\left|K_{L}^{0}\right\rangle$
$K_{S}^{0} \rightarrow 2 \pi, K_{L}^{0} \rightarrow 3 \pi$.
Instead, if $\mathbb{C P}$ is violated in w.i., then [b] is only a first approx. of [c].
The discriminant is the existence (at least with a small $B R$) of the decays:
$\mathrm{K}_{\mathrm{S}}^{0} \rightarrow 3 \pi, \mathrm{~K}_{\mathrm{L}}^{0} \rightarrow 2 \pi$.
Conclusion :
since a small amount of ($\mathrm{K}_{\mathrm{S}}^{0} \rightarrow 3 \pi$) is not observable, due to the background (K_{L}^{0} $\rightarrow 3 \pi)$, the key observation is $\left(\mathrm{K}_{\mathrm{L}}^{0} \rightarrow 2 \pi\right)$,

$\mathbb{C P}$ violation: experimental layout

In 1964 an experiment was built to search for $\mathbb{C P}$ violation at the Brookhaven AGS (Alternating Gradient Synchrotron).

The schematic layout is shown in the fig.:

- the primary proton beam $(30 \mathrm{GeV})$ hits a beryllium target;
- secondaries at $\theta=30^{\circ}$ are selected;
- if charged, collimated and bent away;
- if neutral, collimated and let decay;
- the resultant $\mathrm{K}_{\mathrm{L}}^{0}$ (long lifetime) hit a second lead target, regenerate and are let decay again in a long decay tube;
- no K_{S}^{0} left \rightarrow if $\mathbb{C P}$ is conserved, only long lifetime $K_{L}^{0}\left[=K_{2}^{0}\right]$ should remain and decay $\rightarrow 3 \pi$;
- if (2π) observed $\rightarrow \mathbb{C P}$ is violated!!!
- 16 years later, in Stockolm

$\mathbb{C P}$ violation: the experiment

Helium bag for K_{L}^{0} decays + two-arm-spectrometer.

Each of the two arms :

- spark chambers (\rightarrow position);
- magnetic field (\rightarrow momentum measurement);
- scintillators (\rightarrow trigger + tof);
- water Cerenkov (\rightarrow particle id); main background : n (\rightarrow tof rejects).

Other selection criteria :

- two opposite charged particles, one for each arm;
- measure $\overrightarrow{\mathrm{p}}_{+}$and $\overrightarrow{\mathrm{p}}_{-}$(direction and module);
- assume $\mathrm{m}_{+}=\mathrm{m}_{-}=\mathrm{m}_{\pi} \rightarrow \mathrm{m}\left(\pi^{+} \pi^{-}\right)=\mathrm{m}^{*} \approx \mathrm{~m}_{\mathrm{K}} \rightarrow \underline{\text { test; }}$
- angle θ between $\overrightarrow{\mathrm{p}}_{\text {sum }}\left(=\overrightarrow{\mathrm{p}}_{+}+\overrightarrow{\mathrm{p}}_{-}\right)$and $\overrightarrow{\mathrm{dir}}_{\text {collimator }} \approx 0 \rightarrow$ test.

The three-body decays (e.g. $\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$) do NOT satisfy those conditions :

- $\left(\vec{p}_{+}+\overrightarrow{\mathrm{p}}_{-}=\overrightarrow{\mathrm{p}}_{\mathrm{K}}-\overrightarrow{\mathrm{p}}_{0}\right)$ not collinear with $\overrightarrow{\text { dir }}_{\text {collimator; }}$;
- $\mathrm{m}^{*} \leq\left(\mathrm{m}_{\mathrm{K}}-\mathrm{m}_{\pi}\right)<\mathrm{m}_{\mathrm{K}}$.

$\mathbb{C P}$ violation: results

a. (not in figs.) just for calibration, a tungsten plate was put in front of the spectrometer for K^{0} regeneration: $\pi^{ \pm}$identification and mass reconstruction [OK !];
b. distribution of $\mathrm{m}^{*}\left[=\operatorname{mass}\left(\pi^{+} \pi^{-}\right)\right]$ for real events and MC simulation [OK!];
c. distribution of $\cos \theta$ for 3 mass bins, with improved resolution :
> $484<\mathrm{m}^{*}<494$ and $504<\mathrm{m}^{*}<514 \mathrm{MeV}$: no K^{0} should be there : therefore few events, no excess at $\cos \theta \approx 1$;
$>494<\mathrm{m}^{*}<504 \mathrm{MeV}$: the signal region, lot of events, clear peak at $\cos \theta \approx 1$: THE SIGNAL !!!
d. final result (similar result for the neutral decay $\rightarrow \pi^{0} \pi^{0}$) :
$\mathrm{R}=\mathrm{BR}\left(\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{+} \pi^{-}\right) / \mathrm{BR}\left(\mathrm{K}_{\mathrm{L}}^{0} \rightarrow\right.$ charged $)=(2.0 \pm 0.4) \times 10^{-3}$
$\Rightarrow \mathbb{C P}$ is violated !!!

Q.: study the mass m^{*}

[a typical kin. problem with ambiguities + mass hypoteses]

- work in the K_{L}^{0} ref. system;
- define $\mathrm{m}^{*}=$ mass (+re, -ve$)$;
- approx. : $\mathrm{m}_{\mathrm{v}} \approx 0, \mathrm{~m}_{\mathrm{e}}^{2} \ll \mathrm{~m}_{\pi}^{2}$;
- look at the box \qquad
a) $\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{+} \pi^{-}$
$\mathrm{m}^{*}=\mathrm{m}_{\mathrm{K}}$ [easy, no problem];
b) $\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$\left.\mathrm{m}^{*}\right|_{\text {min }}=2 \mathrm{~m}_{\pi} \approx 270 \mathrm{MeV}$;
$\left.\mathrm{m}^{*}\right|_{\text {max }}=\mathrm{m}_{\mathrm{K}}-\mathrm{m}_{\pi} \approx 360 \mathrm{MeV}$;
c) $\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{ \pm} \mathrm{e}^{\mp} v$
$\left.\mathrm{m}^{*}\right|_{\text {min }}=\mathrm{m}_{\pi}+\mathrm{m}_{\mathrm{e}} \approx \mathrm{m}_{\pi} ;$
$\left.\mathrm{m}^{*}\right|_{\text {max }}=\mathrm{m}_{\mathrm{K}}-\mathrm{m}_{\mathrm{v}} \approx \mathrm{m}_{\mathrm{k}}$;
[apparently easy, but ...]
$\min \left(m^{*}\right)$ when + and at rest wit each other:
$\left.\mathrm{m}^{*}\right|_{\text {min }}=\mathrm{m}_{+}+\mathrm{m}_{-}$.
$\max \left(m^{*}\right)$ when
neutral (0) at rest:
$\left.m^{*}\right|_{\max }=m_{k}-m_{0}$.

d) $K_{\mathrm{L}}^{0} \rightarrow \pi^{ \pm} \mathrm{e}^{\mp} v / \overline{\mathrm{V}}$, " $\mathrm{e}^{\mp "}$ interpreted as π^{\mp} :

$$
" \mathrm{~m}^{*}{ }_{\min }=\mathrm{m}_{\pi}+" \mathrm{~m}_{\mathrm{e}} "=2 \mathrm{~m}_{\pi} \approx 270 \mathrm{MeV} ;
$$

$$
\text { for } " m *{ }_{\text {max }} \text { compute }\left|\overrightarrow{\mathrm{p}}_{\pi / \mathrm{e}}\right| \text { and } \mathrm{E}_{\pi / \mathrm{e}} \text { when }\left|\overrightarrow{\mathrm{p}}_{v}\right| \approx 0:
$$

$$
\begin{aligned}
& p_{\pi}=p_{e}=\frac{m_{k}^{2}-m_{\pi}^{2}}{2 m_{k}} \text { [see e.g. §4]; } \\
& E_{\pi}=" E_{e} "=\sqrt{m_{\pi}^{2}+p_{p}^{2}}=\sqrt{m_{\pi}^{2}+\frac{m_{K}^{4}+m_{\pi}^{4}-2 m_{K}^{2} m_{\pi}^{2}}{4 m_{K}^{2}}}=
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{m_{k}^{4}+m_{\pi}^{4}+2 m_{k}^{2} m_{\pi}^{2}}{4 m_{k}^{2}}}=\frac{m_{k}^{2}+m_{\pi}^{2}}{2 m_{k}} ; \quad m_{\text {max }}^{*} \approx 534 \mathrm{MeV} \\
& >m_{\mathrm{k}}!!! \\
& \mathrm{n}^{*{ }_{\text {max }}=E_{\pi}+\mathrm{E}_{\mathrm{e}} "=2 \mathrm{E}_{\pi} \approx \mathrm{m}_{\mathrm{K}}\left(1+\mathrm{m}_{\pi}^{2} / \mathrm{m}_{\mathrm{K}}^{2}\right) .}
\end{aligned}
$$

- The ($\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{+} \pi^{-}$) is NOT the only decay channel, which shows $\mathbb{C P}$ violation;
- another important process is the semileptonic decay $\left(\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{ \pm} \ell^{\mp} v_{\ell}\right)$;
- it is an important channel, since :

$$
\begin{aligned}
& \mathrm{BR}\left(\mathrm{~K}_{\mathrm{L}}^{0} \rightarrow \pi^{ \pm} \mathrm{e}^{\mp} \nu_{\mathrm{e}}\right) \approx 40.6 \% ; \\
& \mathrm{BR}\left(\mathrm{~K}_{\mathrm{L}}^{0} \rightarrow \pi^{ \pm} \mu^{\mp} \nu_{\mu}\right) \approx 27.0 \% ;
\end{aligned}
$$

- if $\mathbb{C P}$ were conserved, the rate with the + ve and the -ve charge would be the same, since they are connected by a $\mathbb{C P}$ transformation;

- instead, they are different; it is customary to express the difference as :

$$
\delta_{\mathrm{L}}=\frac{\Gamma\left(\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \ell^{+} v_{\ell} \pi^{-}\right)-\Gamma\left(\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \ell^{-} \overline{\mathrm{v}}_{\ell} \pi^{+}\right)}{\Gamma\left(\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \ell^{+} v_{\ell} \pi^{-}\right)+\Gamma\left(\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \ell^{-} \bar{v}_{\ell} \pi^{+}\right)} ;
$$

it is measured $\delta_{\mathrm{L}}=(3.32 \pm 0.06) \times 10^{-3}$.

- NOT "just another boring number".
- First evidence for difference matter-antimatter :
"the existent matter contains the electron with smaller $B R$ in the $\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{ \pm} \mathrm{e}^{\mp} v_{\mathrm{e}}$ decay".
- In fact, some mechanism MUST have generated the asymmetry matter-antimatter of the Universe [if primordial universe was symmetric].
- However $\delta \sim 10^{-3}$ is too small to account for the large asymmetry of our world.
- In addition, if the K_{L}^{0} decay is the only source, at the big bang time who provided all these $\mathrm{K}_{\mathrm{L}}^{01}$ s ?

$\mathbb{C P}$ violation: the Sandro's view

From [Bettini] :

[... A]t late times, when only K_{L} 's survive, they decay through $\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$ a little more frequently than through the $\mathbb{C P}$ conjugate channel $\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{+} \ell^{-} \bar{v}_{e}$. [...] This shows, again and independently, that matter and antimatter are somewhat different.

Let us suppose that we wish to tell an extraterrestrial being what we mean by matter and by antimatter. We do not know whether his/her world is made of the former or the latter.

We can tell him/her : "prepare a neutral K meson beam and go far enough from the production point to be sure to have been left only with the long-lifetime component." At this point s/he is left with K_{L} mesons, independently of the matter or antimatter constitution of her/his world.

We continue: "count the decays with a lepton of one or the other charge and call positive the charge of the sample that is about three per thousand larger. Humans call matter the one that has positive nuclei."

If, after a while, our correspondent answers that his nuclei have the opposite charge, and comes to meet you, be careful, apologize, but do not shake his/her hand.

- The previous examples/experiments show $\mathbb{C P}$ violations in the decay of neutral flavored mesons (K^{0}, and also B^{0}).
- In fact, three different types of $\mathbb{C P}$ violation have been identified and measured:
a. in the mixing of neutral mesons $(\mathrm{M} \leftrightarrow \overline{\mathrm{M}})$ (indirect violation);
b. difference in the decay of a particle: $\Gamma(\mathrm{M} \rightarrow \mathrm{X}) \neq \Gamma(\overline{\mathrm{M}} \rightarrow \overline{\mathrm{X}})$ (direct violation);
c. interference between direct and indirect violation : $\Gamma(\mathrm{M} \rightarrow \mathrm{X}) \neq \Gamma(\mathrm{M} \rightarrow \overline{\mathrm{M}} \rightarrow \mathrm{X})$.
- in the K^{0} system (a) is important, while in the B^{0} system b / c dominate; the relative importance of the effect is determined by the values of the $\mathrm{V}_{\text {CKM }}$ matrix [see later];
- (a) and (b) are usually parametrized by the parameters ε and ε^{\prime}.
[the indirect violation has been discussed before, e.g. for the 1964 experiment; the couplings qqW are regulated by the $\mathrm{V}_{\text {CKM }}$ matrix, see later]

Direct/indirect $\mathbb{C P}$ violation: ε and ε^{\prime}

- The complex parameter ε is associated with the indirect $\mathbb{C P}$ violation;
- this parameter decouples the states with definite lifetimes from the $\mathbb{C P}$ eigenstates:

$$
\begin{aligned}
& \left|\mathrm{K}_{\mathrm{S}}^{0}\right\rangle=\frac{\left|\mathrm{K}_{1}^{0}\right\rangle+\varepsilon\left|\mathrm{K}_{2}^{0}\right\rangle}{\sqrt{1+|\varepsilon|^{2}}}=\frac{(1+\varepsilon)\left|\mathrm{K}^{0}\right\rangle+(1-\varepsilon)\left|\overline{\mathrm{K}}^{0}\right\rangle}{\sqrt{2\left(1+|\varepsilon|^{2}\right)}} ; \\
& \left|\mathrm{K}_{\mathrm{L}}^{0}\right\rangle=\frac{\left|\mathrm{K}_{2}^{0}\right\rangle+\varepsilon\left|\mathrm{K}_{1}^{0}\right\rangle}{\sqrt{1+|\varepsilon|^{2}}}=\frac{(1+\varepsilon)\left|\mathrm{K}^{0}\right\rangle-(1-\varepsilon)\left|\overline{\mathrm{K}}^{0}\right\rangle}{\sqrt{2\left(1+|\varepsilon|^{2}\right)}} ;
\end{aligned}
$$

- no $\mathbb{C P}$ violation $\rightarrow \varepsilon=0 \rightarrow$

$$
\rightarrow\left(\left|K_{S}^{0}\right\rangle=\left|K_{1}^{0}\right\rangle,\left|K_{L}^{0}\right\rangle=\left|K_{2}^{0}\right\rangle\right) ;
$$

- other commonly used parameters are :

$$
\begin{aligned}
& \eta_{00} \equiv\left|\eta_{00}\right| \exp \left(\mathrm{i} \phi_{00}\right) \equiv \frac{\left\langle\pi^{0} \pi^{0}\right| \mathbb{H}\left|\mathrm{K}_{\mathrm{L}}^{0}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| \mathbb{H}\left|\mathrm{K}_{\mathrm{s}}^{0}\right\rangle} \\
& \eta_{+-} \equiv\left|\eta_{+-}\right| \exp \left(\mathrm{i} \phi_{+-}\right) \equiv \frac{\left\langle\pi^{+} \pi^{-}\right| \mathbb{H}\left|\mathrm{K}_{\mathrm{L}}^{0}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathbb{H}\left|\mathrm{K}_{\mathrm{s}}^{0}\right\rangle}
\end{aligned}
$$

- the direct violation is parametrized by a complex parameter ε^{\prime} :

$$
\eta_{+-}=\varepsilon+\varepsilon^{\prime} ; \quad \eta_{00}=\varepsilon-2 \varepsilon^{\prime} ;
$$

- no direct $\mathbb{C P}$ violation $\rightarrow \varepsilon^{\prime}=0$ and $\left|\eta_{00}\right|$ $\approx\left|\eta_{+-}\right| \approx \varepsilon ;$
- ε^{\prime} is an important parameter for our understanding of Nature;
- as of today, the best measurement, assuming $\mathbb{C P T}$ invariance, are :

$$
\begin{array}{ll}
\left|\eta_{+-}\right| & =(2.232 \pm 0.011) \times 10^{-3} ; \\
\left|\eta_{00}\right| & =(2.221 \pm 0.011) \times 10^{-3} ; \\
\left|\phi_{+-}\right| & =(43.51 \pm 0.05)^{\circ} ; \\
\left|\phi_{00}\right| & =(43.7 \pm 0.8)^{\circ} ; \\
|\varepsilon| & =(2.228 \pm 0.011) \times 10^{-3} ; \\
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right) & =(1.65 \pm 0.26) \times 10^{-3} ;
\end{array}
$$

which are obtained in a long series of dedicated experiments on $\mathbb{C P}$ violation.

Direct/indirect $\mathbb{C P}$ violation: summary ${ }_{1}$

D. Kirkby (UC Irvine), Y. Nir (Weizmann Inst.) [PDG 2012] :

- The $\mathbb{C P}$ transformation combines charge conjugation \mathbb{C} with parity \mathbb{P}.
- Under \mathbb{C}, particles and antiparticles are interchanged, by conjugating all internal quantum numbers, e.g., $Q \rightarrow-Q$ for electromagnetic charge.
- Under \mathbb{P}, the handedness of space is reversed, $\vec{x} \rightarrow-\vec{x}$. [... A] left-handed electron $\mathrm{e}_{\llcorner }^{-}$is transformed under $\mathbb{C P}$ into a right-handed positron $\mathrm{e}_{\mathrm{R}}^{+}$.
- If $\mathbb{C P}$ were an exact symmetry, the laws of Nature would be the same for matter and for antimatter. We observe that most phenomena are \mathbb{C} - and \mathbb{P}-symmetric, and therefore, also $\mathbb{C P}$-symmetric.
- In particular, these symmetries are respected by the gravitational, electromagnetic, and strong interactions.
- The weak interactions, on the other hand, violate \mathbb{C} and \mathbb{P} in the strongest possible way. For example, the charged W bosons couple to left-handed electrons, $\mathrm{e}_{\mathrm{L}}^{-}$, and to their $\mathbb{C P}$-conjugate right-handed positrons, $\mathrm{e}_{\mathrm{R}}^{+}$, but to neither their \mathbb{C} conjugate left-handed positrons, $\mathrm{e}_{\mathrm{L}}^{+}$, nor their \mathbb{P}-conjugate right-handed electrons, $\mathrm{e}_{\mathrm{R}}^{-}$.

Direct/indirect $\mathbb{C P}$ violation: summary ${ }_{2}$

D. Kirkby (UC Irvine), Y. Nir (Weizmann Inst.) [PDG 2012]:
(... continued ...)

- While weak interactions violate \mathbb{C} and \mathbb{P} separately, $\mathbb{C P}$ is still preserved in most weak interaction processes.
- The $\mathbb{C P}$ symmetry is, however, violated in certain rare processes, as discovered in neutral K decays in 1964 [...], and observed in recent years in B decays. $A K_{L}^{0}$ meson decays more often to $\pi^{-} e^{+} v_{\mathrm{e}}$ than to $\pi^{+} e^{-} \bar{v}_{\mathrm{e}}$, thus allowing electrons and positrons to be unambiguously distinguished, but the decay-rate asymmetry is only at the 0.003 level.
- The $\mathbb{C P}$-violating effects observed in B decays are larger: the $\mathbb{C P}$ asymmetry in $\mathrm{B}^{0} / \overline{\mathrm{B}}^{0}$ meson decays to $\mathbb{C P}$ eigenstates like $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}^{0}$ is about 0.7 [...].
- These effects are related to $\mathrm{K}^{0}-\bar{K}^{0}$ and B^{0} - $\overline{\mathrm{B}}^{0}$ mixing, but $\mathbb{C P}$ violation arising solely from decay amplitudes has also been observed, first in $\mathrm{K} \rightarrow \pi \pi$ decays [...], and more recently in various neutral [...] and charged B [...] decays.
- Evidence for $\mathbb{C P}$ violation in the decay amplitude at a level higher than 3σ (but still lower than 5σ) has also been achieved in neutral $D[. .$.$] and B_{s}[. .$.$] decays.$
- $\mathbb{C P}$ violation has not yet been observed in the lepton sector.

LHCb observed $\mathbb{C P}$ violation in D decays in 2019 at 5.36.

T2K has reported $\mathbb{C P}$ violation in v's at 30 (16/4/2020).

Direct/indirect $\mathbb{C P}$ violation: summary ${ }_{3}$

a) Flavor eigenstates :

$$
\left|K^{0}\right\rangle=d \bar{s} ; S=+1 ; \quad \mathbb{C P}\left|K^{0}\right\rangle=+\left|\bar{K}^{0}\right\rangle
$$

$$
\left|\bar{K}^{0}\right\rangle=s \bar{d} ; S=-1 ; \quad \mathbb{C P}\left|\bar{K}^{0}\right\rangle=+\left|K^{0}\right\rangle
$$

(strong interactions)
c) Mass eigenstates in vacuum :
$\mid K_{S}^{0}>=\left(\left|K_{1}^{0}>+\varepsilon\right| K_{2}^{0}>\right) / \sqrt{1+|\varepsilon|^{2}} ;$
$\left|K_{L}^{0}\right\rangle=\left(\varepsilon\left|K_{1}^{0}\right\rangle+\left|K_{2}^{0}\right\rangle\right) / \sqrt{1+|\varepsilon|^{2}}$
($\mathbb{C P}$ violation in vacuum)

$$
\begin{aligned}
& \text { b) CP eigenstates : } \\
& \left|K_{1}^{0}\right\rangle=1 / \sqrt{ } 2\left[\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right] ; C P=+1 ; \\
& \left|K_{2}^{0}\right\rangle=1 / \sqrt{ } 2\left[\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right] ; C P=-1 ; \\
& \left|K^{0}\right\rangle=1 / \sqrt{ } 2\left[\left|K_{1}^{0}\right\rangle+\left|K_{2}^{0}\right\rangle\right] ; \\
& \left|\bar{K}^{0}\right\rangle=1 / \sqrt{ } 2\left[\left|K_{1}^{0}\right\rangle-\left|K_{2}^{0}\right\rangle\right] . \\
& \\
& \text { (K } K^{0} \text { oscillations+decay, regeneration) }
\end{aligned}
$$

d) Mass eigenstates in matter :

$$
\left|K_{\mathrm{S}, \mathrm{M}}^{0}\right\rangle=\left(\left|\mathrm{K}_{1}^{0}>+\varepsilon^{\mathrm{M}}\right| \mathrm{K}_{2}^{0}>\right) / \sqrt{1+\left|\varepsilon^{\mathrm{M}}\right|^{2}} ;
$$

$$
\left|K_{\mathrm{L}, \mathrm{M}}^{0}\right\rangle=\left(\varepsilon^{\mathrm{M}}\left|\mathrm{~K}_{1}^{0}\right\rangle+\mid \mathrm{K}_{2}^{0}>\right) / \sqrt{1+\left|\varepsilon^{\mathrm{M}}\right|^{2}} .
$$

$(\mathbb{C P}$ violation in matter)

Direct/indirect $\mathbb{C P}$ violation: summary 4

Maybe everything is simpler if interpreted in terms of rotations in the appropriate quark space.

Let's try ...
[a bit too simplified, in fact ε is complex, but take the principle]

CKM matrix

Reinterpret the $\mathbb{C P}$ violation using the CKM matrix [§4]:
$\mathbf{V}_{\text {CKM }}$ is a fundamental ingredient of the SM; the actual values V_{ij} are observable $(\rightarrow$ NB measurable, see later), but not predictable inside the SM (like fermion masses, number of families, ...)

$$
j_{\text {qq }}^{\mu}=-i \frac{g}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t}) \gamma^{\mu} \frac{1-\gamma^{5}}{2}{V_{\text {ckm }}}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

$$
V_{\mathrm{cKM}}=\left(\begin{array}{ccc}
\mathrm{V}_{\mathrm{ud}} & \mathrm{~V}_{\mathrm{us}} & \mathrm{~V}_{\mathrm{ub}} \\
\mathrm{~V}_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

- therefore, e.g. [notice the "*"; the definition is V_{ij} when (dsb) is a spinor and (ūct) the adjoint spinor" and " $\mathrm{V}^{*}{ }_{\mathrm{ij}}$ when (uct) is a spinor and (dड̄5) the adjoint spinor".]

CKM matrix: $\alpha_{i j} \delta$

- in a N -family scheme with $\mathrm{N}=3, \mathrm{~V}_{\text {CKM }}$ requires $n_{\text {rot }}=3$ real rotations $\alpha_{i j}$ and $\mathrm{n}_{\mathrm{ph}}=1$ imaginary phase δ (see box);
- the rotations $\alpha_{i j}$ are "Euler angles" in the quark space (= "3-D Cabibbo angles");
- $\delta \neq 0 \rightarrow$ some V_{ij} complex
$\rightarrow \mathbb{C P}$ violation [next slides];
- many representations, give the most common [PDG] ($\left.\mathrm{c}_{\mathrm{ij}} \equiv \cos \alpha_{\mathrm{ij}}, \mathrm{s}_{\mathrm{ij}} \equiv \sin \alpha_{\mathrm{ij}}\right)$:

$$
V_{c k M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right] \times\left[\begin{array}{ccc}
\mathrm{c}_{13} & 0 & \mathrm{~s}_{13} \mathrm{e}^{-\mathrm{i} \mathrm{\delta}} \\
0 & 1 & 0 \\
-\mathrm{s}_{13} \mathrm{e}^{+\mathrm{i} \mathrm{\delta} \mathrm{\delta}} & 0 & \mathrm{c}_{13}
\end{array}\right] \times\left[\begin{array}{ccc}
\mathrm{c}_{12} & \mathrm{~s}_{12} & 0 \\
-\mathrm{s}_{12} & \mathrm{c}_{12} & 0 \\
0 & 0 & 1
\end{array}\right]=
$$

$$
=\left(\begin{array}{ccc}
\mathrm{c}_{12} \mathrm{c}_{13} & \mathrm{~s}_{12} \mathrm{c}_{13} & \mathrm{~s}_{13} \mathrm{e}^{-\mathrm{i} \mathrm{\delta}} \\
-\mathrm{s}_{12} \mathrm{c}_{23}-\mathrm{c}_{12} \mathrm{~s}_{23} \mathrm{~s}_{13} \mathrm{e}^{\mathrm{i} \delta} & \mathrm{c}_{12} \mathrm{c}_{23}-\mathrm{s}_{12} \mathrm{c}_{23} \mathrm{~s}_{13} \mathrm{e}^{\mathrm{i} \mathrm{\delta}} & \mathrm{~s}_{23} \mathrm{c}_{13} \\
\mathrm{~s}_{12} \mathrm{~s}_{23}-\mathrm{c}_{12} \mathrm{c}_{23} \mathrm{~s}_{13} \mathrm{e}^{\mathrm{i} \delta} & -\mathrm{c}_{12} \mathrm{~s}_{23}-\mathrm{s}_{12} \mathrm{c}_{23} \mathrm{~s}_{13} \mathrm{e}^{\mathrm{i} \delta} & \mathrm{c}_{23} \mathrm{c}_{13}
\end{array}\right) .
$$

> the K-M approach [IE, §9]: $\left(\begin{array}{l}\mathrm{n}_{\mathrm{rot}}=\mathrm{N}(\mathrm{N}-1) / 2 \\ \mathrm{n}_{\mathrm{ph}}=(\mathrm{N}-1)(\mathrm{N}-2) / 2 \\ \mathrm{CP} \text { violation }\end{array}\right) \rightarrow\left(\mathrm{n}_{\mathrm{ph}} \geq 1\right) \rightarrow(\mathrm{N} \geq 3)$.

CKM matrix: phenomenology

The representation is chosen to highlight the agreement with experimental data:

$$
\begin{gathered}
>\alpha_{\mathrm{ij}} \text { small } \rightarrow \cos \alpha_{\mathrm{ij}} \gg \sin \alpha_{\mathrm{ij}} \\
\rightarrow \mathrm{~V}_{\mathrm{CKM}}=\mathbb{1}+\text { "small rotations" } \\
\rightarrow \mathrm{q}^{\prime} \text {-dynamics }=\mathrm{q} \text {-dynamics } \\
\quad+\text { small effects; } \\
>\alpha_{13} \text { small } \rightarrow \alpha_{12} \cong \theta_{c} ;
\end{gathered}
$$

>Cabibbo theory works well, when considering $\mathrm{N}=2$ (udsc only);
$>\mathrm{s}_{12}$ and s_{13} small \rightarrow matrix almost real
$\rightarrow \mathbb{C P}$ violation small.

$$
V_{c k M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} c_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
\mathrm{~s}_{12} \mathrm{~s}_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right) .
$$

$$
\left(\begin{array}{ll}
V_{u d} & V_{u s} \\
v_{c d} & V_{c s}
\end{array}\right) \cong\left(\begin{array}{cc}
c_{12} & s_{12} \\
-s_{12} & c_{12}
\end{array}\right) .
$$

CKM matrix: Wolfenstein parameters

The violations associated with $\mathrm{V}_{\text {CKM }}$ are usually studied with the Wolfenstein parameterization $V_{C K M}^{W}$, which singles out the "small" terms and their physical meaning:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CKM}}=\left(\begin{array}{lll}
\mathrm{V}_{\mathrm{ud}} & \mathrm{~V}_{\mathrm{us}} & \mathrm{~V}_{\mathrm{ub}} \\
\mathrm{~V}_{\mathrm{cd}} & \mathrm{~V}_{\mathrm{cs}} & \mathrm{~V}_{\mathrm{cb}} \\
\mathrm{~V}_{\mathrm{td}} & \mathrm{~V}_{\mathrm{ts}} & \mathrm{~V}_{\mathrm{tb}}
\end{array}\right) \cong \mathrm{V}_{\mathrm{CKM}}^{\mathrm{w}}+\vartheta\left(\lambda^{4}\right) ; \\
& \mathrm{V}_{\mathrm{CKM}}^{\mathrm{w}} \equiv\left(\begin{array}{c|c|c}
1-\frac{\lambda^{2}}{2} & \lambda & \mathrm{~A} \lambda^{3}(\rho-\mathrm{i} \mathrm{\eta}) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & \mathrm{~A} \lambda^{2} \\
\mathrm{~A} \lambda^{3}(1-\rho-\mathrm{i} \eta) & \mathrm{A} \lambda^{2} & 1
\end{array}\right) .
\end{aligned}
$$

As the "Euler" parameterization, $\mathrm{V}_{\mathrm{CKM}}^{\mathrm{W}}$ has 4 independent real parameters $(\lambda A \rho \eta)$:

- $\lambda \cong s_{12}\left(\rightarrow \sin \theta_{c}\right.$, mixing $\left.1^{\text {st }} / 2^{\text {nd }}\right)$;
- $A \lambda^{2} \cong s_{23}\left(\rightarrow\right.$ mixing $\left.2^{\text {nd }} / 3^{\text {rd }}\right)$;
- $A \lambda^{3}(\rho+i \eta) \cong s_{13} \mathrm{e}^{\mathrm{i} \delta}\left(\rightarrow \delta \cong \tan ^{-1} \eta / \rho\right)$;
- i.e. $\eta=0 \rightarrow \delta=0 \rightarrow V_{\text {CKM }}$ real
\rightarrow no $\mathbb{C P}$ violation.

As of today [PDG 2020]:

- $\lambda=0.22650 \pm 0.00048$;
- $A=0.790{ }_{-0.012}^{+0.017}$;
- $\rho=0.141{ }_{-0.017}^{+0.016 ;}$
- $\eta=0.357 \pm 0.011$.

CKM matrix: $\mathbb{C P}$ violation in K^{0}

The indirect $\mathbb{C P}$ violation in the K^{0} system can be explained with the CKM formalism [Thomson, 393]:

- for each of the $\mathrm{K}^{0} \leftrightarrow \overline{\mathrm{~K}}^{0}$ diagrams
> look the t-channel exchange: 9 couples of diagrams ($u u, u c, u t, c u, c c, c t, t u, t c, t t)$;
> here discuss only (ct) case, others similar;
- $\mathcal{M}\left(\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}\right) \propto \mathrm{V}_{\text {cd }} \mathrm{V}^{*}{ }_{\text {ts }} \mathrm{V}^{*}{ }_{\mathrm{cs}} \mathrm{V}_{\text {td }}$;
- $\mathcal{M}\left(\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}\right) \propto \mathrm{V}^{*}{ }_{\mathrm{cd}} \mathrm{V}_{\mathrm{ts}} \mathrm{V}_{\mathrm{cs}} \mathrm{V}^{*}{ }_{\mathrm{td}}$;
- V_{ij} real $\quad \rightarrow \mathcal{M}\left(\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}\right)=\mathcal{M}\left(\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}\right)$
\rightarrow no $\mathbb{C P}$ violation;
- V_{ij} complex $\rightarrow \mathcal{M}\left(\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}\right) \neq \mathcal{M}\left(\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}\right)$
$\rightarrow \mathbb{C P}$ violation.
- in this case $\mathcal{M}\left(\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}\right) \neq \mathcal{M}\left(\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}\right)$:
$\mathcal{M}\left(\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}\right)-\mathcal{M}\left(\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}\right) \propto \mathrm{i} \mathcal{I}\left(V_{\mathrm{td}}\right)=\mathrm{i} \eta A \lambda^{3} ;$

It can be shown [Thomson 403] that the ε parameter of the $\mathbb{C P}$ violation can be written as:

$$
|\varepsilon| \propto \eta(1-\rho+\text { const. })
$$

$[\Delta \mathcal{M}$ imaginary, small, $\propto \eta]$

- in general $\mathbb{C P}$ violation $\propto[J$ Jarlskog invariant $]=\eta \mathrm{A}^{2} \lambda^{6}$.

CKM matrix: $\mathbb{C P}$ violation in $\mathrm{D}^{0} / \mathrm{B}^{0}$

- In the SM , a $\mathbb{C P}$ violation is expected to occur also in the $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ and $\mathrm{B}^{0}-\overline{\mathrm{B}}^{0}$ systems through the same dynamical mechanism [see box].
- However the importance of the phenomenon depends on the value of the CKM matrix elements, i.e. by the quark mixing.
- In the $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ case:
> main contribution from b quark exchange;
$>$ but product $\mathrm{V}_{\mathrm{cb}} \mathrm{V}_{\mathrm{ub}}$ very small;
$>$ therefore predicted $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ mixing minute;
> only observed in 2019 by LHCb (SM ok).
- Instead $\mathrm{B}^{0}-\overline{\mathrm{B}}^{0}$ mixing:
> dominated by t quark exchange;
> expected substantial level of mixing;
> [see next slides for some results].

it could be a golden opportunity: since the SM prediction is small (and computable), a bSM effect would not be obscured.

CKM matrix: measure $\left|\mathrm{V}_{\mathrm{ij}}\right|$

How to measure (the real part of) V_{ij} ?

- from decays ([YN2, §6], [PDG]):
$>\left|\mathrm{V}_{\mathrm{ud}}\right|: \mathrm{p} \rightarrow$ nev and other β decays;
$>\left|\mathrm{V}_{\text {cs }}\right|$: c-mesons C(abibbo)-allowed;
$>\left|\mathrm{V}_{\mathrm{us}}\right|$: s-mesons (e.g. $\mathrm{K}^{ \pm}$);
$>\left|\mathrm{V}_{\text {cd }}\right|$: c-mesons C-suppressed, : dileptons in v scattering;
$>\left|\mathrm{V}_{\mathrm{ub}}\right|: \mathrm{b}$-mesons \rightarrow non_c-mesons;
$>\left|\mathrm{V}_{\mathrm{cb}}\right|: \mathrm{b}$-mesons \rightarrow c-mesons;
$>\left|\mathrm{V}_{\mathrm{td}}\right|,\left|\mathrm{V}_{\mathrm{ts}}\right|:\left(\mathrm{B}^{0} \leftrightarrow \overline{\mathrm{~B}}^{0}\right)$ oscillations;
$>\left|\mathrm{V}_{\mathrm{tb}}\right|: \mathrm{t} \rightarrow \mathrm{W}^{ \pm} \mathrm{b}$ [not accurate];
- conceptually simple, the problem is to disentangle the clean weak decay from the dirty hadron corrections;
- semi-leptonic decays cleaner;
- a technically difficult job (hundreds of papers, theses, conferences...);
- nice final result [PDG 2020]:
$>\mathrm{V}_{\text {СКм }}$ quasi-diagonal, as expected;
$>$ well consistent with SM (unitary, 3 families).

$$
\begin{aligned}
\left|\mathrm{V}_{\mathrm{cKM}}\right| & \equiv\left(\begin{array}{lll}
\left|\mathrm{V}_{\mathrm{ud}}\right| & \left|\mathrm{V}_{\mathrm{us}}\right| & \left|\mathrm{V}_{\mathrm{ub}}\right| \\
\left|\mathrm{V}_{\mathrm{cd}}\right| & \left|\mathrm{V}_{\mathrm{cs}}\right| & \left|\mathrm{V}_{\mathrm{cb}}\right| \\
\left|\mathrm{V}_{\mathrm{td}}\right| & \left|\mathrm{V}_{\mathrm{ts}}\right| & \left|\mathrm{V}_{\mathrm{tb}}\right|
\end{array}\right)= \\
& =\left(\begin{array}{lll}
.97370 & .2245 & .0382 \\
.2210 & .9870 & .0410 \\
.0080 & .0388 & 1.013
\end{array}\right) \pm \\
& \pm\left(\begin{array}{ccc}
.00014 & .0008 & .0024 \\
.0040 & .0110 & .0014 \\
.0003 & .0011 & .0030
\end{array}\right)
\end{aligned}
$$

CKM matrix: $\left|\mathrm{V}_{\mathrm{ij}}\right|$ and SM

How to interpret $\mathrm{V}_{\text {СКМ }}$?

- tests of SM from $\mathrm{V}^{+} \mathrm{V}=\mathbb{1}$:

$$
\begin{aligned}
& \sum_{i} \mathrm{~V}_{\mathrm{ij}} \mathrm{~V}_{\mathrm{ik}}^{*}=\delta_{\mathrm{jk}} ; \quad \sum_{\mathrm{j}} \mathrm{~V}_{\mathrm{ij}} \mathrm{~V}_{\mathrm{kj}}^{*}=\delta_{\mathrm{ik}} . \\
& \text { (e.g. }\left|\mathrm{V}_{\mathrm{ud}}\right|^{2}+\left|\mathrm{V}_{\mathrm{us}}\right|^{2}+\left|\mathrm{V}_{\mathrm{ub}}\right|^{2}=1 ;
\end{aligned}
$$

$$
\left\lvert\, \mathrm{V}_{\mathrm{cKM}} \equiv\left(\begin{array}{ccc}
\left|\mathrm{V}_{\mathrm{ud}}\right| & \left|\mathrm{V}_{\mathrm{us}}\right| & \left|\mathrm{V}_{\mathrm{ub}}\right| \\
\left|\mathrm{V}_{\mathrm{cd}}\right| & \left|\mathrm{V}_{\mathrm{cs}}\right| & \left|\mathrm{V}_{\mathrm{cb}}\right| \\
\left|\mathrm{V}_{\mathrm{td}}\right| & \left|\mathrm{V}_{\mathrm{ts}}\right| & \left|\mathrm{V}_{\mathrm{tb}}\right|
\end{array}\right)\right.
$$

- if (a) test(s) fail(s)
$>$ more generations (missing pieces) ?
> general breakdown of the model ?
- if all tests succeed
> general fit imposing unitarity;
> improved accuracy;
> stricter tests;
> more accuracy;
$>$ and so on, forever [see Coll.Phys.].
- from one of the unitarity relations:
$\sum_{\mathrm{i}} \mathrm{V}_{\mathrm{i} 1} \mathrm{~V}_{\mathrm{i3}}^{*}=\mathrm{V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{ub}}^{*}+\mathrm{V}_{\mathrm{cd}} \mathrm{V}_{\mathrm{cb}}^{*}+\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{tb}}^{*}=\delta_{13}=0$;
- add some simple math:
$\mathrm{V}_{\mathrm{ud}}, \mathrm{V}_{\mathrm{cb}}, \mathrm{V}_{\mathrm{tb}}$ real >0;
$V_{c d}$ real $<0\left(\right.$ see $\left.V_{c d}^{W}\right)$;
$\rightarrow\left|\mathrm{V}_{\mathrm{ud}}\right| \mathrm{V}_{\mathrm{ub}}^{*}-\left|\mathrm{V}_{\mathrm{cd}}\right|\left|\mathrm{V}_{\mathrm{cb}}\right|+\mathrm{V}_{\mathrm{td}}\left|\mathrm{V}_{\mathrm{tb}}\right|=0$;
$\rightarrow \quad 1-\frac{\left|\mathrm{V}_{\mathrm{tb}}\right|}{\left|\mathrm{V}_{\mathrm{cd}}\right|\left|\mathrm{V}_{\mathrm{cb}}\right|} V_{\mathrm{td}}-\frac{\left|\mathrm{V}_{\mathrm{ud}}\right|}{\left|\mathrm{V}_{\mathrm{cd}}\right|\left|\mathrm{V}_{\mathrm{cb}}\right|} \mathrm{V}_{\mathrm{ub}}^{*}=0$;
- put the relation in complex plane $\mathfrak{R I}$;
- interpreted it as a triangle (unitarity triangle, u.t.);
- define angles (α, β, γ) (see fig.);
- relate $\mathrm{V}_{\mathrm{ij}} \rightarrow$ Wolfenstein param. $\rho^{\mathrm{w}}, \eta^{\mathrm{w}}$;
- the vertex is at ($\bar{\rho} \cong \rho^{\mathrm{w}}, \bar{\eta} \cong \eta^{\mathrm{w}}$)

The exact relation is [check it !] :

$$
\bar{\rho}+i \bar{\eta}=(\rho+i \eta)\left(1-\frac{\lambda^{2}}{2}\right)+\mathcal{O}\left(\lambda^{4}\right) .
$$

Note:

- u.t. defined by using V_{ij} only;
- nice adimensional parameters (ratios);
- experiments measure triangle "geometry" (sides, angles);
- lot of relations (e.g. $\alpha+\beta+\gamma=180^{\circ}$):
$>$ consistency tests of SM,
> global fits to parameters assuming SM.

Unitarity triangle: meas β at BaBar, Belle

A typical event used for $\mathbb{C P}$ violation in asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$at $\mathrm{V}_{\mathrm{s}}=\mathrm{m}\left(\Upsilon_{4 S}\right) \approx 10.579 \mathrm{GeV}$: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow \overline{\mathrm{B}}^{0} \mathrm{~B}^{0}$;

$$
\overline{\mathrm{B}}^{0} \rightarrow \ell^{-} \mathrm{D}^{0} \mathrm{X}^{+} ; \quad \mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{X}^{+} ;
$$

$$
\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}^{0} ; \quad \mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-} ; \quad \mathrm{K}_{\mathrm{s}}^{0} \rightarrow \pi^{+} \pi^{-}
$$

Unitarity triangle: results for β at BaBar

$$
\begin{aligned}
\mathrm{A}_{\text {raw }} & =\frac{\mathrm{n}\left[\overline{\mathrm{~B}}^{0}(\Delta \mathrm{t}) \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}^{0}\right]-\mathrm{n}\left[\mathrm{~B}^{0}(\Delta \mathrm{t}) \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}^{0}\right]}{\mathrm{n}\left[\overline{\mathrm{~B}}^{0}(\Delta \mathrm{t}) \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}^{0}\right]+\mathrm{n}\left[\mathrm{~B}^{0}(\Delta \mathrm{t}) \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}^{0}\right]} \propto \\
& \propto \sin (2 \beta) \sin (\Delta \mathrm{m} \Delta \mathrm{t}) .
\end{aligned}
$$

Thomson, pag. 401

Unitarity triangle: measure ρ, η

As of today [PDG 2020]:

- converging measurements (mainly asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$ factories BaBar, Belle);
- no deviation from 3_{f}-SM, e.g. $[\alpha+\beta+\gamma]_{\text {fit }}=\left(179_{-6}^{+7}\right)^{\circ}$;
- try harder, one of the most promising frontiers !!!

Quarks of same charge and different flavor mix together \rightarrow composite hadrons "oscillate" (e.g. $\left.\mathrm{K}^{0} \leftrightarrow \overline{\mathrm{~K}}^{0}\right)$.
The CKM matrix parameterizes the process in the context of the SM.
The lepton sector ? Do the v's mix/oscillate?
The answer to the previous question is YES.
The results are important (Nobel Prize 2015):

- $m_{v}>0$ (at least for two of them);
- there is mixing in the lepton sector;
- and possibly $\mathbb{C P}$ violation (not easy to see);
- the first discovery bSM (even though, if v 's are Dirac fermions, they can be easily

In the following the v's will be considered as massive neutral Dirac fermions (sort of neutral electrons), sometimes called "Weyl v's":

- this hypothesis is simple, but not the favorite of most physicists;
- (as of today) it is NOT falsified by the exp.;
- other comments on § Standard Model. incorporated in the SM).

The v's are very complicated objects! many (most ?) of the important discoveries in particle physics of the last 80 years came from them !!!

Assume mixing in the v sector and look for possible observables.
Simple toy model, inspired to Cabibbo angle:

- 2 families $\left(v_{1}, v_{2} \rightarrow v_{\mathrm{e}}, v_{\mu}\right)$;

$$
\binom{\left|v_{e}\right\rangle}{\left|v_{\mu}\right\rangle}=\left(\begin{array}{cc}
\cos \theta_{v} & \sin \theta_{v} \\
-\sin \theta_{v} & \cos \theta_{v}
\end{array}\right)\binom{\left|v_{1}\right\rangle}{\left|v_{2}\right\rangle} ;
$$

- free parameters: masses, mixing angle θ_{v};
- same formalism as in the ($\mathrm{K}_{1}^{0} \leftrightarrow \mathrm{~K}_{2}^{0}$) case;
- time evolution of a pure $v_{\mathrm{e}, \mu}$ at $\mathrm{t}=0$:

$$
\begin{aligned}
& \left|v_{\mathrm{e}}(\mathrm{t})\right\rangle=\cos \theta_{v} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{1} \mathrm{t}}\left|v_{1}\right\rangle+\sin \theta_{v} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{2} \mathrm{t}}\left|v_{2}\right\rangle \\
& \left|v_{\mu}(\mathrm{t})\right\rangle=-\sin \theta_{v} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{1} \mathrm{t}}\left|v_{1}\right\rangle+\cos \theta_{v} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{2} \mathrm{t}}\left|v_{2}\right\rangle
\end{aligned}
$$

- the oscillation probability \mathscr{P} is [next slide]:
$\mathscr{P}_{\mathrm{L}}\left(v_{\mathrm{e}} \rightarrow v_{\mu}\right)=\sin ^{2}\left[2 \theta_{v}\right] \sin ^{2}\left[\frac{\Delta \mathrm{~m}^{2} \mathrm{~L}}{4 \mathrm{E}}\right] ;$
$\frac{\Delta \mathrm{m}^{2} \mathrm{~L}}{4 \mathrm{E}} \approx \frac{1.27 \times\left(\mathrm{m}_{2}^{2}-\mathrm{m}_{1}^{2}\right)\left[\mathrm{eV}^{2}\right] \times \mathrm{L}[\mathrm{km}]}{\mathrm{E}[\mathrm{GeV}]}$.
notice: $v_{1,2}=$ mass eigenstates $\left(=K_{S, 1}^{0}\right)$ with $m_{1,2}$ $v_{\mathrm{e}, \mu}=$ lepton eigenstates $\left(=\mathrm{K}^{0}, \overline{\mathrm{~K}}^{0}\right)$ with $\mathrm{n}_{\mathrm{e}, \mu}$.

\rightarrow since θ_{v} and $m_{1,2}$ are not up to us, the relevant exp. parameter is L/E; with present technologies, the observation is:
- difficult with accelerators;
- better in astrophysical exp. (large L)
[actual experiments are NOT discussed here, just the basic idea]
$\left|\left\langle v_{\mathrm{e}}(\mathrm{t}) \mid v_{\mathrm{e}}(0)\right\rangle\right|^{2}=\left|\left(\cos \theta_{\mathrm{v}} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{1} \mathrm{t}}\left\langle v_{1}\right|+\sin \theta_{\mathrm{v}} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{2} \mathrm{t}}\left\langle v_{2}\right|\right)\left(\cos \theta_{\mathrm{v}}\left|v_{1}\right\rangle+\sin \theta_{\mathrm{v}}\left|v_{2}\right\rangle\right)\right|^{2}=$ $=\left|\cos ^{2} \theta_{v} \mathrm{e}^{-i \mathrm{E}_{1} \mathrm{t}}+\sin ^{2} \theta_{\mathrm{v}} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{2} \mathrm{t}}\right|^{2}=$

$$
=\left|\cos ^{2} \theta_{v} \cos \left(E_{1} t\right)-\imath \cos ^{2} \theta_{v} \sin \left(E_{1} t\right)+\sin ^{2} \theta_{v} \cos \left(E_{2} t\right)-\imath \sin ^{2} \theta_{v} \sin \left(E_{1} t\right)\right|^{2}=
$$

$$
=\cos ^{4} \theta_{v} \cos ^{2}\left(E_{1} t\right)+\sin ^{4} \theta_{v} \cos ^{2}\left(E_{2} t\right)+2 \sin ^{2} \theta_{v} \cos ^{2} \theta_{v} \cos \left(E_{1} t\right) \cos \left(E_{2} t\right)+
$$

$$
+\cos ^{4} \theta_{v} \sin ^{2}\left(E_{1} t\right)+\sin ^{4} \theta_{v} \sin ^{2}\left(E_{2} t\right)+2 \sin ^{2} \theta_{v} \cos ^{2} \theta_{v} \sin \left(E_{1} t\right) \sin \left(E_{2} t\right)=
$$

$$
=\cos ^{4} \theta_{v}+\sin ^{4} \theta_{v}+2 \sin ^{2} \theta_{v} \cos ^{2} \theta_{v} \cos \left[\left(E_{2}-E_{1}\right) t\right]+1-\left(\cos ^{2} \theta_{v}+\sin ^{2} \theta_{v}\right)^{2}=
$$

$$
=1-2 \sin ^{2} \theta_{v} \cos ^{2} \theta_{v}\left\{1-\cos \left[\left(E_{2}-E_{1}\right) t\right]\right\}=1-4 \sin ^{2} \theta_{v} \cos ^{2} \theta_{v} \sin ^{2}\left[\left(E_{2}-E_{1}\right) t / 2\right]=
$$

$$
=1-\sin ^{2}\left(2 \theta_{v}\right) \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right) .
$$

$$
\mathscr{P}_{\mathrm{L}}\left(v_{\mathrm{e}} \rightarrow v_{\mu}\right)=1-\left|\left\langle v_{\mathrm{e}}(\mathrm{t}) \mid v_{\mathrm{e}}(0)\right\rangle\right|^{2}=
$$

$$
=\sin ^{2}\left(2 \theta_{v}\right) \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right) .
$$

Current v oscillation experiments measure:

$$
\begin{aligned}
& \Delta \mathrm{m}_{12}^{2}=\mathrm{m}_{2}^{2}-\mathrm{m}_{1}^{2} \approx 7.37 \times 10^{-5} \mathrm{eV}^{2} ; \\
& \left|\Delta \mathrm{m}_{32}\right|^{2}=\left|\mathrm{m}_{3}^{2}-\mathrm{m}_{2}^{2}\right| \approx 2.56 \times 10^{-3} \mathrm{eV}^{2} ;
\end{aligned}
$$

compatible with the two "hierarchies" shown in the box (ambiguity still not solved).

Q. why v 's from the sky and not from an accelerator ? compute the value of L / E for the oscillation maxima using these values.

In the SM there are three families \rightarrow the v mixing matrix is 3×3, with the same math properties of the CKM one (three angles + a CP-violating phase).
It is called Pontecorvo-Maki-NakagawaSakata (PMNS) matrix:

$$
\left(\begin{array}{l}
\left|v_{\mathrm{e}}\right\rangle \\
\left|v_{\mu}\right\rangle \\
\left|v_{\tau}\right\rangle
\end{array}\right)=V_{\text {PKMS }}\left(\begin{array}{l}
\left|v_{1}\right\rangle \\
\left|v_{2}\right\rangle \\
\left|v_{3}\right\rangle
\end{array}\right) ;
$$

the present best measurements are [PDG]:
$\left|V_{\text {PKMS }}\right|=\left(\begin{array}{lll}0.826 & 0.544 & 0.151 \\ 0.427 & 0.642 & 0.635 \\ 0.368 & 0.540 & 0.757\end{array}\right)$.
The CP-violating phase $\left(\delta_{v}\right)$ is $\approx 3 \pi / 2$ (next slide for last result).

An example of current research in this area (T2K in Japan) Nature 580, 339 riment.org/ https://t2k-exper
$(16 / 04 / 2020)!!!$

If (Quantum field theory) and (Special relativity) and (\mathbb{H} invariant under Lorentz transformation), then
the physical states are $\mathbb{C P T}$ invariant, i.e. invariant under the consecutive application of the operators Chargeconjugation, Parity and Time-reversal.

Nota bene :

- The states may be invariant for the application of any of the three, like in strong interaction processes.
- In this case, a fortiori, they will be invariant under the three together.
- But even processes which violate one (left-handed neutrinos, K^{0} oscillations) or even two (K^{0} semileptonic decays), must be invariant under the combined application of the three together.

Consequences of the $\mathbb{C P} \mathbb{T}$ theorem :

- mass, charge and lifetime of a particle and its antiparticle are exactly equal :
$>\left|m\left(K^{0}\right)-m\left(\bar{K}^{0}\right)\right| /$ aver. $<6 \times 10^{-19}$;
$>\left|\mathrm{m}\left(\mathrm{e}^{+}\right)-\mathrm{m}\left(\mathrm{e}^{-}\right)\right| /$aver. $<8 \times 10^{-9}$;
$>|\mathrm{q}(\mathrm{p})-\mathrm{q}(\overline{\mathrm{p}})| \quad / \mathrm{q}\left(\mathrm{e}^{-}\right)<2 \times 10^{-9}$;
$>\left[\tau\left(\mu^{+}\right)-\tau\left(\mu^{-}\right)\right] \quad /$ aver. $=(2 \pm 8) \times 10^{-5}$;
- any violation in an individual or pair of symmetries must be compensated by an asymmetry in the other operation(s), so to save exact symmetry under $\mathbb{C P} \mathbb{T}$.
- The weak interactions violate \mathbb{C} and \mathbb{P} separately, but (apart from $\mathrm{K}^{0} / \mathrm{B}^{0}$ decays) are invariant under \mathbb{C} and \mathbb{P} combined (and \mathbb{T} alone).
- The weak decays of the K^{0} / B^{0} mesons violate $\mathbb{C P}$, but this is accompanied by a corresponding violation of \mathbb{T}, so that [CPT] is respected.

		$S(t, x)$	$\mathrm{P}(\mathrm{t}, \mathrm{x})$	$\mathrm{V}^{\mu}(\mathrm{t}, \mathrm{x})$	$A^{\mu}(t, x)$	$T^{\mu \nu}(t, x)$
	P	S(t, -x)	$-\mathrm{P}(\mathrm{t},-\mathrm{x})$	$\mathrm{V}^{\mu}(\mathrm{t},-\mathrm{x})$	$-A^{\mu}(t,-x)$	$\mathrm{T}^{\mu \nu}(\mathrm{t},-\mathrm{x})$
	C	$S^{\dagger}(t, x)$	$\mathrm{P}^{\dagger}(\mathrm{t}, \mathrm{x})$	$-\mathrm{V}^{\mu^{\dagger}}(\mathrm{t}, \mathrm{x})$	$A^{\mu+}(t, x)$	$-T^{\mu \nu \nu^{\dagger}}(t, x)$
	\mathbb{T}	$S(-t, x)$	$-P(-t, x)$	$\mathrm{V}^{\mu}(-\mathrm{t}, \mathrm{x})$	$\mathrm{A}^{\mu}(-t, x)$	$-T^{\mu \nu}(-t, x)$
	$\mathbb{C P}$	$S^{\dagger}(\mathrm{t},-\mathrm{x})$	$-P^{\dagger}(t,-x)$	$-\mathrm{V}^{\mu^{\dagger}}(\mathrm{t},-\mathrm{x})$	$-A^{\mu^{\dagger}}(t,-x)$	$-T^{\mu \nu \dagger}(t,-x)$
$\mathbb{C P T}$		$S^{\dagger}(-t,-x)$	$\mathrm{P}^{+}(-t,-x)$	$-\mathrm{V}^{\mu^{\dagger}}(-\mathrm{t},-\mathrm{x})$	$-A^{\mu \dagger}(-t,-x)$	$T^{\mu \nu^{\dagger}}(-t,-x)$
S	scalar		$\bar{\psi} \psi$	A simple table, to show how $\mathbb{C P T}$ transform a bilinear $\bar{\psi} \Gamma \psi$, given the vector properties of Γ.		
P	pseudo-scalar		$\bar{\psi} \gamma^{5} \psi$			
V^{μ}	(polar-) vector ${ }^{(1)}$		$\bar{\psi} \gamma^{\mu} \psi$			
A^{μ}	axial-vector		$\bar{\psi} \gamma^{4} \gamma^{5} \psi$	Warning: some phases conventional (e.g.		
$T^{\mu \nu}$	tensor		$\bar{\psi} \sigma^{\mu \nu} \psi$			
${ }^{(1)} \partial^{\mu}$ vector, but ($\left.C^{(} \partial^{\mu}=+\partial^{\mu}\right)$.				(4. \mathbb{C} for $\mathrm{P}(\mathrm{t}, \mathrm{x})$. Different definitions in literature.		

$$
\text { for a }\left\{\begin{array}{ll}
\text { c-number: } & \mathbb{C P T}(\mathrm{c})=(\mathrm{c})^{*} ; \\
\text { Dirac bra: } & \mathbb{C P T}|\mathrm{t}, \overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{p}}, \mathrm{q}, \overrightarrow{\mathrm{~s}}>=|-\mathrm{t},-\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{p}}, \overline{\mathrm{q}},-\overrightarrow{\mathrm{s}}\rangle
\end{array}\right\} \begin{aligned}
& {[\mathrm{q}=\text { all additive q.n., }} \\
& \text { any order of } \mathbb{C}, \mathbb{P}, \mathbb{T}]
\end{aligned}
$$

References

1. [BJ, 11.13]], [YN1, 16];
2. the CPT theorem is discussed in [MQR, 12];
3. the $\mathbb{C P}$ violation and the FCNC are discussed in [IE, 12-13]

Gian Lorenzo Bernini - Apollo and Daphne - 1622-25 - Galleria Borghese

End of chapter 5

