Particle Physics - Chapter 7 High energy v interactions

7 - High energy v interactions

1. High energy v interactions
2. The v beam
3. The v detectors
4. v interactions
5. CC v processes
6. Structure functions
7. The discovery of neutral currents
8. $\mathrm{NC} \vee$ processes
9. NC-leptonic v processes

A v interaction in BEBC
[original in bw, the colors are an artistic invention]

High energy v interactions

After 1960 the accelerator production of v beams of high intensity and high energy has led to a dramatic development of our understanding of weak interactions.

It is important to explain, albeit in a schematic way, what are the key points to realize a scattering experiment v-hadrons :

- The neutrino cross-sections are very small (for $E_{v}=1 \mathrm{GeV}, \sigma_{c c}(v N) \sim 10^{-38} \mathrm{~cm}^{2}$, while for the same energy $\sigma(\mathrm{pp}) \sim 10^{-26} \mathrm{~cm}^{2}$.
- Beams, detectors, experimental setups have to compensate (bulky, intense, expensive ...)

E_{v} (Lab sys, i.e. N at rest), NOT CM

Q. : from the plot, it seems that $\left(\sigma_{c c} \propto \mathrm{E}_{v}\right)$; why ? it looks ugly (actually impossible, because of high energy divergences ("unitarity violations"). [Wait and see ...]

"N" and "X" are all the relevant hadrons/quarks /systems [many different cases]
$\sigma(v N)=k E_{v} ; \quad k \approx 0.67 \times 10^{-38} \mathrm{~cm}^{2} / \mathrm{GeV}$;

$$
\sigma(\bar{v} N)=k^{\prime} E_{v} ; k^{\prime} \approx 0.34 \times 10^{-38} \mathrm{~cm}^{2} / \mathrm{GeV} .
$$

High energy v interactions: problem

Problem. How many $1-\mathrm{GeV}$ v's are necessary to produce interactions in a detector of reasonable size $\quad l$ and material X (e.g. 10 m iron) ?

- Interaction probability \mathscr{P} for 1 v :
> $\sigma=$ cross section @ 1 GeV ,
> $\ell=$ length of traversed material,
> $\mathrm{M}=$ nucleon mass,
$>\mathrm{n}=\left[\mathrm{N}_{\text {nucleons }}\right.$ per unit volume $]=$ $=m_{\text {detector }} /\left(M V_{\text {detector }}\right)=\rho_{\mathrm{x}} / M$;
$\Rightarrow \mathscr{P}=\sigma \mathrm{n} \ell=\sigma \rho_{\mathrm{x}} \mathrm{l} / \mathrm{M}=[\mathrm{MKS}]$ $\approx\left(0.7 \times 10^{-42}\right) \times \rho_{\mathrm{x}} \ell /\left(1.7 \times 10^{-27}\right)=$ $\approx 4 \times 10^{-13} \times\left(\rho_{x} / \rho_{\mathrm{H} 2 \mathrm{O}}\right) \times(\ell / 1 \mathrm{~m})=$ $\left[\ell=10 \mathrm{~m}\right.$ iron, $\rho_{\mathrm{Fe}}=7.9 \times \rho_{\mathrm{H} 2 \mathrm{O}}$]
$\approx 3.2 \times 10^{-11}$.
- i.e. we need 30 billions v's, in order to get one interaction in 10 meters of iron!
- Other used quantities : $\lambda_{\text {int }}=M /(\rho \sigma)=$ interaction length, the length of material to be traversed by a beam, to have a reduction $1 / \mathrm{e}$ of its intensity [compute it in our case].

[NB a) in all the beam discussion, mutatis mutandis " v " means both " v " and " \bar{v} ";
b) in this presentation the focus is on beams from CERN SPS: similar beams from PS, Fermilab, Serpukhov]

The relevant observable is the cross-section $\sigma_{v N}$ (or $d \sigma_{v N} / d \Omega$) at "x". In order to measure it, the experiments need the flux of incoming $v / \overline{\mathbf{v}}$.

A v / \bar{v} cannot be observed before its interaction 5. Therefore the flux can only be computed statistically, together with its stat. and syst. uncertainties. The ingredients are:
(1) the inclusive differential cross sections of the $\pi^{ \pm}$and $\mathrm{K}^{ \pm}$production in the target;
(2) the collection and collimation of $\pi^{ \pm} / K^{ \pm}$;
(3) the distribution of the decay length and position $f\left(d, r^{\prime}, \alpha\right)$;
(4) the distribution of the v / \bar{v} decay angle $f\left(\theta^{*}\right)\left[+\right.$ boost $\pi^{ \pm} / K^{ \pm} \mathrm{CM}$ system \rightarrow lab];

Using all these distributions, the flux, as a function of the v / \bar{v} angles, energy and positions, is numerically computed, usually with a MC, and used in the analysis.

In the next slides some of these features will be examined.
despite all the efforts, in v data analysis the beam is "the" problem. (Almost) all the systematics, mistakes, discussions, fights, come from the wrong control of the beam.

Few (not exhaustive) details:

- the statistical distribution of 1 and (2, i.e. $f(d, r, \alpha)$, can be directly measured;
- the momentum distribution of $\mu^{ \pm}$from $\pi^{ \pm} / K^{ \pm}$ decay can be computed and checked using their measurement in the decay and absorber tunnels; the v / \bar{v} flux is then inferred;
- the collection and collimation system (2) may use different stategies (an option for the user):
> "wide band beam" (WBB): more intense beam, but not "monochromatic" (π / K collection with high acceptance, e.g. van der Meer horn);
> "narrow band beam" (NBB): more monochromatic and higher energy, but much less intense (standard $\pi^{ \pm} / K^{ \pm}$selection);
in practice, both beams are optimized for different physics measurements;
- $f(\ell)$ and $f\left(\theta^{*}\right)$ can be analytically calculated and boosted to the LAB system, using $\beta, \gamma \quad\left[\beta=\left|p_{\pi / K}\right| / E_{\pi / K}\right.$, $\gamma=\mathrm{E}_{\pi / \mathrm{K}} / \mathrm{m}_{\pi / \mathrm{K}}$] and the lifetimes $\tau_{\pi / \mathrm{K}}$;
- many more subtleties, e.g. rare $\pi^{ \pm} / K^{ \pm}$ decays, punch-throughs, ..., are included in the computations [but not in these lectures].

The v beam : CERN accelerators

The accelerator: as an example, the Super Proton Synchrotron (SPS) at CERN, which (today) accelerates $\sim 5 \times 10^{13}$ protons per cycle to an energy $E_{p}=450 \mathrm{GeV}$.
The proton beam is extracted and sent to a target (copper, beryllium, graphite). The average secondary multiplicity is ~ 10 charged, with energies from 10 to 100 GeV . The secondaries ($\pi^{ \pm}, \mathrm{K}^{ \pm}$) are focused and let decay.

- The Van der Meer horn consists in a magnet, pulsed with currents (up to 100 kA), positioned just after the target.
- It collimates particles of a given $\operatorname{sign}\left(\pi^{+}, \mathrm{K}^{+}\right.$in the scheme) and sweeps away the opposite charge (π^{-}, K^{-}). Multi-horn setups have also been built.
- The direction of the current in the horn(s) selects a beam of $v_{\mu} \leftrightarrow \bar{v}_{\mu}:\left(\pi^{+} \rightarrow \mu^{+} v\right)$ vs $\left(\pi^{-} \rightarrow \mu^{-} \bar{v}\right)$.

Imho, one of the two great contributions of SVdM to particle physics (he got the Nobel prize for the other).

In the decay tunnel $\pi^{ \pm}$'s and $K^{ \pm}$'s decay.

The length of the tunnel is a compromise between cost and intensity : it should be about the average decay length.
\rightarrow In the laboratory frame the average d_{m} :

$$
d_{m}=\beta \gamma c \tau=p c \tau / m .
$$

E.g. for $50 \mathrm{GeV} \pi^{+},\left[c \tau\left(\pi^{+}\right)=7.8 \mathrm{~m}\right]$:

$$
\mathrm{d}_{\mathrm{m}}=50 \times 7.8 / .140=2800 \mathrm{~m} .
$$

(in reality the tunnels are only few $\times 100 \mathrm{~m}$).

The figures show :
$>$ the angle between the v and its parent (i.e. the additional angular spread of the beam due to the decay), for v originating from K or $\pi\left(v^{\mathrm{K}}\right.$ and v^{π});
$>$ the energy distribution of the v and \bar{v} beams for 10^{13} protons on target.

- Only beams of $v_{\mu}\left(\right.$ or $\left.\bar{v}_{\mu}\right)$ can be created: v_{e} ($\mathrm{or} \bar{v}_{\mathrm{e}}$) are small contaminations (e.g. from $\mathrm{K}^{+}{ }_{\mathrm{e} 3}$ decays);
- the v's are not directly measurable \rightarrow some info about their 4-momentum comes from the kinematics of the decay of the $\pi^{ \pm} \mathrm{s}$ and $\mathrm{K}^{ \pm} \mathrm{S}\left(\pi^{ \pm} / \mathrm{K}^{ \pm} \rightarrow \mu^{ \pm} v_{\mu}\right)$;
- the $\pi^{ \pm}\left(\mathrm{K}^{ \pm}\right)$has spin $0 \rightarrow$ in its CM-frame isotropic decay ($\left.d^{2} n / d \varphi^{*} d \cos \theta^{*}=1 / 4 \pi\right)$;
- boost it ($\beta_{\pi}, \gamma_{\pi}$) to get the longitudinal momentum $\mathrm{p}^{/ /}$vand its distribution;
- no boost for the transverse momentum $p^{\perp}{ }_{v}$ distribution.

Results [see next slides] :

- the angular distribution for a v, respect to a $\pi^{ \pm}$of energy $E_{\pi}=m_{\pi} \gamma$, is

$$
\frac{\mathrm{dn}}{\mathrm{~d} \Omega} \approx \frac{1}{4 \pi} \frac{4 \gamma^{2}\left[1+\tan ^{2} \theta\right]^{3 / 2}}{\left(1+\gamma^{2} \tan ^{2} \theta\right)^{2}}
$$

[Kopp, Phys. Rep. 439, 101]

- put a detector of surface S at angle θ and distance $l\left(\theta \approx r / \ell \leq 10^{-2}\right.$, i.e. small); it sees a flux ϕ of v 's :

$$
\phi \approx \frac{S}{4 \pi \ell^{2}}\left(\frac{2 \gamma}{1+\gamma^{2} \theta^{2}}\right)^{2}
$$

\rightarrow better if S and γ large.

$\rightarrow \square \frac{\square}{3}$ (1)

Kinematics is simple :

- since the $\pi^{ \pm}$have spin 0 , the $(v \mu)$ distribution in the CM system is flat;
\rightarrow the momentum of the v 's in the LAB has a (roughly) flat distribution;
\rightarrow the distribution ranges between $\mathrm{E}_{v}{ }^{\text {min }} \approx 0$ and $\mathrm{E}_{v}{ }^{\text {max }}=0.43 \mathrm{E}_{\pi}$.
- [for $K^{ \pm}$decay, the same formula gives a higher maximum : $\mathrm{E}_{\mathrm{v}}{ }^{\text {max }}=0.96 \mathrm{E}_{\mathrm{k}}$]

$$
\begin{aligned}
& \mathrm{CM}:\left\{\begin{array}{llcc}
\pi^{ \pm} & :\left(m_{\pi},\right. & 0, & 0
\end{array}\right) \\
& \mathrm{m}_{\mu}^{2}=\mathrm{m}_{\pi}^{2}+\mathrm{p}^{*^{2}}-2 \mathrm{~m}_{\pi} \mathrm{p}^{*}-\mathrm{p}^{* 2}=\mathrm{m}_{\pi}^{2}-2 \mathrm{~m}_{\pi} \mathrm{p}^{*} \rightarrow \\
& \mathrm{p}^{*}=\frac{\mathrm{m}_{\pi}^{2}-\mathrm{m}_{\mu}^{2}}{2 \mathrm{~m}_{\pi}} ; \quad \quad \mathrm{E}^{*}{ }_{\mu}=\mathrm{m}_{\pi}-\mathrm{p}^{*}=\frac{\mathrm{m}_{\pi}^{2}+\mathrm{m}_{\mu}^{2}}{2 \mathrm{~m}_{\pi}} ; \\
& \left.\mathrm{p}_{v}^{/ /}\right|_{\mathrm{LAB}}=\mathrm{p} \cos \theta=\gamma \mathrm{p}^{*} \cos \theta^{*}+\beta \gamma \mathrm{p}^{*} ; \\
& \frac{d n}{\left.d p_{v}^{\prime \prime}\right|_{\text {LAB }}}=\frac{d n}{d \cos \theta^{*}} /\left|\frac{\left.d p_{v}^{\prime \prime}\right|_{\text {LAB }}}{d \cos \theta^{*}}\right|=\frac{\text { const }}{\gamma p^{*}}=\text { const; } \\
& \left.p_{v}^{/ /}\right|_{L A B} ^{\max }=\left.p_{v}^{/ /}\right|_{L A B}\left(\cos \theta^{*}=1\right)=\gamma p^{*}(1+\beta) \approx 2 \gamma p^{*}= \\
& =2 \frac{E_{\pi}}{m_{\pi}} \frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}}=E_{\pi} \frac{m_{\pi}^{2}-m_{\mu}^{2}}{m_{\pi}^{2}}=E_{\pi}\left(1-\frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right) . \\
& \left.p_{v}^{/ /}\right|_{L A B} ^{\min }=\left.p_{v}^{/ /}\right|_{L A B}\left(\cos \theta^{*}=-1\right)=\gamma p^{*}(\beta-1) \approx 0 . \\
& p_{v}^{\perp}=p^{*} \sin \theta^{*}=\left.\left.\mathcal{O}\left(m_{\pi}\right) \ll p_{v}^{/ /}\right|_{L A B} ^{\max } \approx E_{v}\right|_{L A B} ^{\max }=\mathcal{O}\left(E_{\pi}\right) .
\end{aligned}
$$

The v beam : $\mathrm{dn} / \mathrm{d} \Omega$

Moreover :

\rightarrow 汤

- 2-body decay;
- in the CM $\left(p^{*}, \Omega^{*}, \theta^{*}\right)$, the angular distribution is flat ($=1 / 4 \pi$);
- in the LAB (p, Ω, θ), boost β, γ;
- long, but simple (see box) :

$$
\begin{aligned}
\frac{d n}{d \Omega} & =\frac{d n}{d \Omega^{*}}\left|\frac{d \Omega^{*}}{d \Omega}\right|=\frac{d n}{d \Omega^{*}}\left|\frac{d \cos \theta^{*}}{d \cos \theta}\right|= \\
& =\frac{d n}{d \Omega^{*}}\left|\frac{d \cos \theta^{*}}{d \tan ^{2} \theta}\right|\left|\frac{d \tan ^{2} \theta}{d \cos \theta}\right|=
\end{aligned}
$$

$$
\approx \frac{1}{4 \pi} \frac{4 \gamma^{2}\left[1+\tan ^{2} \theta\right]^{3 / 2}}{\left(1+\gamma^{2} \tan ^{2} \theta\right)^{2}} .
$$

$$
\left\{\begin{array}{l}
\mathrm{p}_{v}^{\perp}=\mathrm{p}_{v} \sin \theta=\mathrm{p}^{*} \sin \theta^{*} ; \\
\mathrm{p}_{v}^{\prime \prime}=\mathrm{p}_{v} \cos \theta=\gamma\left(\mathrm{p}^{*} \cos \theta^{*}+\beta \mathrm{E}^{*}\right) \approx \gamma \mathrm{p}^{*}\left(\cos \theta^{*}+1\right) ; \\
\mathrm{p}_{v}^{\perp} / \mathrm{p}_{v}^{\prime \prime}=\tan \theta=\sin \theta^{*} /\left[\gamma\left(1+\cos \theta^{*}\right)\right] ; \rightarrow \\
\gamma^{2} \tan ^{2} \theta=\left(\frac{\sin \theta^{*}}{1+\cos \theta^{*}}\right)^{2}=\frac{1-\cos ^{2} \theta^{*}}{\left(1+\cos \theta^{*}\right)^{2}}=\frac{1-\cos \theta^{*}}{1+\cos \theta^{*}} ; \\
\frac{\mathrm{b}=\frac{1-a}{1+a} \rightarrow \mathrm{~b}+\mathrm{ab}=1-\mathrm{a} \rightarrow \mathrm{a}=\frac{1-\mathrm{b}}{1+\mathrm{b}}}{\mathrm{~d}} \rightarrow \cos \theta^{*}=\frac{1-\gamma^{2} \tan ^{2} \theta}{1+\gamma^{2} \tan ^{2} \theta} ; \\
\frac{\mathrm{d} \cos \theta^{*}}{\mathrm{~d} \tan ^{2} \theta}=\frac{-\gamma^{2}}{1+\gamma^{2} \tan ^{2} \theta}-\frac{\gamma^{2}\left(1-\gamma^{2} \tan ^{2} \theta\right)}{\left(1+\gamma^{2} \tan ^{2} \theta\right)^{2}}= \\
\quad=\frac{-2 \gamma^{2}}{\left(1+\gamma^{2} \tan ^{2} \theta\right)^{2}} ; \quad \frac{1}{\cos ^{2}=\frac{\cos ^{2}+\sin ^{2}}{\cos ^{2}}=1+\tan ^{2}} \\
\frac{\mathrm{~d} \tan 2}{\mathrm{~d} \cos \theta}=\frac{\mathrm{d}}{\mathrm{~d} \cos \theta}\left(\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta}\right)=\frac{\mathrm{d}}{\mathrm{dcos} \theta}\left(\frac{1}{\cos ^{2} \theta}-1\right)= \\
\\
=-2 / \cos ^{3} \theta=-2\left(1+\tan ^{2} \theta\right)^{3 / 2} ;
\end{array}\right.
$$

The v beam : the μ 's absorber

The Absorber : the detectors must obviously get ONLY ν 's and NOT the μ 's (initially as many as v 's), π 's and K's (few, but not zero).
Therefore a thick absorber is positioned at the end of the decay tunnel.

At the CERN SPS it was made with 185 m iron + 220 m rock.

As an exercise, compute the range in iron for a high energy μ. From the numerical integration of the function

$$
E=\int_{0}^{\text {range }}(\mathrm{dE} / \mathrm{dx}) \mathrm{dx}:
$$

$\mathrm{E}_{\mu}(\mathrm{GeV})$	range(Fe)	range(rock)
100 GeV	56 m	156 m
500 GeV	180 m	583 m

The v beam : conclusions

The table and the plot summarize the main performances of the two CERN beams:

- for WBB the relative contaminations:

	WBB beam	
	v_{μ}	\bar{v}_{μ}
v_{μ}	91%	15%
\bar{v}_{μ}	8%	84%
v_{e}	1%	0.4%
\bar{v}_{e}	0.1%	0.7%

E.g., it means : you think you have built a WBB \bar{v}_{μ} beam, but actually you have only $84 \% \bar{v}_{\mu}$ plus $15 \% v_{\mu}, 0.40 \% v_{e^{\prime}}, 0.70 \% \bar{v}_{\mathrm{e}}$.

- for NBB the relation between the radial distance (r) of the impact point in the detector (P) and the v energy allows for a determination of the v energy with a certain resolution, and little π / K ambiguity.

The v detectors: preliminary

Few general comments:

- rate capability NOT required: slow trigger \& data taking; pile-up negligible;
- charged currents CC [see box] and neutral currents NC [ditto] can be separated by demanding a high energy $\mu^{ \pm}$in the final state
$\rightarrow \mu^{ \pm}$identification compulsory
\rightarrow heavy liquid bubble chambers / thick calorimeters;

- the v / \bar{v} of the initial state is neither monochromatic nor detectable \rightarrow detection/measurement of the hadronic part of the final state (" H ") is compulsory for NC and useful for CC;
- backgrounds unavoidable $\left(v_{\mathrm{e}}\right.$ in the beam, v's in \bar{v} beam [or \bar{v} in v], CC \rightarrow NC because low energy $\mu^{ \pm}$, NC \rightarrow CC because $\pi^{ \pm}$decay in the shower, ...) \rightarrow careful computation + statistical subtraction (a tragedy when searching for rare events).
[here N and H is the appropriate nucleon and hadron-system respectively, better interpreted in terms of quarks, see later]

Analysis long, difficult, prone to mistakes.

The v detectors: NC kinematics

$N C \quad v_{1} \mathrm{~N} \rightarrow v_{2} \mathrm{H}$ are difficult, because both v 's not measured (e.g. WBB);

- the kinematics in the LAB sys :
$\left\{\begin{array}{llll}v_{1}\left(E_{1},\right. & E_{1}, & 0 &) \\ N(M, & 0, & 0 &) \\ v_{2}\left(E_{2},\right. & E_{2} \cos \theta, & E_{2} \sin \theta &) \\ H\left(E_{H},\right. & p_{H} \cos \theta_{H}, & \left.p_{H} \sin \theta_{H}\right)\end{array}\right.$
solve: $\begin{cases}E_{1}+M & =E_{2}+E_{H} ; \\ E_{1} & =E_{2} \cos \theta+p_{H} \cos \theta_{H} ; \\ 0 & =E_{2} \sin \theta+p_{H} \sin \theta_{H} .\end{cases}$
- assume v_{1} direction;
- approx: $\mathrm{m}_{\mathrm{v}_{1,2}}=0$;
- measure H, i.e. E_{H}, p_{H}, θ_{H}.
$\rightarrow 3$ equations, 3 unknowns $\left[\mathrm{E}_{1}, \mathrm{E}_{2}, \theta\right]$.
... after a little math ... [please check]:

$$
\begin{aligned}
& \left\lvert\, E_{1}=\frac{\left(E_{H}-M\right)^{2}-p_{H}^{2}}{2\left(E_{H}-M-p_{H} \cos \theta_{H}\right)}\right. ; \\
& E_{2}=E_{1}+M-E_{H} ;
\end{aligned}
$$

$$
\sin \theta=-\frac{p_{H} \sin \theta_{H}}{E_{2}} ;
$$

$$
\mathrm{y}=\ldots ; \quad \mathrm{Q}^{2}=\ldots ; \quad \mathrm{x}=. . .
$$

Not accurate, but possible.

Consequences:

- traditionally, the best v detectors were heavy liquid bubble chamber, filled with (freon $\mathrm{CF}_{3} \mathrm{BR}, \mathrm{Ne}$, propane), and embedded in a strong magnetic field.
- Gargamelle is one of the first and most glorious of them : "she" discovered the neutral currents [in the box her "father" A. Lagarrigue];
- with time, large calorimeters (pioneered by C.Rubbia experiment at

André Lagarrigue (1924-1975)

A photo of Gargamelle:

- coils for mag. field generation;
- holes for the cameras;
- big size (for the 70's);
- absence of cryostat;
- v's enter from the left.

The v detectors: Gargamelle

Gargamelle discovery of NC [1973] - the famous event:

- the key point is the e^{-}identification, via its brem(s);
- ... and the absence of anything else (especially a $\mu^{ \pm}$ candidate);
- the event was interpreted as a purely leptonic NC
 process $\left[\bar{v}_{\mu} \mathrm{e}^{-} \rightarrow \overline{\mathrm{v}}_{\mu} \mathrm{e}^{-}\right.$].

The v detectors: Gargamelle

Gargamelle discovery of NC.
"A beautiful hadronic neutral current event, where the interaction of the neutrino coming from the left produces three secondary particles, all
clearly identifiable as hadrons, as they interact with other nuclei in the liquid. There is no charged lepton (muon or electron)."
(D.Cundy, CERN Courier)
this is the key point

$$
v \mathrm{~N} \rightarrow[v] \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{~h}_{3}\left[\mathrm{~N}^{*}\right]
$$

In ≥ 1976 the CERN SPS was operational : new v beam, higher energy, new detectors.

BEBC (Big European Bubble Chamber) :

- cryostatic ($\mathrm{H}_{2}, \mathrm{D}_{2}, \mathrm{Ne}$, mixtures) [cryo not shown];
- giant solenoid around (not shown); at the time the largest superconducting coil in the world;
- millions of frames : extensive studies of exclusive processes (see next slide)

Curiosity : in 1977, an emulsion stack in front, to act as a target; aim : select and measure charm production in v interactions, and subsequent decays, by identifying the decay vertex;

- first direct identification of charmed mesons and baryons; first measurement of their lifetime;
- Spokesman : Marcello Conversi [believe me, it was a lot of fun].

The v detectors: BEBC

A beautiful charm event inside BEBC :

- very clear;
- 4 photo / event (at different angles \rightarrow 3D reconstruction);
- momenta / charges measured by the mag. deflections;
- $\mathrm{e}^{ \pm}$via energy loss;
- $\mu^{ \pm}$by external device (EMI);
- then, combined masses, kinematical fits, ... fun.

The v detectors: BEBC + emulsions

The v detectors: CDHS

The lion share went to two electronic calorimeters :

- CDHS (J. Steinberger et al.), a sandwich of magnetized iron disks and scintillator planes;
- [v 's from the left];
- huge mass, great $\mu^{ \pm}$identification via the iron absorbers;
- almost all the measurement which we will discuss in the next slides are from it.

The v detectors: CDHS events

Display of two events in CDHS :

- $v(\bar{v})$ from the left;
- upper event, interpreted as CC (early hadronic shower + penetrating μ^{-});

- lower event is a NC (no μ);

- notice the $\mathrm{E}_{\text {sho[wer] }}$
 measurement.

The v detectors: CDHS 2μ

An "opposite sign dimuon" event in CDHS:

- today this explanation looks very simple, almost trivial;
- but many years ago the origin of the "dimuons" was hardly understood, because of the lack of knowledge / confidence in the quark model and Cabibbo theory;
- they had an important role in convincing the physics community.

The v detectors: CHARM

... and this is CHARM (CERN-Hamburg-Amsterdam-Roma-Moscow) :

- less massive, more granular;
- sandwich of 78 marble planes $\left(1 \mathrm{X}_{0}\right)+$ scintillators, drift and streamer tubes;
- almost 100 tonnes in total;
- designed to measure Energy and direction of the hadronic shower;
- ideal for NC.

The v detectors: CHARM detector

Data taking : 1987-1991 :
$2.5 \times 10^{19} \mathrm{p}$ on target \rightarrow
$\sim 10^{8} v$ and \bar{v} interactions.
$\langle\mathrm{E}(\mathrm{v})\rangle=23.8 \mathrm{GeV}$;
$\langle E(\bar{v})\rangle=19.3 \mathrm{GeV}$.

1. large mass: 692 t ;
2. good angular resolution, because of low-Z absorber (glass) :
$\sigma(\theta) / \theta \propto Z \sqrt{ } \mathrm{E}$
3. granularity for vertex definition (e/ π^{0} separation) : fine-grained trackers, larocci tubes with cells of 1 cm .
[tech. detail: in previous page CHARM-1 (marble, ca 1978), while in this page CHARM-2
 (glass, ca 1987)]

The v detectors: CHARM event

Neutral leptonic current: $v_{\mu} \mathrm{e}^{-} \rightarrow v_{\mu} \mathrm{e}^{-}$

[remember : summary : e.m., NC, CC]

from § 4

v interactions : the landscape

How many types of v / \bar{v} processes exist ?
A lot, even in lowest order:

- $(N C+C C) \times(s-$, t-channel);
- for each of them, many lepton replica ($\ell^{ \pm}$ $\left.=\mathrm{e}^{ \pm}, \mu^{ \pm}, \tau^{ \pm}\right)$;
- the semi-leptonic case : change only one fermion pair to quarks, i.e. $q \bar{q}$ for NC and $q^{\prime} \bar{q}^{\prime}$ for CC (q' is a CKM-rotated quark);
- each q^{\prime} line counts for three (e.g. a d' is a mixture of dsb, with coefficients given by the CKM matrix).

The key feature of the SM is that all these hundreds of processes reduce to a handful number of coupling constants and charges, which allow to quantify all of them.

$$
\begin{aligned}
& \text { E.g.: } v_{\mathrm{e}} \mathrm{e}^{+} \rightarrow v_{\mu} \mu^{+} \text {is CC-s; } \\
& v_{\mu} \mathrm{e}^{ \pm} \rightarrow v_{\mu} \mathrm{e}^{ \pm} \text {and } v_{\mathrm{e}} \mathrm{e}^{-} \rightarrow v_{\mathrm{e}} \mathrm{e}^{-} \text {are NC-t; } \\
& v_{\mathrm{e}} \mathrm{e}^{+} \rightarrow v_{\mathrm{e}} \mathrm{e}^{+} \text {is NC-t } \oplus \text { CC-s. }
\end{aligned}
$$

[NB some of these processes are invisible or impossible in ordinary matter]

s-
channel

channel

$c_{v_{e}, \ell^{ \pm}, \bar{q}}^{(-)} \longrightarrow$

CC ν processes: $\nu_{\mu} \mathrm{e}^{-} \rightarrow \mu^{-} \nu_{\mathrm{e}}$ "inverse μ-decay"

A very simple (possibly the simplest) CC process is the pure lepton scattering ($\nu_{\mu} \mathrm{e}^{-}$ $\rightarrow \mu^{-} v_{\mathrm{e}}$, "inverse μ-decay"); no hadrons, only CC, only one Feynman diagram:

- in Fermi theory, when the energy $\mathrm{E}_{\mathrm{v}} \gg$ $m_{e, \mu}$ since V_{s} is the only energy scale, for dimensional considerations*:

$$
\begin{aligned}
& \sigma \propto G_{F}^{2} s \approx G_{F}^{2}\left(2 m_{e} E_{v}\right) \propto G_{F}^{2} E_{v} ; \\
& d \sigma / d \Omega^{*}=\sigma / 4 \pi \propto G_{F}^{2} s /(4 \pi) \propto G_{F}^{2} E_{v} ;
\end{aligned}
$$

the space isotropy of the cross section is explained by the conservation of the total angular momentum (= 0 both in initial and final state).

- the above formula reproduces the data ($\sigma \propto E_{v}$), but violates unitarity at high energy, because $\sigma_{\text {Fermi }}$ would diverge.
- In the SM, the process is mediated by a $\mathrm{W}^{ \pm} \rightarrow$ use the simplified propagator* :

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega^{*}}=\frac{g^{4} s}{128 \pi^{2} m_{w}^{4}}=\left(\frac{\sqrt{2} g^{2}}{8 m_{w}^{2}}\right)^{2} \frac{m_{e} E_{v}}{2 \pi^{2}}=G_{F}^{2} \frac{m_{e} E_{v}}{2 \pi^{2}} ; \\
& \sigma \quad=G_{F}^{2} \frac{2 m_{e} E_{v}}{\pi}=\frac{G_{F}^{2} s}{\pi}=\sigma_{\text {Fermi: }} .
\end{aligned}
$$

- For $Q^{2} \gg m_{w}{ }^{2}, \sigma_{S M} \propto m_{e} E_{v} / Q^{4} \propto 1 / s$, as expected.
* valid for $m_{w}^{2} \gg Q^{2} \gg m_{\mu}^{2}$, i.e. for $Q^{2} \sim s=2 m_{e} E_{v}$ $m_{w}{ }^{2} / 2 m_{e} \gg \mathrm{E}_{\mathrm{v}} \gg 10 \mathrm{GeV}\left[\mathrm{E}_{\mathrm{v}}=10 \mathrm{GeV}\right.$??? \rightarrow next $]$

CC v processes: $\sigma\left(v_{\mu} e^{-} \rightarrow \mu^{-} v_{\mathrm{e}}\right)$

However, a kinematical constraint has to be incorporated in the σ [see box and $\S K^{0}$]:

- the creation of a $\mu^{ \pm}$requires high energy v_{μ} 's;
- with present accelerators, no τ 's are created, even if the beam contains a v_{τ} contamination.

The complete cross-section is:

$$
\begin{aligned}
& \frac{d \sigma\left(v_{\mu} e^{-} \rightarrow v_{e} \mu^{-}\right)}{d y}=\frac{2 G_{F}^{2} m_{e} E_{v}}{\pi}\left(1-\frac{m_{\mu}^{2}}{2 m_{e} E_{v}}\right)^{2} ; \\
& \sigma\left(v_{\mu} e^{-} \rightarrow v_{e} \mu^{-}\right)=\frac{2 G_{F}^{2} m_{e} E_{v}}{\pi}\left(1-\frac{m_{\mu}^{2}}{2 m_{e} E_{v}}\right)^{2} .
\end{aligned}
$$

[y is the variable defined in $\S 2$ - see later]

- This process (+ μ decay) is the modern way to compute all the "Fermi" parameters (g_{s}, g_{p}, g_{v}, g_{A}, g_{T}) for CC dynamics in the lepton sector.
- ... in agreement with the SM V-A prediction.

In the process $v_{\mu} \mathrm{e}^{-} \rightarrow \mu^{-} v_{\mathrm{e}}(\mathrm{LAB})$:

$$
\begin{aligned}
& E_{v_{\mu}}^{\min } \equiv E^{\min }=\frac{\left(m_{\mu}+m_{v_{e}}\right)^{2}-m_{v_{\mu}}^{2}-m_{e}^{2}}{2 m_{e}} . \\
& m_{v_{e}} \approx m_{v_{\mu}} \approx 0 \rightarrow \\
& E^{\min }=\frac{m_{\mu}^{2}-m_{e}^{2}}{2 m_{e}} \approx \frac{m_{\mu}^{2}}{2 m_{e}} \approx 11 \mathrm{GeV} .
\end{aligned}
$$

$$
\text { For } v_{\tau} \mathrm{e}^{-} \rightarrow v_{\mathrm{e}} \tau^{-}: \mathrm{E}^{\min } \approx \frac{\mathrm{m}_{\tau}^{2}}{2 \mathrm{~m}_{\mathrm{e}}} \approx 3 \mathrm{TeV} .
$$

So, $v_{\tau} \mathrm{e}^{-} \rightarrow \mathrm{v}_{\mathrm{e}} \tau^{-}$is NOT possible at present from the (small) number of ν_{τ} 's in a ν_{μ} beam (from D_{s} decays).

However, the pure lepton process is so rare, that it is hard to get statistical significance.
More common processes are $\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{p}$, $\bar{v}_{\mu} \mathrm{p} \rightarrow \mu^{+} \mathrm{n}$, "the quasi-elastic scattering", where nucleons interacts coherently :

- in Fermi theory with pointlike p / n [=N] and a threshold $s>2 \mathrm{~m}_{\mathrm{N}} \mathrm{E}_{\mathrm{v}}$:
$\sigma \propto G_{F}^{2} s=2 G_{F}^{2} m_{N} E_{v}$,
i.e. $\sigma(v N) / \sigma(v e)=m_{N} / m_{e} \approx 2,000(!) ;$
- in the V-A theory at low Q^{2} : $\sigma=G_{F}^{2} \cos ^{2} \theta_{c} E_{V}^{2}\left[f_{V}(0)^{2}+3 f_{A}(0)^{2}\right]$ where $f_{V}\left(Q^{2}\right), f_{A}\left(Q^{2}\right)$ are form factors;
- at higher energy, $\mathrm{f}_{\mathrm{V}, \mathrm{A}} \propto\left(1+\mathrm{Q}^{2} / \mathrm{A}^{2}\right)^{-1}$ i.e. σ NOT dependent on E_{v} [see plot];
- at high Q^{2}, as expected, the nucleons "break" and the interactions "see" quarks instead of nucleons; at high energies "quasi-elastic" essentially disappears;
- at high Q^{2}, the quark-parton model is expected to describe well neutrino interactions, in the frame of the SM.

$\mathrm{CC} \vee$ processes: partons

- Individual hadronic or semileptonic processes happen at parton level (at high Q^{2} "coherence" becomes meaningless).
- Partons (=quarks) are :
> elementary;
> $\operatorname{spin} 1 / 2$;
> (almost) massless.
- Consider the process:

$$
v_{\mu} \mathrm{d} \rightarrow \mu^{-} \mathrm{u}
$$

- Do some simple kinematics at parton level, using the DIS variables (see §2).
- The variables y ("inelasticity") and θ^{*} will be used a lot:

$$
\begin{aligned}
& \cos \theta^{*}=1-2 y \\
& d \cos \theta^{*}=-2 d y
\end{aligned}
$$

$$
\begin{aligned}
& C M \text { sys }\left\{\begin{array}{llll}
v_{\mu} & \left(E^{*}, E^{*},\right. & 0 \\
d & \left(E^{*},-E^{*},\right. & 0 \\
\mu^{-} & \left(E^{*}, E^{*} \cos \theta^{*},\right. & \left.E^{*} \sin \theta^{*}\right) \\
u & (\ldots, & \ldots, & \ldots
\end{array}\right) \\
& L A B \text { sys }\left\{\begin{array}{llll}
v_{\mu} & \left(E_{v},\right. & E_{v}, & 0 \\
d & \left(m_{d},\right. & 0, & 0 \\
\mu^{-} & \left(E_{\mu},\right. & E_{\mu} \cos \theta, & \left.E_{\mu} \sin \theta\right) \\
u & (\ldots, & \ldots, & \ldots
\end{array}\right)
\end{aligned}
$$

$$
\left.\mathrm{p}_{\mu} \cdot \mathrm{p}_{\mathrm{d}}\right|_{\angle A B}=\mathrm{E}_{\mu} \mathrm{m}_{\mathrm{d}}=\left.\mathrm{p}_{\mu} \cdot \mathrm{p}_{\mathrm{d}}\right|_{\mathrm{CM}}=\mathrm{E}^{*^{2}}\left(1+\cos \theta^{*}\right) ;
$$

$$
\left.\mathrm{p}_{\mathrm{v}} \cdot \mathrm{p}_{\mathrm{d}}\right|_{\mathrm{LAB}}=\mathrm{E}_{\mathrm{v}} \mathrm{~m}_{\mathrm{d}}=\left.\mathrm{p}_{\mathrm{v}} \cdot \mathrm{p}_{\mathrm{d}}\right|_{\mathrm{cM}}=2 \mathrm{E}^{* 2} ;
$$

$$
\mathrm{y}=\frac{\mathrm{q} \cdot \mathrm{P}}{\mathrm{k} \cdot \mathrm{P}}=\frac{v}{\mathrm{E}}=\frac{\mathrm{E}_{v}-\mathrm{E}_{\mu}}{\mathrm{E}_{v}}=1-\frac{\mathrm{E}_{\mu}}{\mathrm{E}_{v}}=\frac{1-\cos \theta^{*}}{2} .
$$

$\mathrm{CC} \vee$ processes: helicity

Using a "quasi-Fermi" approximation, it is possible to compute angular cross sections for the CC semileptonic processes.
"Quasi-Fermi" means "Fermi-style" total cross-section \times angular dependence from $\mathrm{V}-\mathrm{A}$, i.e. CC current $\propto\left(1-\gamma_{5}\right)$.

$$
\begin{aligned}
& v_{\mu} d \rightarrow \mu^{-} u: \\
& \frac{d \sigma}{d \Omega^{*}}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \hat{s}}{4 \pi^{2}} ; \quad \frac{\mathrm{d} \sigma}{\mathrm{dy}}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \hat{s}}{\pi} .
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\bar{v}_{\mu} u \rightarrow \mu^{+} d: \\
\frac{d \sigma}{d \Omega^{*}}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \hat{s}}{4 \pi^{2}} \times\left(\frac{1+\cos \theta^{*}}{2}\right)^{2} ; \\
\frac{d \sigma}{d y}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \hat{s}}{\pi} \times(1-\mathrm{y})^{2} .
\end{array}\right.
$$

In the ($\bar{v}_{\mu} u$) case, $\theta^{*}=180^{\circ}$ clearly violates angular momentum conservation, while $\theta^{*}=0^{\circ}$ is allowed : hence the $(1-y)^{2}$ factor [next slide].
[notice : θ^{*} and $\hat{\text { s }}$ are the CM variables at parton level, very useful for understanding, but y $\left(=1-\mathrm{E}_{\|} / \mathrm{E}_{\mathrm{v}}\right)$ is the experimental variable, which is really measured; in fact, it is independent from the "hadronic garbage"].

$\mathrm{CC} v$ processes: $\mathrm{d} \sigma / \mathrm{dy}$

suppressed
for $\theta^{*}=180^{\circ}$

Some simple kinematics :
$y=1-\frac{E_{\mu}}{E_{v}}=\frac{1-\cos \theta^{*}}{2} ;$
$\cos \theta^{*}=1-2 \mathrm{y}$;
$\left(1+\cos \theta^{*}\right) / 2=1-y ;$
$\left(1+\cos \theta^{*}\right)^{2} / 4=(1-y)^{2} ;$
$\left|d \cos \theta^{*}\right|=2 d y ;$
$\mathrm{d} \Omega=2 \pi \mathrm{~d} \cos \theta^{*}=4 \pi \mathrm{dy}$.

CC v processes: score

$$
\begin{aligned}
& v_{\mu} d \rightarrow \mu^{-} u: \\
& \frac{d \sigma}{d \Omega^{*}}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \hat{s}}{4 \pi^{2}} ; \quad \frac{d \sigma}{d y}=\frac{G_{F}^{2} \hat{s}}{\pi} .
\end{aligned}
$$

$$
\begin{aligned}
& \bar{v}_{\mu} u \rightarrow \mu^{+} d: \\
& \frac{d \sigma}{d \Omega^{*}}=\frac{G_{F}^{2} \hat{s}}{4 \pi^{2}} \times\left(\frac{1+\cos \theta^{*}}{2}\right)^{2} ; \\
& \frac{d \sigma}{d y}=\frac{G_{F}^{2} \hat{s}}{\pi} \times(1-y)^{2} .
\end{aligned}
$$

score	process	J_{2}	$\mathrm{d} / \mathrm{d} \cos \theta^{*}$	dб/dy	σ	$\begin{aligned} & \rightarrow \text { isoscalar target } \\ & \sigma(\mathrm{vN})>\sigma(\overline{\mathrm{v}} \mathrm{~N})!!! \end{aligned}$
	$v_{\mu} \mathrm{u} \rightarrow \mu^{-}$?, $\bar{v}_{\mu} \bar{u} \rightarrow \mu^{+}$?	impossible				
	$v_{\mu} \mathrm{d} \rightarrow \mu^{-} \mathrm{u}, \bar{v}_{\mu} \mathrm{d} \rightarrow \mu^{+} \bar{u}$	0	flat	flat	$\propto 1$	
	$v_{\mu} \bar{u} \rightarrow \mu^{-} \mathrm{d}, \bar{v}_{\mu} \mathrm{u} \rightarrow \mu^{+} \mathrm{d}$	1	$\propto\left(1+\cos \theta^{*}\right)^{2} / 4$	$\propto(1-y)^{2}$	$\propto 1 / 3$	
	$v_{\mu} \mathrm{d} \rightarrow \mu^{-}$?, $\bar{v}_{\mu} \mathrm{d} \rightarrow \mu^{+}$?	impossible				

solve the kinematics without E_{v}

The above picture is correct only in a world with a single pair of quarks (u,d);

- if the CKM matrix were diagonal, the extension to three families would be trivial: just triple the diagrams;
- instead, the change is less trivial:
$>$ take into account the non-diagonal terms (e.g. the $u \rightarrow d$ process splits into $\mathrm{u} \rightarrow \mathrm{d}, \mathrm{u} \rightarrow \mathrm{s}, \mathrm{u} \rightarrow \mathrm{b})$;
$>$ for the quark vertex, $\mathrm{G}_{\mathrm{F}} \rightarrow \mathrm{G}_{\mathrm{F}} \mathrm{V}_{\mathrm{ij}}$, where V_{ij} is the relevant element of the CKM mixing matrix (e.g. for $\left.v_{\mu} \mathrm{d} \rightarrow \mu^{-} \mathrm{u}, \mathrm{G}_{\mathrm{F}}^{2} \rightarrow \mathrm{G}_{\mathrm{F}}^{2} \cos ^{2} \theta_{\mathrm{C}}\right)$;
- given the unitarity of V and the difficulty of recognizing different quarks, usually this discussion is useless: only the sum on final state quarks is actually measured.

Goal : describe the $\mathrm{vN}(\overline{\mathrm{v}} \mathrm{N}$) scattering.

All the building blocks have been studied; now put everything together :

- the "factorization" hypothesis of DIS [i.e. the interaction regards only one single parton; the other partons do NOT participate];
- the parton distribution in the nucleon [$f(x)$; x is the fraction of the nucleon momentum, carried by a single parton];
- the elementary cross section $\mathrm{d} \sigma / \mathrm{d} \Omega$ (better, do/dy) for individual v-parton scattering;
For both v and \bar{v}, and each final state F :
$\frac{d^{2} \sigma(v N \rightarrow \mu H)}{d x d y}=\left.\sum_{j, k} f_{j}(x) \frac{d \sigma\left(v p_{j} \rightarrow \mu p_{k}\right)}{d y}\right|_{\hat{s}=s x} ;$
$\hat{s}=s x=2 E_{v} M x=(\text { energy })^{2}$ at parton level; the sum runs on all interacting partons p_{j} ($\mathrm{q}_{\mathrm{j}}, \overline{\mathrm{q}}_{\mathrm{j}}$, both valence and sea, $\underline{\text { NOT }}$ gluons).

Connect this picture with the studies of the nucleon structure in $\mathrm{e}^{ \pm} \mathrm{N}$ DIS :

- the distributions f_{j} (pdf) have already been defined; [e.g. $u(x) d x$ is the number of u quarks in the proton with fractional momentum between x and $x+d x(0 \leq x \leq 1)$];
- the same for $\mathrm{d}(\mathrm{x}), \mathrm{s}(\mathrm{x}), \overline{\mathrm{u}}(\mathrm{x}), \mathrm{d}(\mathrm{x}), \overline{\mathrm{s}}(\mathrm{x}) \ldots$;
- a general formula for ($\mathrm{d}^{2} \sigma / \mathrm{d} \Omega \mathrm{dE}$) has been developed, which includes two structure functions $F_{1}\left(x, Q^{2}\right)$ and $F_{2}\left(x, Q^{2}\right)$;
- the transformation $\left(\Omega, E^{\prime}\right) \rightarrow(x, y)$ is pure (trivial) kinematics [see §2];
- a third function $W_{3}\left(Q^{2}, v\right)\left[\rightarrow F_{3}\left(x, Q^{2}\right)\right]$ has to be defined, because of terms, like the interference between V and A, which were absent in the ep case;
- if Bjorken scaling holds, the functions F_{1} $F_{2} F_{3}$ are functions of x and not of Q^{2}.
- the next slides contain the math.

Structure Functions: quark-parton model

In summary, the following ingredients are necessary:
a. initial state ($\mathrm{N}, \mathrm{v} \mathrm{);}$
b. pdf for parton p_{j};
c. elementary cross-section $\mathrm{d} \sigma / \mathrm{dy}$ at parton level;
d. fragmentation properties of the interacting parton + spectators.

- none of them is known event-by-event;
- all of them statistically:
(a) from the beam analysis;
(b) from GLAP evolution;
(c) from electroweak theory;
(d) can be avoided by integrating over the final-state hadrons (calorimetry);
\rightarrow exp. data can be compared statistically with theory.

Structure functions : $\mathrm{d}^{2} \sigma / \mathrm{dxdy}$

notice the replacement:

$$
\left.\frac{d^{2} \sigma}{d x d y}\right|_{\substack{\text { Dis }}}=\frac{4 \pi \alpha^{2}\left(s-M^{2}\right)}{Q^{4}}\left[x y^{2} F_{1}\left(x, Q^{2}\right)+\left(1-y-\frac{M^{2} x y}{s-M^{2}}\right) F_{2}\left(x, Q^{2}\right)\right]=
$$

$$
\xrightarrow{s \gg M^{2}} \frac{4 \pi \alpha^{2} s}{Q^{4}}\left[x y^{2} F_{1}\left(x, Q^{2}\right)+(1-y) F_{2}\left(x, Q^{2}\right)\right] ;
$$

$$
\left.\frac{d^{2} \sigma}{d x d y}\right|_{\overline{\mathrm{V} p}}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{~F}}{2 \pi}\left[x y^{2} \bar{F}_{1}^{\overline{\bar{p}}}\left(x, Q^{2}\right)+(1-y) F_{2}^{\overline{\bar{v}_{p}}}\left(x, Q^{2}\right)-x y\left(1-\frac{y}{2}\right) \bar{F}_{3}^{\overline{\mathrm{p}}}\left(x, Q^{2}\right)\right] .
$$

For the vn scattering, $\left(F_{1}^{v p}, F_{2}^{v p}, F_{3}^{v p}\right) \rightarrow\left(F_{1}^{v n}, F_{2}^{v n}, F_{3}^{v n}\right)$, and so on for $\bar{v} n$.

- Compute everything in a simplified "2quarks world" (extension to 6 quarks + CKM mixing is elaborate but trivial);
- define $u(x), d(x), \bar{u}(x), d(x)$ the x-distribution of quarks $u, d, u \bar{d}, d$ in the proton ($p d f$);
- [if $u(x), d(x), \bar{u}(x), d(x)$ reflect the actual structure of p and n, they must be the same for $\mathrm{e}^{ \pm}, v$ and \bar{v} scattering;]
- then, some simple consistency relations between p and n follows :
- [first 1 the algebra on the right, then the case vp fully computed in the next slide, finally 3 the results, equating the coefficients with same power of y];
- notice that the Callan-Gross equation (see next slide) comes out again, together with other "theorems" (\rightarrow predictions).

$$
\frac{d^{2} \sigma(v p)}{d x d y}=\frac{G_{F}^{2} s x}{\pi}\left[d(x)+(1-y)^{2} \bar{u}(x)\right] ;
$$

$$
\frac{\mathrm{d}^{2} \sigma(\bar{v} \mathrm{p})}{\mathrm{dxdy}}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{sx}}{\pi}\left[\overline{\mathrm{~d}}(\mathrm{x})+(1-\mathrm{y})^{2} \mathrm{u}(\mathrm{x})\right]
$$

$$
\frac{d^{2} \sigma(v n)}{d x d y}=\frac{G_{F}^{2} s x}{\pi}\left[d^{n}(x)+(1-y)^{2} \bar{u}^{n}(x)\right] ;
$$

$$
\frac{d^{2} \sigma(\bar{v} n)}{d x d y}=\frac{G_{F}^{2} s x}{\pi}\left[\bar{d}^{n}(x)+(1-y)^{2} u^{n}(x)\right]
$$

$$
\mathrm{u}^{\mathrm{n}}(\mathrm{x}) \approx \mathrm{d}(\mathrm{x}) ; \quad \overline{\mathrm{u}}^{\mathrm{n}}(\mathrm{x}) \approx \overline{\mathrm{d}}(\mathrm{x}) ;
$$

$$
\mathrm{d}^{n}(\mathrm{x}) \approx \mathrm{u}(\mathrm{x}) ; \quad \overline{\mathrm{d}}^{n}(\mathrm{x}) \approx \bar{u}(\mathrm{x}) ;
$$

$$
\frac{d^{2} \sigma(v n)}{d x d y}=\frac{G_{F}^{2} s x}{\pi}\left[u(x)+(1-y)^{2} \bar{d}(x)\right] ;
$$

$$
\frac{d^{2} \sigma(\bar{v} n)}{d x d y}=\frac{G_{F}^{2} s x}{\pi}\left[\bar{u}(x)+(1-y)^{2} d(x)\right] ;
$$

$$
\frac{d^{2} \sigma(v p)}{d x d y}=\frac{G_{F}^{2} s}{2 \pi}\left[\begin{array}{l}
x y^{2} F_{1}^{v \rho}(x)+(1-y) F_{2}^{v \rho}(x)+ \\
+x y(1-y / 2) F_{3}^{v \rho}(x)
\end{array}\right]
$$

- math for the v p case shown in 2 ;
- neglect heavy quarks, i.e. $s(x)=\bar{s}(x)=0$;
- vn from isospin symmetry: results shown in 3 together with vp;
- $\bar{v} p, \bar{v} n$ left as an exercise.

$$
\left\{\begin{array}{l}
F_{2}^{v p}(x)=2 x F_{1}^{v p}(x)=2 x[d(x)+\bar{u}(x)] ; \\
x F_{3}^{v p}(x)=2 x[d(x)-\bar{u}(x)] ; \\
\left\{\begin{array}{l}
F_{2}^{v n}(x)=2 x F_{1}^{v n}(x)=2 x[u(x)+\bar{d}(x)] ; \\
x F_{3}^{v n}(x)=2 x[u(x)-\bar{d}(x)] .
\end{array}\right\}
\end{array}\right.
$$

$$
\begin{aligned}
& \frac{d^{2} \sigma(v p)}{d x d y}=\frac{G_{F}^{2} s x}{\pi} \frac{2}{2}\left[d(x)+(1-y)^{2} \bar{u}(x)\right] ; \\
& \frac{d^{2} \sigma(v p)}{d x d y}=\frac{G_{F}^{2} s}{2 \pi}\left[\begin{array}{l}
x y^{2} F_{1}^{v p}(x)+(1-y) F_{2}^{v p}(x)+ \\
+x y(1-y / 2) F_{3}^{v p}(x)
\end{array}\right] ; \\
& \text { a) } \mathrm{y}^{0} \rightarrow 2 \mathrm{x}(\mathrm{~d}+\overline{\mathrm{u}})=\mathrm{F}_{2} \text {; } \\
& \text { b) } \mathrm{y}^{1} \rightarrow 2 \mathrm{x}(-2) \overline{\mathrm{u}}=-4 \mathrm{x} \overline{\mathrm{u}}=-\mathrm{F}_{2}+x \mathrm{~F}_{3}= \\
& =-[2 x d+2 x \bar{u}]+x F_{3} ; \\
& x F_{3}=2 x d-2 x \bar{u}=2 x(d-\bar{u}) \text {; } \\
& \mathrm{F}_{3}=2(\mathrm{~d}-\overline{\mathrm{u}}) ; \\
& \text { c) } y^{2} \rightarrow 2 x \bar{u}=x F_{1}-x F_{3} / 2 \text {; } \\
& x F_{1}=2 x \bar{u}+x[2(d-\bar{u})] / 2=x(d+\bar{u}) ; \\
& \mathrm{F}_{1}=\mathrm{d}+\overline{\mathrm{u}} ; \\
& 2 \mathrm{xF}_{1}=\mathrm{F}_{2} \quad \text { (Callan-Gross). }
\end{aligned}
$$

For CC process $\left(v_{\mu} N\right)$ and ($\bar{v}_{\mu} N$), expect [target "isoscalar", i.e. composed by same number of p / n (all heavy materials] :

- same number of u and d (valence), and much smaller amount of ū d (sea); s and \bar{s} are negligible;
- for v_{μ} a mixture of ($v_{\mu} d$) and ($\left.v_{\mu} \bar{u}\right)$, because (v_{μ} u) and (v_{μ} d) do NOT interact in CC;
- for \bar{v}_{μ} a mixture of $\left(\bar{v}_{\mu} u\right)$ and ($\left.\bar{v}_{\mu} \bar{d}\right)$;
- ($\left.v_{\mu} \mathrm{d}\right),\left(\bar{v}_{\mu} \mathrm{d}\right)$ have flat y distributions;
- $\left(v_{\mu} \bar{u}\right),\left(\bar{v}_{\mu} u\right)$ proportional to (1-y) ${ }^{2}$;
$>$ for $v_{\mu^{\prime}}$ expectation is large constant + some minor parabolic contribution;
$>$ for \bar{v}_{μ} it is the opposite: a dominant parabola + a small constant;
- plot $\mathrm{d} \sigma / \mathrm{dy}$ for v and \bar{v} after integrating over x and E_{v} : great success !!!

$$
\begin{aligned}
& \frac{d^{2} \sigma(v N)}{d x d y}=\frac{1}{2}\left[\frac{d^{2} \sigma(v p)}{d x d y}+\frac{d^{2} \sigma(v n)}{d x d y}\right]=\frac{G_{F}^{2} s x}{2 \pi}\left\{[u(x)+d(x)]+(1-y)^{2}[\bar{u}(x)+\bar{d}(x)]\right\}=\frac{G_{F}^{2} s x}{2 \pi}\left[q(x)+(1-y)^{2} \bar{q}(x)\right] ; \\
& \frac{d^{2} \sigma(\bar{v} N)}{d x d y}=\frac{1}{2}\left[\frac{d^{2} \sigma(\bar{v} p)}{d x d y}+\frac{d^{2} \sigma(\bar{v} n)}{d x d y}\right]=\frac{G_{F}^{2} s x}{2 \pi}\left\{[\bar{u}(x)+\bar{d}(x)]+(1-y)^{2}[u(x)+d(x)]\right\}=\frac{G_{F}^{2} s x}{2 \pi}\left[\bar{q}(x)+(1-y)^{2} q(x)\right] .
\end{aligned}
$$

- For an isoscalar target, we get

$$
\begin{aligned}
F_{2}{ }^{\mathrm{NN}} & =\left(F_{2}^{\mathrm{vp}}+F_{2}^{\mathrm{vn}}\right) / 2= \\
& =x[u(x)+d(x)+\bar{u}(x)+d(x)] ; \\
F_{2}{ }^{\mathrm{eN}} & =\left(F_{2}{ }^{\mathrm{ep}}+F_{2}{ }^{\mathrm{en}}\right) / 2= \\
& =5 \mathrm{x} / 18[\mathrm{u}(\mathrm{x})+\mathrm{d}(\mathrm{x})+\overline{\mathrm{u}}(\mathrm{x})+\mathrm{d}(\mathrm{x})] ;
\end{aligned}
$$

therefore :

$$
F_{2}{ }^{e N}(x)=5 / 18 F_{2}{ }^{v N}(x) .
$$

[the value $5 / 18$ is just the average of the quark charges squared: $\left[(1 / 3)^{2}+(2 / 3)^{2}\right] / 2$.]
[in other words, in e.m. processes the interactions are proportional to e^{2}, while in CC scattering they are normalized to 1; there is no relative normalization between e.m. e CC in the rule].

- For F_{3}, we get

$$
\begin{aligned}
F_{3}{ }^{v N} & =\left(F_{3}^{v p}+F_{3}^{v n}\right) / 2= \\
& =[u(x)+d(x)-\bar{u}(x)-d(x)] ;
\end{aligned}
$$

the structure functions have contributions from valence and sea :

$$
\begin{aligned}
& >\mathrm{u}(\mathrm{x})=\mathrm{u}_{\mathrm{v}}(\mathrm{x})+\mathrm{u}_{\mathrm{s}}(\mathrm{x})=\mathrm{u}_{\mathrm{v}}(\mathrm{x})+\operatorname{Sea}(\mathrm{x}) ; \\
& >\overline{\mathrm{u}}(\mathrm{x})=\bar{u}_{\mathrm{s}}(\mathrm{x})=\operatorname{Se} a(\mathrm{x}) ; \\
& >\int_{0}^{1} \mathrm{u}_{\mathrm{v}}(\mathrm{x}) \mathrm{dx}=2 ; \quad \int_{0}^{1} \mathrm{~d}_{\mathrm{v}}(\mathrm{x}) \mathrm{dx}=1,
\end{aligned}
$$

then

$$
\begin{aligned}
& F_{3}{ }^{v N}=[u(x)+d(x)-\bar{u}(x)-d(x)]= \\
&=u_{v}(x)+d_{v}(x) ; \\
& \int_{0}^{1} F_{3}{ }^{v N}(x) d x=\int_{0}^{1}\left[u_{v}(x)+d_{v}(x)\right] d x=3 ;
\end{aligned}
$$

known as the Gross - Llewellyn-Smith sum rule.

- Experimentally, the G.-L.S. rule is well verified $=3.0 \pm 0.2$.

Structure functions: $\mathrm{vN} \leftrightarrow \mathrm{eN}$

- In the same Q^{2} range, $F_{2}^{v N}$ from CDHS data shows a nice agreement with $18 / 5$ \times e.m. (μ^{-}from EMC, e^{-}from MIT).
- The figure shows also the contribution of $\mathrm{F}_{3}^{\mathrm{vN}}$ and the antiquarks alone.
- Since $\int(1-y) 2 d y=1 / 3$, if there were only valence in the nucleon, i.e. $\bar{q}(x)=0$:

$$
\sigma^{v N} / \sigma^{\bar{v}} \approx 3
$$

- If instead the cross-sections are written in terms of quarks and antiquarks :

$$
\begin{aligned}
& \sigma^{v N}=G_{F}^{2} s /(2 \pi)\left[f_{q}+1 / 3 f_{\bar{q}}\right] ; \\
& \sigma^{\overline{v N}}=G_{F}^{2} s /(2 \pi)\left[1 / 3 f_{q}+f_{\bar{q}}\right] ;
\end{aligned}
$$

then, the value of f_{q} and f_{q} can be measured :

$$
f_{\mathrm{q}} \approx 0.41 ; f_{\overline{\mathrm{q}}} \approx 0.08 \rightarrow \mathrm{f}_{\mathrm{g}} \approx 0.50 ;
$$

- taking into account the \bar{q} fraction, we expect

$$
\sigma^{v N} / \sigma^{\overline{v N}} \approx\left[f_{q}+1 / 3 f_{\bar{q}}\right] /\left[1 / 3 f_{q}+f_{\bar{q}}\right] \approx 2 ;
$$

in reasonable agreement with the measurement [see page 1 !!!].

- The search for NC events began in the early 1960s, when the e.w. theory of Glashow - Weinberg - Salam was still thought not to be "renormalizable".
- The searches were limited to FCNC: possible NC "non-FC" processes were thought to be obscured by e.m. currents [in analogy with weak CC, which is visible only when flavor is violated].
- Decays like $\mathrm{K}^{+} \rightarrow \pi^{+} \mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{K}^{0} \rightarrow \mu^{+} \mu^{-}$ were searched and NOT found.
- The only escape from this difficulty is to make use of neutral particles, which do NOT sense e.m. interactions : the v's.
- The signature for this process is given by the absence in the final state of a charged lepton, which is unavoidable in the CC coupling $v \ell^{ \pm} \mathrm{W}^{\mp}$.
- Motivated by the recent discovery of the
renormalizability of the SM ('t Hooft and Veltman, 1971), the experimentalists from both sides of the Atlantic began a new "hunt" for neutral currents.

Historical Note: In 1960, experiments at CERN, by using a heavy liquid chamber and $a v$ beam, looked for NC. Unfortunately, they found that the ratio NC/CC is < 3\%, a value much smaller than the correct one. This error was eventually corrected, but the new limit (12\%) was published only in 1970.

- The events [see before] were of the type
(a) $v_{\mu}+N \rightarrow v_{\mu}+X ;$
(b) $\bar{v}_{\mu}+N \rightarrow \bar{v}_{\mu}+X$;
(c) $v_{\mu}+\mathrm{e}^{-} \rightarrow \mathrm{e}^{-}+v_{\mu}$;
(d) $\bar{v}_{\mu}+\mathrm{e}^{-} \rightarrow \mathrm{e}^{-}+\bar{v}_{\mu}$;
["X" = hadronic system, without leptons].
- In 1973, the newly built Gargamelle was filled with 15 tons of Freon ($\mathrm{C} \mathrm{F}_{3} \mathrm{Br}$).
- The first event interpreted as a pure leptonic NC.
- They had the following criteria :
> fiducial volume $3 \mathrm{~m}^{3}$;
$>$ events were defined as NC if :
i. no visible $\mu^{ \pm}$is present;
ii. no charged track escapes the confidence volume;
> Instead, events were CC if :
i. a clearly visible $\mu^{ \pm}$is present;
ii. the $\mu^{ \pm}$has to exit out of the chamber.
- Results:
$>v$ beam : 102 NC, 428 CC, $15 \mathrm{n}^{(*)}$;
$>\bar{v}$ beam : $64 \mathrm{NC}, 148 \mathrm{CC}, 12 \mathrm{n}^{(*)}$.
- The result is then :
$>$ NC/CC $(v)=0.21 \pm 0.03$;
\Rightarrow NC/CC $(\bar{v})=0.45 \pm 0: 09$;
> inconsistent with the absence of NC.
${ }^{(*)}$ This background, statistically estimated, is due to neutrons produced by v's in the structure.

There was also an American team, looking for NC. After an exciting race, they were unable to publish conclusive results before the Europeans.
Actually, the discovery of NC marks a clear turning point in high energy physics : after that, Europe was not anymore the expected looser in the game.

The NC couplings do depend on the fermion type f:		symbol	formula		definition (physical meaning)	
		g			SU(2) coupling constant	
		g^{\prime}			$\mathrm{U}(1)$ coupling constant	
		$\tan \theta_{w}$	$\equiv \mathrm{g}^{\prime} / \mathrm{g}$		tangent (Weinberg angle)	
		e	$\equiv \mathrm{g} \sin \theta_{\mathrm{w}}$		e^{+}charge ($=-\mathrm{e}^{-}$charge)	
		g ${ }^{\text {f }}$	$=I_{W_{2}}^{f}-2 \mathrm{Q}^{f} \sin ^{2}$		NC vector coupling (also $\mathrm{v}_{\mathrm{f}}, \mathrm{c}_{\mathrm{v}}$)	
		$\mathrm{g}_{\mathrm{A}}^{\mathrm{f}}$	$=1_{\text {wz }}^{\text {f }}$		NC axial coupling ($\mathrm{a}_{\mathrm{f}}, \mathrm{c}_{\mathrm{a}}$)	
		$\mathrm{g}^{\text {f }}$	$=1 / 2\left(g_{v}^{f}+g_{A}^{f}\right)=$	- Q f $\sin ^{2} \theta_{w}$	"left-handed" NC coupling	
		$\mathrm{g}_{\mathrm{R}}^{\mathrm{f}}$	$=1 / 2\left(g_{v}^{f}-g_{A}^{f}\right)=-$	d $\sin ^{2} \theta_{w}$	"right-handed" NC coupling	
		m_{w}^{2}	$\equiv \pi \alpha /\left(\sqrt{ } 2 \mathrm{G}_{\mathrm{F}} \mathrm{sin}^{2}\right.$		[$\mathrm{W}^{ \pm}$mass] ${ }^{\text {2 }}$ [careful : m_{W}^{2} !!!!]	
		m_{z}	$=\mathrm{m}_{\mathrm{w}} / \cos \theta_{\mathrm{w}}$		Z mass	
f	a_{f}	g_{v}	$\left(\sin ^{2} \theta_{w}=0.231\right)$	$\mathrm{I}_{\mathrm{W} z}=\mathrm{g}_{\mathrm{A}} \mathrm{f}^{\text {d }}$	g_{L}	$\mathrm{g}_{\mathrm{R}}^{\mathrm{f}}$
$v_{e} v_{\mu} v_{\tau}$	0	$+1 / 2+0 \quad=+0.500$		+1/2	+1/2	0
$\mathrm{e}^{-} \mu^{-} \tau^{-}$	-1	$-1 / 2+2 \mathrm{sin}^{2}$	$\mathrm{sin}^{2} \theta_{\mathrm{w}}=-0.038$	-1/2	$-1 / 2+\sin ^{2} \theta_{\mathrm{w}}$	$+\sin ^{2} \theta_{w}$ remember:
uct	2/3	$+1 / 2-4 / 3$	$\sin ^{2} \theta_{\mathrm{w}}=+0.192$	+1/2	$+1 / 2-2 / 3 \sin ^{2} \theta_{w}$	$-2 / 3 \sin ^{2} \theta_{w} \quad$ gv ~ 0
dsb	-1/3	$-1 / 2+2 / 3 \sin ^{2}$	sin $\theta_{w}=-0.346$	-1/2	$-1 / 2+1 / 3 \sin ^{2} \theta_{w}$	$+1 / 3 \sin ^{2} \theta_{w}$

NC \vee processes: $d \sigma / d y$ at parton level

Some algebra, not really difficult, but quite tedious, produces for NC the analogous formulas already derived for CC :
f : point-like fermions (ℓ^{-}, v, q);
f: point-like anti-fermions ($\ell^{+}, \bar{v}, \bar{q}$);
N : "isoscalar" nucleon ($p+n$)/2;
N ' : final state hadronic system.

$$
\begin{aligned}
& \frac{d \sigma\left(v_{\mu} f \rightarrow v_{\mu} f\right)}{d y}=\frac{G_{F}^{2} \hat{s}}{\pi}\left[\left(g_{L}^{f}\right)^{2}+(1-y)^{2}\left(g_{R}^{f}\right)^{2}\right] ; \\
& \frac{d \sigma\left(\bar{v}_{\mu} f \rightarrow \bar{v}_{\mu} f\right)}{d y}=\frac{G_{F}^{2} \hat{s}}{\pi}\left[\left(g_{R}^{f}\right)^{2}+(1-y)^{2}\left(g_{L}^{f}\right)^{2}\right] ;
\end{aligned}
$$

e.g. Rev. Mod.Phys. 70, 1341 (1998)
$\frac{d^{2} \sigma\left(v_{\mu} N \rightarrow v_{\mu} H\right)}{d x d y}=\frac{G_{F}^{2} s x}{2 \pi}\left\{\begin{array}{l}{\left[\left(\left\{g_{L}^{u}\right\}^{2}+\left\{g_{L}^{d}\right\}^{2}\right)+(1-y)^{2}\left(\left\{g_{R}^{u}\right\}^{2}+\left\{g_{R}^{d}\right\}^{2}\right)\right] q(x)+} \\ +\left[\left(\left\{g_{R}^{u}\right\}^{2}+\left\{g_{R}^{d}\right\}^{2}\right) \stackrel{+(1-y)^{2}}{\rightleftarrows}\left(\left\{g_{L}^{u}\right\}^{2}+\left\{g_{L}^{d}\right\}^{2}\right)\right] \bar{q}(x)\end{array}\right\} ;$
$\frac{d^{2} \sigma\left(\bar{v}_{\mu} N \rightarrow \bar{v}_{\mu} H\right)}{d x d y}=\frac{G_{F}^{2} s x}{2 \pi}\left\{\begin{array}{l}{\left[\left(\left\{g_{R}^{u}\right\}^{2}+\left\{g_{R}^{d}\right\}^{2}\right)+(1-y)^{2}\left(\left\{g_{L}^{u}\right\}^{2}+\left\{g_{L}^{d}\right\}^{2}\right)\right] q(x)+} \\ +\left[\left(\left\{g_{L}^{u}\right\}^{2}+\left\{g_{R}^{d}\right\}^{2}\right) \stackrel{+(1-y)^{2}}{ }\left(\left\{g_{R}^{u}\right\}^{2}+\left\{g_{R}^{d}\right\}^{2}\right)\right] \bar{q}(x)\end{array}\right\}$.

NC v processes: strategy

The same strategy as in CC preocesses:

- theory simpler, because no FCNC (i.e. same parton in/out);
- experimentally more difficult, because no meas of $v_{\text {out }} ;$
- therefore detectors more demanding on H;
- also compute $\mathrm{E}\left(\mathrm{v}_{\mathrm{in}}\right)$ using NBB;
- smaller cross section \rightarrow larger stat. error;
- larger background, because of no $\mu^{ \pm}$;
\rightarrow more difficult analysis, larger stat. and sys. errors.

To measure $\sin ^{2} \theta_{w}$:

- produce some algebra [next slide, just the strategy, not for the exam]:
- finally:

$$
\begin{aligned}
& \mathrm{R}_{v} \equiv \frac{\sigma_{\mathrm{NC}}(v N)}{\sigma_{\mathrm{cc}}(v N)} \approx \frac{1}{2}-\sin ^{2} \theta_{\mathrm{w}}+\frac{20}{27} \sin ^{4} \theta_{\mathrm{w}} ; \\
& \mathrm{R}_{\bar{v}} \equiv \frac{\sigma_{\mathrm{NC}}(\bar{v} N)}{\sigma_{\mathrm{cc}}(\bar{v} \mathrm{~N})} \approx \frac{1}{2}-\sin ^{2} \theta_{\mathrm{w}}+\frac{20}{9} \sin ^{4} \theta_{\mathrm{w}} .
\end{aligned}
$$

- The values of R_{v} and $R_{\bar{v}}$ are well defined and, at least in principle, "easy" to measure:
> unknown or difficult-to-measure parameters cancel out;
> exp. systematics, beam effects, detector ... [see next slides];
- then solve for $\sin ^{2} \theta_{\mathrm{w}}$ [see box];
- ... and [maybe more important] get a crucial test of compatibility theory \leftrightarrow exp.
the theory does NOT constrain $\sin ^{2} \theta_{w}$, i.e. any value in $[0,1]$ is allowed;
however, a generic point in the R_{v} / R_{v} plane does NOT satisfy both equations.

1. Start with the CC and NC cross sections for isoscalar targets;
2. Neglect the sea contributions $\overline{\mathrm{u}}(\mathrm{x}), \overline{\mathrm{d}}(\mathrm{x})$ [just for this simplified discussion];
3. Integrate over x and $y\left[\int_{0}^{1} d y=1, \int_{0}^{1}(1-y)^{2} d y=1 / 3\right]$;
4. Divide NC/CC and get rid of $G_{F}, s,\left(\int_{0}^{1} q(x) d x\right)$;

5. Use g_{L}^{f} and g_{R}^{f} from the previous tables $\left[g_{R}^{u 2}+g_{R}^{d 2}=\frac{5}{9} \sin \theta_{w}^{4}, g_{L}^{u 2}+g_{L}^{d 2}=\frac{1}{2}-\sin \theta_{w}^{2}+\frac{5}{9} \sin \theta_{w}^{4}\right]$;

NC v processes: $\sin ^{2} \theta_{1}$

Most recent results :

$$
\begin{array}{lll}
\text { - } \sin ^{2} \theta_{w} & =0.2356 \pm .0050 & \\
\text { - } & & \text { CHARM } \\
& =0.2250 \pm .0050 & \\
\text { - } & & =0.2332 \pm .0015 \\
& & \text { (a) } \\
\text { - } & & =0.2251 \pm .0039
\end{array} \text { (b). }
$$

The quantities REALLY measured are $R_{v}\left(R_{\bar{v}}\right)$:

$$
\begin{aligned}
R_{v} \equiv & \equiv \frac{\sigma_{\mathrm{NC}}(v N)}{\sigma_{\mathrm{cc}}(v N)}=\frac{\left[\mathrm{n}_{\mathrm{NC}}^{\text {tot }}-\mathrm{n}_{\mathrm{NC}}^{\text {bckg }}\right]}{\varepsilon_{\mathrm{NC}} \int \Phi_{v}(\mathrm{E}) \mathrm{dE}} \frac{\varepsilon_{\mathrm{cC}} \int \Phi_{v}(\mathrm{E}) \mathrm{dE}}{\left[\mathrm{n}_{\mathrm{CC}}^{\text {tot }}-\mathrm{n}_{\mathrm{CC}}^{\text {bckg }}\right]}= \\
& \xrightarrow{? ? ?} \frac{\varepsilon_{\mathrm{cC}}}{\varepsilon_{\mathrm{NC}}} \frac{\left[\mathrm{n}_{\mathrm{NC}}^{\text {tot }}-\mathrm{n}_{\mathrm{NC}}^{\text {bckg }}\right]}{\left[\mathrm{n}_{\mathrm{cC}}^{\text {tot }}-\mathrm{n}_{\mathrm{CC}}^{\text {bckg }}\right]} .
\end{aligned}
$$

The flux Φ_{v} seems to cancel out; however $\varepsilon_{\mathrm{NC}}$ and $\varepsilon_{\mathrm{CC}}$ DO depend on E_{v} and are very different for CC and NC.

In fact :

- CC, due to the presence of a charged $\mu^{ \pm}$,

Notes :

- (a) and (b) are "today's best" [PDG], for v 's on isoscalar target:
- they differ because of two different "definitions" of higher order parameters (see the radiative corrections at LEP).
are "easy" to detect, and relatively background free ($\mathrm{n}^{\text {bckg }} \ll \mathrm{n}^{\text {tot }}$);
- NC, however, are hardly distinguishable from cosmics and CC-low-energy;
- at low $y, \mu^{ \pm}$ident. is difficult \rightarrow selection algorithms get confused : CC \rightarrow NC .
Therefore:
> accurate computation of the flux as a function of E_{v};
> accurate understanding of the systematics;
> reproduction via montecarlo, to study algorithms and systematics.

NC-leptonic \vee processes : kinematics

- The cleanest NC process are

$$
\left(v_{\mu} \mathrm{e}^{-} \rightarrow v_{\mu} \mathrm{e}^{-}\right) \text {and }\left(\bar{v}_{\mu} \mathrm{e}^{-} \rightarrow \bar{v}_{\mu} \mathrm{e}^{-}\right)
$$

- In fact, no hypothesis on "isoscalarity", no dependence on structure functions, on sea-content of the nucleon, ...
- Only one problem : cross section ($\propto \mathrm{s}$ $\left.=2 m_{e} E_{v}\right)$ VERY small :

$$
s\left(v_{\mu} e^{-}\right)=2 m_{e} E_{v} \approx s\left(v_{\mu} N\right) / 2,000
$$

- However, the process has been extensively studied.
- The problem : select the tiny number of signal events from the overwhelming NC (hadronic) events.
- The key is the very particular kinematics (see box).

Lab sys. $\left(i=v_{\text {initial }}, f=v_{\text {final }}, p_{i} \approx E_{i}, p_{f} \approx E_{f}, p_{e} \approx E_{e}\right)$:
E) $E_{i}+m_{e}=E_{e}+E_{f}$;
x) $E_{i}=E_{e} \cos \theta_{e}+E_{f} \cos \theta_{f}$;
y) $0=E_{e} \sin \theta_{e}+E_{f} \sin \theta_{f}$.

Subtract (x) from (E) and $\times 2$:
$2 m_{e}=2 E_{e}\left(1-\cos \theta_{e}\right)+2 \mathrm{E}_{\mathrm{f}}\left(1-\cos \theta_{\mathrm{f}}\right) ;$
$0 \leq 2 \mathrm{E}_{\mathrm{e}}\left(1-\cos \theta_{\mathrm{e}}\right) \approx \mathrm{E}_{\mathrm{e}} \theta_{\mathrm{e}}^{2} \leq 2 \mathrm{~m}_{\mathrm{e}} ;$
i.e.

1. the value of E_{e} is (almost always) many GeV (think to the y distribution);
2. The angle θ_{e} must be very small : $\theta_{\mathrm{e}}^{2} \leq 2 \mathrm{~m}_{\mathrm{e}} / \mathrm{E}_{\mathrm{e}}$;
3. the v variables $\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{f}}, \theta_{\mathrm{f}}\right)$ are not measured;
4. it is therefore compulsory to measure the e.m. shower ($=\mathrm{E}_{\mathrm{e}}$) very well;
5. ... and (even more important) its direction θ_{e};
6. and SELECT on $\left(E_{e} \theta_{\mathrm{e}}^{2}\right)$.

NC-leptonic v processes : data selection

- The extraction of the signal requires the rejection of the background.
- The main one is due to NC hadronic interactions, without $\mu^{ \pm}$in the final state, with one or more $\pi^{0 \prime}$; the photons due to π^{0} decays mimic the electron shower.
- To reject those events, the deposit of energy in the early scintillators is used.
- Since $\pi^{0} \rightarrow 2 \gamma \rightarrow 4 \mathrm{e}^{ \pm}$, a scintillator, if crossed at a very early stage of the shower development, sees 4 minimum ionizing particles, instead of only one.
- In this way, by using only the part of the detector immediately upstream of the scintillator, a much better isolation of the signal is obtained, at the price of a reduced statistics.

Three "populations" :

- the signal;
- hadronic NC;
- CC due to v_{e} beam background;

The selection is statistical, NOT on an event-by-event basis.
[NOT because of quantum mechanics, but selection method]

CHARM, Phys. Lett. B 335, 246 (1994)

NC-leptonic v processes : analysis

- The pure leptonic process is the cleanest and most systematic-free NC process.
- It has been used to measure θ_{w}.
- The price is a reduction $\sim 2,000$ in statistics and a difficult selection procedure.

$$
\begin{aligned}
& \frac{d \sigma_{N C}\left(v_{\mu} e^{-}\right)}{d y}=\frac{G_{F}^{2} s}{\pi}\left[\left(g_{L}^{e}\right)^{2}+(1-y)^{2}\left(g_{R}^{e}\right)^{2}\right] ; \\
& \frac{d \sigma_{N C}\left(\bar{v}_{\mu} e^{-}\right)}{d y}=\frac{G_{F}^{2} S}{\pi}\left[\left(g_{R}^{e}\right)^{2}+(1-y)^{2}\left(g_{L}^{e}\right)^{2}\right] ; \\
& \sigma_{N C}\left(v_{\mu} e^{-}\right)=\frac{G_{F}^{2} S}{4 \pi}\left[1-4 \sin ^{2} \theta_{w}+\frac{16}{3} \sin ^{4} \theta_{w}\right] ; \\
& \sigma_{N C}\left(\bar{v}_{\mu} e^{-}\right)=\frac{G_{F}^{2} S}{12 \pi}\left[1-4 \sin ^{2} \theta_{w}+16 \sin ^{4} \theta_{w}\right] ; \\
& R_{N C}^{v_{N C} e} \equiv \frac{\sigma_{N C}\left(v_{\mu} e^{-}\right)}{\sigma_{N C}\left(\bar{v}_{\mu} e^{-}\right)}=3 \frac{\left[1-4 \sin ^{2} \theta_{w}+\frac{16}{3} \sin ^{4} \theta_{w}\right]}{\left[1-4 \sin ^{2} \theta_{w}+16 \sin ^{4} \theta_{w}\right] .}
\end{aligned}
$$

- The ratio being really measured is

$$
\begin{aligned}
\mathrm{R}_{N C}^{v_{\mu} \mathrm{e}} & \equiv \frac{\sigma\left(v_{\mu} \mathrm{e}^{-} \rightarrow v_{\mu} \mathrm{e}^{-}\right)}{\sigma\left(\bar{v}_{\mu} \mathrm{e}^{-} \rightarrow \overline{\mathrm{v}}_{\mu} \mathrm{e}^{-}\right)}= \\
& =\frac{\varepsilon_{\text {ve }}\left[\mathrm{n}_{v}^{\text {tot }}-\mathrm{n}_{v}^{\text {bckg }}\right]}{\int \Phi(v) \mathrm{dE}} \frac{\int \Phi(\bar{v}) \mathrm{dE}}{\varepsilon_{\bar{v} e}\left[\mathrm{n}_{\bar{v}}^{\text {tot }}-\mathrm{n}_{\bar{v}}^{\text {bckg }}\right]} .
\end{aligned}
$$

- A key point is the ratio of the fluxes, which is computed in many ways (as simulations of the primary interactions + measurements in the decay tunnel, crosschecks with other known processes).
- Final result in the fluxes ratio : $\pm 2 \%$ (syst),

$$
\rightarrow \Delta \sin ^{2} \theta_{\mathrm{w}}= \pm 0.005
$$

NC-leptonic v processes : results

Results (from $v_{\mu} \mathrm{e}$) :
$\begin{array}{lll}\cdot & \sin ^{2} \theta_{w} & =0.2324 \pm .0058 \pm .0059 \\ \text { - } & & \text { CHARM } \\ & =0.2311 \pm .0077 & \\ & =0.2230 \pm .0077 & \text { (a) } \\ & & \end{array}$
\qquad

(a) and (b) are from current PDG, for v^{\prime} s on isoscalar target:
$>$ different because of definition of higher order parameters ("scheme", see the radiative corrections in at LEP).
$>$ the y-distributions contain information on g_{L} and g_{R} (i.e. a new determination of the couplings) + a cross-check.

References

1. e.g. [BJ, 14.3], [YN1, 17.7-8], [YN2, 2.1-3];
2. old review : J. Steinberger, CERN 76-20 (Yellow report);
3. more modern review : Rev.Mod.Phys. 70 (1998) 1341;
4. v beams : Kopp, Phys.Rep. 439 (2007) 101.

Found on the web - Courtesy of an unknown author.

End of chapter 7

