PARTICLE PHYSICS AND FUNDAMENTAL INTERACTIONS: RESEARCH IN THE ROMA1 INFN SECTION

Activities' review and Master thesis proposals

Daniele del Re

CSN1 coordinator of INFN Sezione Roma

ISTITUTO NAZIONALE DI FISICA NUCLEARE (INFN)

- The National Institute for Nuclear Physics (INFN) is the Italian research agency dedicated to the study of the fundamental constituents of matter and the laws that govern them
- It conducts theoretical and experimental research in the fields of subnuclear, nuclear and astroparticle physics.
- All of the INFN's research activities are undertaken within a framework of international competition, in close collaboration with Italian universities
- Fundamental research in nuclear, subnuclear and astroparticle physics requires the use of cutting-edge technology and instruments, developed by the INFN at its own laboratories and in collaboration with industries

INFN: RESEARCH TOPICS

In Rome:

- Commissione Scientifica Nazionale 1 (coord.: Daniele del Re):
 - -subnuclear physics and study of the fondamentale interactions
- Commissione Scientifica Nazionale 2 (coord.: Fabio Bellini):
 - astroparticle physics, gravitational waves and neutrino physics (with and w/o particle accelerators)
- Commissione Scientifica Nazionale 3 (coord.: Carlo Gustavino):
 - study of structure and dynamics of nuclear matter and nuclei under extreme conditions (quark-gluon plasmas)
- Commissione Scientifica Nazionale 4 (coord.: Luca Silvestrini):
 - theoretical physics research: developing hypotheses, models and physics theories to explain the results of experiments and open up new scenarios for physics
- Commissione Scientifica Nazionale 5 (coord.: Alessandro Lonardo):
 - technological and inter-disciplinary research, including promotion of the use of fundamental physics instruments, methods and technologies in other sectors

FUNDAMENTAL PHYSICS AT ACCELERATORS

- Benchmark to study SM interactions
 em, strong, weak
- Benchmark to study particle properties
 e.g. top quark, B meson, W, Z, Higgs bosons
- Create possible new particles
 - -with large energies of the beam (e.g. SUSY)
 - look for unconventional signatures (e.g. DM)

Look for new processes

- -new interactions (e.g. to extend SM)
- prohibited decays in SM (e.g. $\mu \rightarrow e\gamma$)

WHY NEW PHYSICS? SM LOOKS HEALTHY

Precision tests successful (e.g. LEP) small discrepancies but not so worrisome Higgs was predicted and then discovered (by LHC) si

-present measurements indicate it is SM-like

Why looking for something else?

MAIN QUESTIONS

Several open issues implying Physics beyond Standard Model. Some examples:

- 1. Why only three families of leptons and quarks?
- 2. Why four fundamental interactions and not one?
 - unification is impossible even at very large energies
- 3. Why gravity is so weak?
 - -40 orders of magnitude weaker than e-m!
- 4. Why only 5% of matter is made of ordinary SM particles?– what is the dark matter?
- 5. Why the most massive particle (top) is "only" 200 time heavier than the proton?
 - -desert above 170 GeV

A FEW SOLUTIONS

Supersimmetry

- may predict heavy resonances
- may explain dark matter
- some new SUSY particles can be long-lived

Extra Dimensions

- to include gravity
- may predict heavy resonances

Weakly interacting particles

- candidates for dark matter
- interact with ordinary matter via new mediators (which would represent new resonances)

GALACTIC ROTATION VELOCITY

- For a star of mass m at distance r from center of the galaxy
- Galaxy mass mainly within core radius of R
- Galaxy rotation velocity

 $\frac{mv^{2}\left(r\right)}{r}=\frac{mM\left(r\right)G}{r^{2}}$

 $M(r) = \begin{cases} \rho r^3 & r < R_0 \\ \rho R_0^3 & r \ge R_0 \end{cases}$

DARK MATTER

Properties

- stable
- no electric or color charge
- very weak interaction with
 Standard Model particles
- subject to gravity interaction

 Several potential candidates fulfilling these requirements for dark matter

- Dark: weakly interacting with electromagnetic radiation
- Hot & dark: ultra-relativistic velocities

neutrinos

- Warm & dark: very high velocity
 - sterile neutrinos, gravitinos
- Cold & dark: moving slowly
 - Lightest SUSY particle (neutralino, gravitino as LSP)

DARK MATTER INTERACTION

Indirect Detection

Direct Detection

Production at Colliders

DARK MATTER INTERACTION

• Pair production at LHC

- DM candidates escape the detector (weekly interacting
 - large missing energy
- need to identify ("tag") events of interest with some extra object
 - otherwise you see nothing in the detector

Production at Colliders

CSN1 Activity in Rome

[Measured]

Event Rate

Two ways to tackle issue with accelerators:

1. Large center of mass energy

- search for new massive particles LHC, ATLAS, CMS, next gen accelerators

2. Large luminosity to reproduce same experiment several times (intensity) Luminosity [Machine parameter]

ENERGY VS INTENSITY FRONTIER

- study SM processes in detail
- search for rare decays
- -LHCb, MEGII, KLOEII, PADME

= I

Cross Section

EXPERIMENTS AND ACCELERATORS

LHC ACCELERATOR

ATLAS AND CMS

FUTURE LHC PROGRAM

FUTURE LHC PROGRAM

Peak luminosity • 13.6 TeV – small increase in \sqrt{s} RUN3 no giant leap for new resonance searches Additional ~300 fb⁻¹ crucial to further investigate Higgs and discrepancies in SM

FUTURE LHC PROGRAM

Peak luminosity Integrated luminosity 13.6 TeV 3500 – small increase in \sqrt{s} RUN3 High Lumi - LHC no giant leap for new 3000 resonance searches Integrated luminosity [fb⁻¹] Additional ~300 fb⁻¹ 2500 - crucial to further investigate Higgs and discrepancies in SM 2000 **14 TeV** 1500 – small increase in \sqrt{s} 1000 Additional ~3 ab⁻¹ ~complete rebuilding of 500 detectors to fight background increase a new paradigm for 0 LHC physics with high 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 statistics

Year

Daniele del Re

Physics of LHC with 300 fb⁻¹ and beyond

LHCB

NON-LHC

SEARCH FOR NEW PHYSICS AT THE INTENSITY FRONTIER

SEARCH FOR RARE PROCESSES

MUON COLLIDERS

$$\begin{split} m_{\mu} &= 105.7 \text{ MeV}/c^2 \quad \frac{m_{\mu}^2}{m_e^2} \cong 4 \times 10^4 \quad \mu^- \to e^- \bar{v}_e v_{\mu} \\ \tau_{\mu} &= 2.2 \ \mu s \quad \frac{m_{\mu}^2}{m_e^2} \cong 4 \times 10^4 \quad \mu^+ \to e^+ v_e v_{\mu} \end{split}$$

- A µ+µ- collider offers an ideal technology to extend lepton high energy frontier in the multi-TeV range:
 - No synchrotron radiation (limit of e⁺e⁻ circular colliders)
 - No beamstrahlung (limit of e+e- linear colliders)
 - But muon lifetime is 2.2 μs (at rest)

- Best performances in terms of luminosity and power consumption
- Very challenging but also great potentiality for discoveries
- The full center-of-mass energy available for physics → for √s > 10 TeV competitive with FCC-hh in several new-physics scenarios

ACTIVITIES IN ROME

THE ROMA1 INFN SECTION

19% 25%

21%

28%

 About 200 physicists and technicians involved in INFN research activities in Rome

• CSN1 Experiments in Roma1:

Exp.	Acceleratore	Responsabile	E-mail
ATLAS	LHC @ CERN	M.Corradi	massimo.corradi@cern.ch
CMS	LHC @ CERN	R.Paramatti	riccardo.paramatti@roma1.infn.it
KLOE-2	Dafne @ LNF	P.Gauzzi	paolo.gauzzi@roma1.infn.it
LHCb	LHC @ CERN	R.Santacesaria	davide.pinci@roma1.infn.it
MEG-2	PSI @ Zurigo	C.Voena	cecilia.voena@roma1.infn.it
NA62	Fixed Target SPS @ CERN	P.Valente	paolo.valente@roma1.infn.it
PADME	BTF @ LNF	M.Raggi	mauro.raggi@roma1.infn.it
RD_MUCOL	-	F. Anulli	fabio.anulli@roma1.infn.it

CSN1

CSN2

CSN3

CSN4

CSN5

ACTIVITIES IN ROMA1

Fisica delle Particelle CSN1

L'obiettivo delle ricerche coordinate dalla Commissione Scientifica Nazionale 1 (CSN1) è lo studio delle interazioni dei costituenti fondamentali della materia attraverso esperimenti con gli acceleratori di particelle.

La teoria che definisce le nostre attuali conoscenze di fisica subnucleare è chiamata Modello Standard. Le ricerche attuali si propongono di giungere a una comprensione più profonda di alcuni suoi aspetti, per esempio il meccanismo con cui si genera la massa delle particelle. In questo senso la scoperta e lo studio delle proprietà del bosone di Higgs sarebbero un decisivo avanzamento delle nostre conoscenze.

I fisici puntano, con gli esperimenti in corso, anche alla scoperta di fenomeni nuovi, che portino a superare il Modello Standard. Un esempio sarebbe la rivelazione sperimentale di particelle supersimmetriche, alcune delle quali sono candidate a costituire la materia oscura (sappiamo che quest'ultima è largamente prevalente nel cosmo, ma non riusciamo a rivelarla né a spiegarne la natura). Altri esempi sarebbero la scoperta di nuovi segnali che diano ragione dell'asimmetria tra materia e antimateria nel nostro Universo, oppure ancora la prova dell'esistenza di ulteriori dimensioni spazio-temporali.

Coordinatore

Daniele Del Re

Fisica	del	le	Partice	lle
1 10100		. ~		

Esperimenti

ATLAS
CMS
CRYSBEAM
KLOE2
LHCb
MEG
NA62
PADME
RD_FCC

ACTIVITIES FOR STUDENTS

Data analysis

- learn about physics (broad physics program and different processes)
 - -it's all about SM
- learn about advanced analysis methods (machine learning)
 - -you are not alone, have to get the best from your data
- learn about statistics
 - statistics means counting
- learn about modern programming
 - -c++, python, etc...
- interact with many people (and learn from them)
- learn how to present your results

ACTIVITIES FOR STUDENTS (II)

Hardware

- learn about electronics and modern devices
- learn about building a small experiment (usually this is what you do at the beginning for any big experiment)
- have everything under control
- work in teams, often locally

Future experiments and simulations

- designing future experiments and accelerators via simulations
- learn what are the critical aspects of an experiment
- influence next gen experiments

ATLAS - Roma1 activities http://www.roma1.infn.it/exp/atlas/it/home-it/

ATLAS: HIGGS PHYSICS

One of the main LHC goals is to measure the Higgs properties with increasing precision

Roma has been studying Higgs mass and couplings to b, t, W, µ, Z

Ongoing activities:

H->WW*

- full Run-1+Run-2 analysis

Higgs-top Yukawa coupling (yt)

- $t\bar{t}H$: precise measurement of $|y_t|$
- tH: direct probe of the sign of y_t (via ttH/WWH interf.)

Search for double-Higgs production HH

- limits on anomalous Higgs self interaction

Higgs mass

- Final Run-2 mass measurement

 $\kappa_F \frac{m_F}{\sqrt{2}}$ or $\sqrt{\kappa_V \frac{m_V}{\sqrt{2}}}$

10

10

10-3

10-

1.2

KF Or VKV

ATLAS Preliminary √s = 13 TeV, 24.5 - 139 fb⁻¹

SM Higgs bosor

 $\overline{m}_{a}(m_{H})$ used for quarks

m_H = 125.09 GeV

Contacts:

C. Bini, S. Rosati, N. Bruscino, A. Betti, G. Artoni

ATLAS: SEARCHING FOR NEW PHYSICS

Indirect searches:

Precise measurement of di-tau cross sections

BSM physics may show up as small deviations from SM in in processes involving 3rd generation fermions (example 3rd generation lepto-quark).

measurements of $\tau + \tau$ - pair cross sections with full Run-2 data

both high-mass and at Z peak

AI techniques for reconstruction of hadronic tau decays

Direct searches:

Mono-jets Looking for invisible particles (e.g. Dark Matter) through missing E_T

Long-Lived Particles

Looking for displaced decay vertices produced by new long-lived particles (e.g. Dark Photons): unconventional signatures

Contacts: S. Giagu, M. Bauce, V. Ippolito

ATLAS: UPGRADE FOR RUN-3

ATLAS is being gradually upgraded to cope with the higher collision rates provided by LHC and to improve performance.

New Small Wheels

Replacement of innermost muon detector layer in the endcaps, to cope with higher luminosity and backgrounds

First large area Micro-Megas detectors in a HEP experiment

Just installed, integration within ATLAS ongoing, looking forward to take first collision data this summer !

Roma has been involved in Micro-Megas construction,

Ongoing activities:

- system commissioning
- data acquisition
- muon reconstruction

Contacts: P. Bagnaia, C. Bini, F. Lacava, S. Rosati, E. Pasqualucci

Small wheel being installed in ATLAS

ATLAS: MUON TRIGGER UPGRADE

A major Trigger and DAQ system upgrade is in preparation for the high-luminosity phase of LHC

Level-0 Barrel Muon Trigger

Roma is responsible for the full upgrade of the muon trigger system in the "barrel" region

New on-detector electronics will collect data from RPC detectors and send it to powerful FPGA-based boards that will run advanced trigger algorithms and provide muon candidates within few hundreds of ns.

Current activities:

- System design and simulation
- hardware and firmware design
- test of prototypes

A.I. techniques on hardware accelerators

- Exploit new techniques for fast tracking exploiting FPGAs and GPUs
- Applications both for Level-0 and higher-level triggers

CNS ACTIVITES

http://www.roma1.infn.it/exp/cm

CMS ROME GROUP

 Composizione: 6 staff Sapienza, 7 staff INFN, 3 post-doc, 2 PhD students, 2 master students (50% F, 50% M)

• Attività di analisi:

- Studio delle proprietà del bosone di Higgs
- Ricerca di nuova fisica attraverso lo studio del decadimento dei mesoni B.
- Ricerca di nuove particelle a lunga vita media.
- Tecniche di Machine Learning per ricostruzione, identificazione e selezione di eventi.

• Attività di detector:

- Upgrade del calorimetro elettromagnetico
- Costruzione del nuovo timing detector di CMS per High Luminosity LHC.

HIGH PRECISION TIMING DETECTOR

- Nella fase 2 di LHC (HL-LHC) ad alta luminosità ci saranno 150-200 interazioni concomitanti per collisione
 - condizioni estreme: fondo da rimuovere per studiare collisioni hard
- Nuovo rivelatore per misurare il tempo delle tracce
 - posto tra il tracciatore e il calorimetro em
- Rivelatore in fase di sviluppo e progettazione

- studi di simulazione e impatto sulla fisica

CSN1 Activity in Rome

CHARACTERIZATION OF LYSO CRYSTALS

 Characterization of LYSO crystal arrays for the new CMS Timing Detector

- Crystal dimensions, planarity and density
- Light Output, Decay Time and Time resolution
- Optical cross talk
- Radiation resistance with photons and neutrons in Casaccia - ENEA

You're welcome to visit CMS lab where this activity takes place (Marconi building third floor – room n. 340)

SEARCH FOR NEW PHYSICS WITH MTD

Long-lived (LL) and unconventional exotic particles with striking signatures predicted by many extensions of the SM.

TESI DISPONIBILI

- Search for tetraquarks at CMS
- Study of B Mesons Decays with the CMS detector, as Indirect Probe for Physics Beyond the Standard Model
- LHC as a lepton-quark collider: a novel search for leptoquarks at the CMS experiment
- Machine Learning for Event Reconstruction at HL-LHC with the CMS MIP Timing Detector
- Search for New Long-Lived Particles with the Future CMS Mip Timing Detector
- Study of Time Resolution and Characterization of LYSO:Ce Scintillator Crystals for the New CMS Mip Timing Detector
- Anomalous Higgs Couplings with CMS Data

(maggiori dettagli e contatti in https://www.roma1.infn. ProposteTesi.html)

 $D^0 - \overline{D^{*0}}$ "molecule"

Diquark-diantiquark

LHCb ACTIVITIES

BEAUTY AND CHARM PHYSICS AND MUCH MORE

LHCB – UPGRADE OF THE DETECTOR

• Aim: run at factor 5 higher luminosity L=2 x 10³²cm⁻²s⁻¹

- Increase sensitivity to rare decays, CP and Flavor Violation, precision measurements
- Subdetectors replaced or modified: lot of HW-related work
- Already collected a huge amount of data, ready to be scrutinised to look for NP performing high precision measurements!
- Rome group involved in muon detector related activities and analyses:
 - Look for anomalies (deviations from SM) in tree and loop decays:
 - Semi-leptonic decays
 - -Λ_b decays
 - -Upgrade of muon detector

LHCB: THESIS ON DATA ANALYSIS

Area of interest of the group are rare leptonic and semileptonic decays

- Exploiting the know-how gained in the study of $B_s \rightarrow \mu\mu$ decays (still being analysed and close to be published again) the group now is targeting the study of $\Lambda_b \rightarrow \Lambda e^+e^-$, $\Lambda_b \rightarrow \Lambda \mu^+\mu^-$ decays (anomalies in the loop transitions) and $B_s \rightarrow D_s^*\tau v$, $B_s \rightarrow D_s^*\mu v$ decays (tree decays anomalies)..
- There is the opportunity to contribute to a lot of key analysis aspects: signal selection, efficiency studies, trigger studies, background characterisation, fit ...

Proposed Thesis subject:

Study of the ratio of Lambda and Bs to Ds decays to provide complementary information to the R_K and R_{K*} anomalies that recently triggered a lot of interest!!

Analysis already started and in good shape, opportunity to join the efforts with the LNF and CERN teams

Contacts: Davide.Pinci@roma1.infn.it, stanza 228-c, Edificio G.Marconi Contact Roberta.Santacesaria@roma1.infn.it , stanza 317, Ed. G. Marconi

LHCB: THESIS ON DATA ANALYSIS

Area of interest of the group are charmonium exotic states

- First observation of X(3872) state at e+e- machines by BaBar and Belle in the early 2000's Many other states have been observed at the Tevatron and LHC
- not possible to interprete as states with 2 or 3 quarks as normal hadrons
- Different models in literature, but the nature of these states not yet determined in a unequivocal manner
- Analysis published by the group on Z(4430)→π ψ(2s), tetraquark Phys.
 Rev. D 92, 112009 (2015)

Proposed Thesis subject:

Study of the $J/\psi \omega$ mass spectrum in the $B^+ \rightarrow K^+ J/\psi \omega$ decay, observation of the decays $X(3872) \rightarrow J/\psi \omega$ and $X(3915) \rightarrow J/\psi \omega$ with $\omega \rightarrow \pi^+ \pi^- \pi^0$

Analysis already started and in good shape, to be done efficiency determination, study of systematics *Contact Roberta.Santacesaria@roma1.infn.it*, stanza 317, Ed. G. Marconi

LHCB: THESIS ON INSTRUMENTATION

Area of interest is the Luminosity Measurement for the LHCb experiment

- The Control System of Front-End electronics (hardware and software) was developed and realized by the Roma1 group
- Muon System is able to provide a very precise (‰) evaluation of LHCb Luminosity, crucial for Physics studies
- Data analysis and tests at CERN

Proposed Thesis subject:

Symmetry	MDPI
ticle Mathod Based on Muon System to Monito	r I HCh Luminosity
Alkinen 1 Wester Paldici 20 Semal Palis 3 Value Pacid 40 Nikela	n Erico Euniniosity
ndro Cadeddu ⁶ , Alessandro Cardini ⁶ , Maurizio Carletti ¹ , Giacomo Chiodi ⁴	, Alexsei Chubykin ⁵ ,
adimir Chulikov ⁵ , Paolo Ciambrone ¹ , Liliana Congedo ⁷ , Andrea Contu ⁶ , Fr	ancesco Debernardis ⁷ ,
rco Antonio Desideri ⁴ , Marilisa De Serio ⁷ , Patrizia De Simone ¹ , Daniele Di	i Bari ¹ , Maurizio Gatta ¹ ,
eg Maev ⁵ , Giuseppe Martellotti ⁴ , Matteo Palutan ¹ , Alessandra Pastore ⁷ , Da	vide Pinci ⁴ , Biagio Saitta ⁶ ,
berta Santacesaria ⁴ , Marco Santimaria ¹ , Emanuele Santovetti ⁸ , Alessandro S	Saputi ¹ , Celestina Satriano ^{4,9,*} ,
and Calls 8 Barbars Sciencia 110 Severia Simona 7 and Stafania Marshi 20	

Proposal for a novel LHCb Luminosity Meter based on the muon detector for the experiment upgrade

Contacts: Davide.Pinci@roma1.infn.it, stanza 228-c, Edificio G.Marconi Roberta.Santacesaria@roma1.infn.it , stanza 317, Ed. G. Marconi

MEG-II ACTIVITIES

NEW PHYSICS SEARCHES WITH MUONS: MEGII

Search of New Physics at the intensity frontier in the charged lepton flavor violating decay $\mu \rightarrow e\gamma$

THE MEGII EXPERIMENT

Present best world limit: BR ($\mu \rightarrow e\gamma$) < 4.2x 10⁻¹³ at 90% C.L. *EPJC 76(8),434(2016)*

- MEGII goal: improve the sensitivity by 1 order of magnitude in 3 years of data-taking
- MEGII detector fully commissioned
- First Physics Run starts 1st July 2022

Paul Scherrer Institute (Villigen, Zurich): most intense continuous muon beam in the world

MEGII ROME GROUP ACTIVITIES

MEGII@Roma:

https://www.roma1.infn.it/exp/meg/tesi.htm cecilia.voena@roma1.infn.it

- G. Cavoto
- K. Guven
- F. Renga
- V. Pettinacci
- C. Voena

- Drift chamber operations and commissioning (gas system, HV system)
- Drift chamber calibration and reconstruction
- Positron tracking and analysis
- Target position measurement system
- $\mu \rightarrow e\gamma$ physics analysis
- Search for new particles- X17

Available theses (hardware and analysis)

Drift chamber analysis
 Search for the new X17 particle
 Positron tracking with Neural Networks
 Feasibility studies for axion searches

MEGII PROPOSED THESES

1) Drift chamber analysis:

Characterization of the DCH gas mixture, calibrations.

2) Search for new X17 particle

Data analysis of first data taken in 2022. Hardware theses on the preparation of the next X17 run (2023).

3) Positron tracking with Neural Networks Development of a track finder based

on NN optimized for the high pile-up MEGII environment.

The MEG II drift chamber

4) Feasibility studies for axion searches

Monte Carlo based feasibility study for the search of $\mu \rightarrow ea\gamma$

NEW PHYSICS SEARCHES WITH MUONS: MUONEDM

- The matter-antimatter asymmetry of the Universe requires new sources of CP Violation (CPV)
- A search for an Electric Dipole Moment of the muon
 - practically zero in the SM
 - sensitive to new sources of T Violation (and hence CPV from CPT theorem)
- Look for a tiny precession of the spin of muons orbiting in orthogonal magnetic and electric fields

MUONEDM PROPOSED THESES

Construction and test of a muon tagger prototype for the muonEDM experiment

A critical aspect of the muonEDM experiment is the capability of capturing a sufficiently high rate of muons inside the magnet. For this reason, the characterization of the muon beam will be a key task during the commissioning of the experiment. It will require tracking muons after the injection in the solenoid and, due to their relatively low momentum (25 or 125 MeV/c), an extremely light detector has to be developed. A prototype for a gaseous Time Projection Chamber (TPC) with a high granularity readout will be built and tested in Rome using radioactive sources and laser beams, and then moved to PSI for tests with some of the most intense muon beams in the world.

Optimisation of the muon injection for the muonEDM experiment

Capturing a high statistics of muons in a stable orbit inside the muonEDM magnet, while keeping a trigger rate low enough to avoid dead time, requires an optimisation of the muon beam line, and the design of collimators to select only muons within acceptance. Simulations of the muon injection will be performed, in collaboration with CERN and PSI groups, to explore innovative technologies and select the best suited option for this experiment.

KLOE2 ACTIVITIES

KLOE2

- KLOE-2 @ DA Φ NE (LNF): $e^+e^- \rightarrow \phi(1020)$ @ $\sqrt{s} = M^2_{\phi}$
- Data taking ended in March 2018
 ⇒ 5.5 fb⁻¹ collected
- **KLOE + KLOE-2 data sample:**
 - ~ 8 fb⁻¹ \Rightarrow 2.4 × 10¹⁰ ϕ 's produced
 - ⇒ the largest sample ever collected at a \$\overline\$-factory
- $\varphi {\rightarrow} K_S K_L$: Production of entangled kaon states
- Flavor physics and Rare Kaon decays
- Study of discrete symmetries: CP, CPT, T
- Quantum Mechanics tests

Other hadronic final states:

- rare decays of η meson
- $\gamma\gamma$ fusion : $\gamma\gamma \to \pi^0$
- Scalar mesons (tetraquark states)

Dark matter searches

- Dark Photons
- Leptophobic B-boson: $B \rightarrow \pi^0 \gamma$ in $\phi \rightarrow \eta \pi^0 \gamma$ e $\phi \rightarrow \eta \gamma \rightarrow \pi^0 \gamma \gamma \gamma$

• Axion-like particles: $(a \rightarrow \gamma \gamma)$ in $e^+e^- \rightarrow 3\gamma$

$K_S {\rightarrow} \pi ev$ and $V_{_{US}}$ matrix element

Combination with the previous KLOE result [Phys.Lett.B 636 (2006)] :

 $Br(K_S \to \pi e\nu) = (7.153 \pm 0.037 \pm 0.043) \times 10^{-4}$

 We can extract the V_{us} element times the Form Factor at zero momentum transfer

$$f_{\pm}(0) |V_{us}| = 0.2170 \pm 0.0009$$

CPT AND T TESTS WITH NEUTRAL KAONS

RARE HADRON DECAYS

CSN1 Activity in Rome

 $M(\gamma\gamma)$ (MeV/c²)

 $M(6\gamma)$ (MeV/c²)

ARGOMENTI DI TESI

- Puo' il futuro influenzare il passato in stati entangled di mesoni K ? (A.Di Domenico): L'entanglement di una coppia di mesoni K neutri mostra un nuovo e apparentemente paradossale effetto "dal futuro al passato" a causa della natura non-locale della QM, che puo' essere osservato per la prima volta con in dati di KLOE/KLOE-2 studiando le correlazioni fra i decadimenti dei K (e-Print: 1912.04798 [quant-ph])
- Test diretto della simmetria CPT nelle transizioni di mesoni K correlati a KLOE/KLOE-2

 (A.Di Domenico): sfruttando le proprieta' della coppia "entangled" di mesoni K neutri prodotti nel decadimento φ→K_SK_L e' possibile effettuare il primo test preciso della simmetria CPT direttamente nei processi di transizione dei mesoni K.
- Ricerca di Axion-Like Particles (ALPs) a KLOE-2 (P.Gauzzi): le ALPs sono particelle scalari o pseudoscalari previste da alcune estensioni dello SM, e potrebbero contribuire a spiegare la discrepanza di (g-2)_µ fra teoria e esperimenti. Nella regione di massa minore di 1 GeV possono essere studiate con i dati di KLOE-2 in stati finali contenenti due fotoni.
- Ricerca di nuovi bosoni di gauge in stati finali che contengono π⁰γ a KLOE-2 (P.Gauzzi): nuovi bosoni di gauge mediatori di Dark Forces che si accoppiano principalmente a q-qbar, possono essere cercati come risonanze π⁰γ nei decadimenti radiativi di mesoni φ e ω

Sito web: <u>www.lnf.infn.it/kloe2</u>

antonio.didomenico@roma1.infn.it giulio.dagostini@roma1.infn.it paolo.gauzzi@roma1.infn.it

Muon Collider ACTIVITIES

MUON SOURCES

Conventional: Proton-based production

muons obtained as tertiary particles (from pion decays) with tipically $P_T^{\mu} \sim 100 \text{ MeV}$

Pro: high production cross section Contra: high muon-beam emittance

→ muon COOLING mandatory

Rate > $10^{13}\mu$ /se; N_µ = 2×10¹²/bunch

<u>Positrons on target (LEMMA proposal)</u>: $e^+e^- \rightarrow \mu^+\mu^-$ close to production threshold

 $E(e^+) \sim 45 \text{ GeV} \implies E(\mu) \sim 22 \text{ GeV}, \ \gamma(\mu) \sim 200 \implies \tau_{\text{LAB}} \sim 500 \mu \text{s}$

(NIM A807, 101 (2016) [*arXiv:1509.04454*])

- Very small emittance is obtainable => no cooling needed!
- Low background
- Large boost at production
 - Reduced losses from muon decays
- Much smaller muon production cross section
- ~1µb for e^+ source vs ~1mb for proton source

RD_MUCOL

- RD_MUCOL is the INFN research program dedicated to studies related to muon colliders
- Main activities with INFN involvement (within CSN1):
 - R&D of detectors for an experiment at a muon collider
 - Study of the Machine-detector Interface (MDI)
 - Study of the safety issues due to neutrino-induced radiation
 - R&D related to the LEMMA project

The group in **Rome** is growing and is already working on **several aspects** of the projects:

- theory studies to establish the physics reach of a multi-TeV muon collider
- study of the Machine-Detector Interface
- ≻ LEMMA:
 - study of the thermo-mechanical stresses of the target for the muon production
 - Test beam campaigns to measure the muon production with a 45 GeV positron beam

RD_MUCOL in Rome: Fabio Anulli (R.L), Gianluca Cavoto, Roberto Li Voti, Barbara Mele, Matteo Bauce, Francesco Collamati, Stefano Rosati, Ilaria Rago, Emanuele Gueli, Fausto Casaburo,

TEST BEAM AT THE CERN NORTH AREA

Motivations:

- Experimentally measure the key parameters of the LEMMA approach
 - Emittance of emerging *µ* beam
 - $\mu^+\mu^-$ production **cross-section at threshold**
 - properties of spent e^+ beam (transverse emittance and energy spectrum)
 - Effect of the target material/thickness

2018 Test beam:

- Low-budget: mostly re-use available detectors and DAQ
- Lot of experience gained, decent result published (JINST 15 P01036)
- However, severe limitations in the setup did not allow pursuing high precision measurements
 - Resolution of the available tracking system too modest
 - Too large trigger/DAQ dead time
 - A single week of data taking barely sufficient to set up detectors and trigger properly

Layout of the experimental setup:

stations

August 2018

Proposal submitted for a TB in 2023

- Request for 3-weeks beam time in H4
- Experiment being redesigned (in particular new tracking and new DAQ)
- http://cds.cern.ch/record/2712394

Studio degli stress termo-meccanici di bersagli solidi per produzione di muoni nello schema LEMMA

Programma 2022-23: Misure in laboraotorio da confrontare con i risultati del modello sviluppato

- Misura delle proprietà termoelastiche di targhette di carbonio (grafite).
- Misura della diffusività termica ed emissività infrarossa con radiometria fototermica e termografia infrarossa.
- Rivelazione di possibili danneggiamenti e stress termomeccanici quando la targhetta è sottoposta a fasci laser intensi.
- Test su fasci di particelle (elettroni) ad alta` intensità

Argomenti di Tesi

- Preparazione e partecipazione ai Test beam LEMMA 2023 al CERN
 - simulazione in GEANT dell'esperimento. Studio dei processi fisici di segnale e fondo per l'ottimizzazione dell'apparato sperimentale
- Studio degli stress termo-meccanici dei bersagli per muoni
 - misure in laboratorio del comportamento dei bersagli soggetti a un fascio laser, analisi dei dati e confronto con modello teorico
 - partecipazione a test beam con fasci di elettroni e conseguente analisi dei dati
- Studi teorici per physics reach di un muon collider a diverse energie nel centro di massa e su diversi casi di fisica

NA62 ACTIVITIES

Esperimento su fascio estratto all'**SPS** del **CERN** per studiare decadimenti estremamente rari: $K \rightarrow \pi v v$

Perché questo esperimento è interessante nell'era di LHC?

Misure di precisione molto utili *per discriminare la struttura del Flavor* della "nuova fisica": approccio complementare a quello degli esperimenti al LHC

- K di alto impulso per ridurre il fondo da π^0
- Decadimento in volo per limitare scattering e fondi dal target
- 1. Timing molto preciso per associare il π + finale al K+ iniziale
- 2. **Reiezione cinematica** dei fondi a due e tre corpi (spettrometro al silicio per K, a straw in vuoto per π)
- 3. **Particle-Id** e rivelatori di **veto**, in particolare per **fotoni** (calorimetro + i "nostri" rivelatori) e **muoni** (RICH, ferro/scint.)

Perché questo esperimento è interessante nell'era di LHC?

• Processi Flavour Changing Neutral Current → sensibili alla fisica oltre il Modello Standard

- Misure di precisione per discriminare la struttura del Flavor della "nuova fisica"
- Frontiera dell'intensità, approccio complementare a quello dell'energia (LHC)
- Grande contributo "short-distance" → predizioni teoriche molto precise

Ma i branching ratio (Standard Model) sono <10-10!

La sfida è abbattere i fondi con un buon rapporto segnale/rumore, **ad un costo ed in tempi ragionevoli ...**

- **Riutilizzo "creativo"** di parte dell'apparato di NA48 (calorimetro a Krypton liquido, tubo da vuoto, magnete, ecc.)
- Fascio esistente e 50 volte più intenso
- Nuovi rivelatori
- Nuovo trigger, DAQ, computing, software...

• Prima presa dati con fascio e primi eventi di fisica nel 2015

- tre anni di run e analisi dati 2016, 2017 e 2018
- ...e altri tre anni di presa dati 2021-22-2

Eventi a una traccia nello spettrometro...

 $105 < Z_{VTX} < 165 m$ $15 < P_{\pi^+} < 65 \ GeV/c$

...nel volume fiduciale

Physics analysis

Study the signal selection using MC simulations

Compare data-MC and predict background and signal

Background	Subset S1	Subset S2
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05
$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06
$\pi^+\pi^-e^+ u$	0.10 ± 0.03	0.41 ± 0.10
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08
$\pi^+\gamma\gamma$	< 0.01	< 0.01
$\pi^0 l^+ \nu$	< 0.001	< 0.001
Upstream	$0.54\substack{+0.39 \\ -0.21}$	$2.76\substack{+0.90\\-0.70}$
Total	$1.11\substack{+0.40\\-0.22}$	$4.31_{-0.72}^{+0.91}$

$$\begin{split} SES &= (0.839 \pm 0.053_{\rm syst}) \times 10^{-11}, \\ N_{\pi\nu\bar{\nu}}^{\rm exp} &= 10.01 \pm 0.42_{\rm syst} \pm 1.19_{\rm ext}, \\ N_{\rm background}^{\rm exp} &= 7.03^{+1.05}_{-0.82}. \end{split}$$

Unblind the signal regions and

Best measurement of the K[±] $\rightarrow \pi^{\pm}\nu\nu$

Tesi di impronta Hardware

"NA62 LOTP trigger upgrade" prof. M. Raggi, O. Frezza

In view of the the CERN RUN III starting in 2021, the NA62 experiment is upgrading his FPGA based L0 trigger processor board. The system is based on modern fast FPGA technology. The candidate will be involved in the FPGA programming in both VHDL and with modern high level systesis languages, as well as on the hardware tests.

Tesi orientate all'analisi

"Ricerca di particelle oscure interagenti con l'esperimento NA62" Prof. M. Raggi and T. Spadaro

L'esperimento NA62 attualmente in corso all'SPS del CERN è stato disegnato per misurare il BR del decadimento carico K+ $\rightarrow \pi$ +vv con una precisione che, raggiungendo quella teorica, potrebbe fornire indizi di nuova fisica o alternativamente dare nuovi vincoli alle teorie oltre il modello standard. Grazie alla flessibilità del sistema di trigger e alle performance molto spinte dei rivelatori NA62 può risultare ideale anche per la ricerca di decadimenti visibili di Dark Photon (A'), Heavy Neutral Leptons (N), Axion-Like Particles (a) e Dark Scalars (S). Il lavoro di tesi si propone di partecipare all'analisi per la ricerca di una di queste particelle attraverso la selezione di uno specifico modo di decadimento (es: A' \rightarrow e+e-, A' \rightarrow µ+µ-, N \rightarrow πe, N \rightarrow πµ, a \rightarrow γγ, ecc.)

"Ricerca di fotoni oscuri in transizioni invisibili con l'esperimento NA62" Prof. M. Raggi and S. Martellotti

I decadimenti dei mesoni K in πvv sono estremamente soppressi nel SM ed i loro BR, dell'ordine di 10^{A-11}, sono predetti con una precisione teorica mai raggiunta dai risultati sperimentali. Misure precise di questi BR fornirebbero nuovi vincoli alla matrice CKM e permetterebbero di mettere in evidenza eventuali effetti di nuova fisica oltre lo SM. L'esperimento NA62 attualmente in corso all'SPS del CERN è stato disegnato per misurare il BR(K+ $\rightarrow \pi$ +vv) con una precisione del 10%. Uno dei fondi principali di tale misura è costituito da decadimenti K+ $\rightarrow \pi$ +π0 (BR \approx 20%) che sono oltre 10⁸ volte più abbondanti. Un sistema di veti per fotoni, permette di rigettare efficacemente questo pericoloso fondo e fornisce inoltre la possibilità di ricercare segnali di nuova fisica altrimenti inaccessibili. Il lavoro di tesi è orientato ad evidenziare l'eventuale produzione di Dark Photons (A') così debolmente interagenti con le particelle dello Standard Model da sfuggire la rivelazione diretta nell'apparato. Queste ricerche sono effettuate nelle transizioni K+ $\rightarrow \pi$ +π0 seguita da π0 \rightarrow A' gamma e K+ \rightarrow π+π0A'.

"Sviluppo di un'analisi multivariata per l'identificazione del decadimento KL $\rightarrow \pi 0vv$ con l'esperimento KLEVER", M. Raggi and M. Moulson

Il fondo principale nella ricerca del decadimento $K_L \rightarrow \pi 0vv$ è costituito da decadimenti $K_L \rightarrow \pi 0\pi 0$, oltre 10⁷ volte più abbondanti, in cui due dei quattro fotoni dello stato finale non vengono rivelati. Anche i decadimenti in n $\pi 0$ dei barioni Λ prodotti nel fascio insieme con i KL possono costituire un fondo importante. Le diverse grandezze misurate, quali i segnali lasciati nei sistemi di veto e le informazioni geometriche e cinematiche risultanti dalla ricostruzione del decadimento, consentono la discriminazione tra segnale e fondo, ma queste grandezze devono essere combinate in modo ottimale per raggiungere il livello di reiezione richiesta dalla misura, fornendo al contempo un indicatore statistico della probabilità che un evento sia dovuto a segnale o fondo.

PADME ACTIVITIES

RICERCA DI NUOVE FORZE A PADME AI LNF

La ricerca di soluzioni al problema della materia oscura è uno dei problemi fondamentali della fisica moderna. Una delle possibilità è di introdurre una nuova forza "quinta forza" ed un nuovo bosone mediatore. Queste forze sono molto deboli e possono essere esplorate con piccoli esperimenti di grande precisione.

L'esperimento PADME ai Laboratori Nazionali di Frascati dell'INFN ha iniziato la sua presa dati a giugno del 2018. Numerosi stati finali di nuova fisica sono accessibili all'esperimento con la possibilità di lavorare su dati appena acquisiti.

CSN1 Activity in Rome

TESI DISPONIBILI A PADME

TESI DISPONIBILI A PADME

Analisi dei dati a PADME

Dopo il Run I terminato in Feb. 2019 si è svolta una seconda presa dati RUN II tra Sett-Dic. 2020. Oltre alla ricerca di segnali di **dark photon** con segnatura di massa mancante in eventi $e^+e^- \rightarrow \gamma + invisibili$, è possibile studiare con precisione canali di fisica come $e^+e^- \rightarrow \gamma\gamma$. Sono possibili ricerca di altri segnali di nuova fisica, come **axion-like particles** $e^+e^- \rightarrow a\gamma$ c anche **dark Higgs** (in 4 o 6 leptoni).

ALPs 2012.07894 : Dark Higgs : 2012.04754

Ricerca del fotone proto-fobico a PADME

E' stato osservata dal laboratorio MTA ATOMKI di Debrecen (Ungheria) un eccesso di eventi e^+e^- di massa 16.7 MeV nelle transizioni del ⁸Be che sarebbe compatibile con l'esistenza di una **nuova forza oscura** e del suo mediatore bosone X che decadrebbe in coppie.

Recentemente il risultato è stato rafforzato da un'analoga osservazione nelle transizioni dell' ⁴He. La miglior verifica dell'ipotesi particellare proposta per spiegare l'anomalia, sarebbe l'osservazione del processo inverso $e^+e^- \rightarrow X$. L'esperimento PADME ha a disposizione un fascio di positroni di energia adatta a produrre in maniera risonante il bosone X potendo così verificarne l'esistenza con grande sensibilità. Il lavoro di tesi consisterà in uno studio fenomenologico della sensitività dell'esperimento PADME a tale nuova particella.

A. J. Krasznahorkay, et al. Phys. Rev. Lett. 116, 042501, https://arxiv.org/abs/2104.10075v1)

for more info:

<u>mauro.raggi@roma1.infn.it</u>, <u>paolo.valente@roma.infn.it</u>, <u>giovanni.organtini@uniroma1.it</u> http://www.lnf.infn.it/acceleratori/padme/

SCIENTIFIC REPORT OF DEPARTMENT

- A recent (2017-2019) and complete insight on the physics department and INFN section activity
- Particle Physics and Fundamental Interactions described in a specific section of the report
- <u>http://www.phys.uniroma1.it/fisica/</u> <u>ricerca/scientific-report</u>

DEPARTMENT OF PHYSICS

January 2017-December 2019

DIPARTIMENTO DI FISICA

Electron and muon EDM

٠

- The need of non-standard CPV sources to explain the matter-antimatter asymmetry of the Universe motivates many searches for EDMs
 - Strong constraints exist on the electron EDM (spin precession in molecular systems excited by lasers):
- 1E-18 1E-19 1E-20 (Herein 12-21) (Herein 12-22) (Herein 12-23) (Herein 12-23) (Herein 12-24) (Herei **TIF TIF** 1E-24 U 1E-25 0 electron 0 neutron 1E-27 proton ⊕ Ó muon 1E-28 ThO mercury 1E-29 ThO • xenon 1E-30 1960 1980 2000 2020 Year of publication
- the muon EDM was somehow experimentally overlooked, due to the indirect constraint coming from the electron EDM under minimal flavour violation (MFV) assumptions

 $|d_e|_{exp} \le 8 \times 10^{-30} e \text{ cm}$ MFV $|d_\mu|_{ind} \le 1.6 \times 10^{-27} e \text{ cm}$ $|d_\mu|_{exp} \le 1.5 \times 10^{-19} e \text{ cm}$

- Current muon EDM limits produced as by-product of g-2 experiments
- Indeed the existing tensions, pointing toward LFUV, challenge the MFV scenario and make a dedicated experiment to search for a muon EDM of great interest

10