72 Chapter 1. Introduction to Relational Databases

its current shortcomings. At the same time, however, MySQL is moving ahead at
the speed of light.

The case for mSQL may depend on the tools you are using. Because mSQL has
been around longer, you may find more luck locating a tool that supports your
specific needs. For example, only mSQL had a JOBC 2.0 compliant JDBC driver for
Java database access at the time of this book’s publication. Certainly this situation
will have changed by the time you read this book. Nevertheless, you need to con-
sider issues such as that when you decide which database to use.

No matter which database you use, you will be a winner. Both database engines
are faster than any other choice you will make. Both database engines are perfect
for mid-range database needs. For an objective comparison of these two data-
bases with each other or any other database, we recommend you visit bHip.//wuw.
mysgl.com/crash-me-choose btmy. 1t is on the MySQL home page, but its criteria
are openly verifiable and it is very well done.

Database Design

Once you install your DBMS software on your computer, it can be very tempting
to just jump right into creating a database without much thought or planning. As
with any software development, this kind of ad hoc approach works with only the
simplest of problems. If you expect your database to support any kind of com-
plexity, some planning and design will definitely save you time in the long run.
vou will need to take a look at what details are important to good database design.

Database Design

Suppose you have a large collection of compact discs and you want to create 2
database to track them. The first step is to determine what the data that you are
going to store is about. One good way to start 1S 1O think about why you want to
store the data in the first place. In our case, we most likely want to be able to look
up CDs by artist, title, and song. Since we want 10 ook up those itemns, we know
they must be included in the database. In addition, it is often useful to simply list
items that should be tracked. One possible list might include: CD title, record
label, band name, song title. As a starting point, we will store the data in the table

shown in Table 2-1.

Table 2-1. A CD Database Made Up of a Single Table

Band Name CD Title Record Label Songs
Stevie Wonder Talking Book Motown You Are the Sunshine of My
| Life, Maybe Your Baby,
Superstition, . . .
Miles Davis Quintet | Miles Smiles Columbia Orbits, Circle, . .
Wayne Shorter - Speak No Evil Blue Note Witch Hunt, Fee-Fi-Fo-Fum

13

ig Chapter 2: Database Design

Fabie 2-1. A CD Database Made Up of a Single Table (continued)

Rand Name | CD Title Record Label | Songs

Herbie Hancock Headhunters Columbia Chameleon, Watermelon
| Man, . . .

Herbie Hancock Maiden Voyage | Blue Note Maiden Voyage

(For brevity’s sake, we have left out most of the songs.) At first glance, this table
seems like it will meet our needs since we are storing all of the data we need.
Upon closer inspection, however, we find several problems. Take the example of
Herbie Hancock. “Band Name” is repeated twice: once for each CD. This repeti-
tion is a problem for several reasons. First, when entering data in the database, we
end up typing the same name over and over. Second, and more important, if any
of the data changes, we have to update it in multiple places. For example, what if
“Herbie” were misspelled? We would have to update the data in each of the two
rows. The same problem would occur if the name Herbie Hancock changes in the
futare (2 la Jefferson Airplane or John Cougar). As we add more Herbie Hancock
CDs to our collection, we add to the amount of effort required to maintain data
consistency.

Another problem with the single CD table lies in the way it stores songs. We are
storing them in the CD table as a list of songs in 2 single column. We will run into
all sorts of problems if we want to use this data meaningfully. Imagine having to
enter and maintain that list. And what if we want to store the length of the songs
as well? What if we want to perform a search by song title? It quickly becomes
clear that storing the songs in this fashion is undesirable.

This is where database design comes into piay. One of the main purposes of data-
base design is to eliminate redundancy from the database. To accomplish this task,
we use a technique called normalization. Before we start with normalization, let's
start with some fundamental relational database concepts. A data model is a dia-
gram that illustrates your database design. It is made up of three main elements:
entities, attributes, and relationships. For now, let's focus on entities and attributes;
we will take a look at relationships later. '

Dotabase Eniities

An entity is a thing or object of importance about which data must be captured.
All “things” are not entities, only those things about which you need to capture
information. Information about an entity is captured in the form of attributes and/
or relationships. If something is a candidate for being an entity and it has no
attributes or relationships, it is not really an entity. Database entities appear in a
data model as a box with a title. The title is the name of the entity.

Database Design 15

Entity Attributes

An attribute describes information about an entity that must be captured. Each
entity has zero or more attributes that describe it, and each attribute describes
exactly one entity. Each entity instance (row in the table) has exactly one value,
possibly NULL, for each of its attributes. An attribute value can be numeric, a char-
acter string, date, time, or some other basic data value. In the first step of data-
base design, logical data modeling, we do not worry about how the attributes will

be stored.

NULL provides the basis for the problem of dealing with missing
information. It is specifically used for the case in which you lack a
certain piece of information. As an example, consider the situaton
where a CD does not list the song lengths of each of its tracks. Each
song has a length, but you cannot tell from the case what that length
is. You do not want to store the length as zero, since that would be
incorrect. Instead, you store the length as NULL. If you are thinking
you could store it as zero and use zero 0 mean “unknown”, you are
falling into one of the same traps that led to one of the Y2K prob-
lems. Not only did old systems store years as two digits, but they
often gave a special meaning to 9-9-99.

Our example database refers to a number of things: the CD, the CD title, the band
name, the songs, and the record label. Which of these are entities and which are

attributes?

Data Model

Notice that we capture several pieces of data (CD title, band name, etc.} about
each CD. and we absolutely cannot describe a CD without those items. CD 1s
therefore one of those things we want to capture data about and is likely an entity.
To start 2 data model. we will diagram it as an entity. Figure 2-1 shows our sole

entity in a data model.

-

Figure 2-1. The CD entity in g data model

6 Chapter 2: Database Design

By common entity naming conventions, an entity name must be singular. We
therefore call the table where we store CDs “CD” and not “CDs.” We use this con-
vention because each entity names an instance. For example, the “San Francisco
49ers” is an instance of “Football Team,” not “Football Teams.”

At first glance, it appears that the rest ot the database describes a CD. This would
indicate that they are attributes of CD. Figure 2-2 adds them to the CD entity in
Figure 2-1. In a data model, attributes appear as names listed in their entity’s box.

Sttt A IS A =t A PP AP FA RSB AL

Figure 2-2. The CD entity with 1ts attributes

This diagram is simple, but we are not done yet. In fact, we have only just begun.
Earlier, we discussed how the purpose of data modeling is to eliminate redun-
dancy using a technique called normalization. We have a nice diagram for our
database, but we have not gotten rid of the redundancy as we set out to do. It is
now time to normalize our database.

Normalization

E.F. Codd, then a researcher for IBM, first presented the concept of database nor-
malization in several important papers wriiten in the 1970s. The aim of normaliza-
trion remains the same today: to eradicate certain undesirable characteristics from a
database design. Specifically, the goal is to remove certain Kinds of data redun-
dancy and therefore avoid update anomalies. Update anomalies are difhiculties
with the insert, update, and delete operations on a database due to the data struc-
rure. Normalization additionally aids in the production of a design that is a high-
quality representation of the real world; thus normalization increases the clarity of
the data model.

As an example, say we misspelled “Herbie Hancock” in our database and we want
to update it. We would have to visit each CD by Herbie Hancock and fix the artist’s
name. If the updates are controlled by an application which enables us to edit
only one record at a time, we end up having to edit many rows. It wouid be much
more desirable to have the name “Herbie Hancock” stored only once so we have
to maintain it in just one place.

A e Bt

Normalization I7

First Normal Form (INF)

The general concept of normalization is broken up into several “normal forrms.” An
entity is said to be in the first normal form when all attributes are single-valued. To
apply the first normal form to an entity, we have 10 verify that each attribute in the
entity has a single value for each instance of the entity. If any attribute has repeat-

ing values, it is not in 1NF.

A quick look back at our database reveals that we have repeating values in the
Songs attribute, so the CD is clearly not in INF. To remedy this problem, an entity
with repeating values indicates that we have missed at least one other entity. One
way to discover other entities is to look at each attribute and ask the question

“What thing does this describe?”

what does Song describe? It lists the songs on the CD. S0 Song 1s another “thing”
that we capture data about and is probably an entity. We will add it to our dia-

gram and give it 2 Song Name attribute. To complete the Song entity, we need to
ask if there is more about a Song that we would like to capture. We identified ear-

lier song length as something we might want to capture. Figure 2-3 shows the new
data model.

Ay Pl

Figure 2-3. A data model with CD and Song entities

Now that the Song Name and Song Length are atiributes in a Song entity, we
have a data model with two entities in 1NF. None of their attributes contain multi-

ple values. Unfortunately, we have not shown any way of relating a CD to a Song.

The Unique Identifier

Before discussing relationships, we need to ImpoOse one more rule on entities.
Fach entity must have a unique identifier~we'll call it the ID. An ID is an attribute

of an entity that meets the following rules:
« It is unique across.all instances of the entity.

» I has a non-NULL value for each instance of the entity, for the entire lifetime
of the instance.

= It has a value that never changes for the entire lifetime of the instance.

I8 Chapter 2: Database Design

The ID is very important because it gives us a way to know which instance of an
entity we are dealing with. Identifier selection is critical because it is also used to
model relationships. If, after you've selected an ID for an entity, you find that it
doesn’t meet one of the above rules, this could affect your entire data model.

Novice data modelers often make the mistake of choosing attributes that should
not be identifiers and making them identifiers. if, for example, you have a Person
entity, it might be tempting to use the Name attribute as the identifier because all
people have a name and that name never changes. But what if a person marries?
What if the person decides to legally change his name? What if you misspelled the
name when you first entered it? If any of these events causes a name change, the
third rule of identifiers is violated. Worse, is a name really ever unique? Unless you
can guarantee with 100% centainty that the Name is unique, you will be violating
the first rule. Finally, you do know that all Person instances have non-NULL
names. But are you certain that you will always know the name of a Person when
yvou first enter information about them in the database? Depending on your appli-
cation processes, you may not know the name of a Person when a record is first
created. The lesson to be learned is that there are many problems with taking a
ncnidentifying attribute and making it one.

The solution to the identifier problem is to invent an identifying attribute that has
no other meaning except to serve as an identifying attribute. Because this attribute
is invented and completely unrelated to the entity, we have full control over it and
guarantee that it meets the rules of unique identifiers. Figure 2-4 adds invented ID
attributes to each of our entities. A unique identifier is diagrammed as an under-
lined attribute.

Figure 2-4. The CD and Song entities with their unique identifiers

Relationships

The identifiers in our entities enable us to model their relationships. A relationship
describes a binary association between two entities. A relationship may also exist
between an entity and itself. Such 2 relationship is called a recursive relationship.

o i fgmy A~ WY w PR

Normalization 19

Each entity within a relationship describes and is described by the other. Each side
of the relationship has two components: 2 name and a degree.

Fach side of the relationship has a name that describes the relationship. Take two
hypothetical entities, an Employee and a Department. One possible relation-
ship between the two is that an Employee is “assigned to” a Department. That
Department is “responsible for” an Employee. The Employee side of the rela-
tionship is thus named “assigned to” and the Department side “responsible for.”

Degree, also referred to as cardinality, states how many instances of the describ-
ing entity must describe one instance of the described entity. Degree 1s expressed
using two different values: “one and only one” (1) and “one or many (M). An
employee is assigned to one department at a time, so Employee has a one and
only one relationship with Department. In the other direction, a department is
responsible for many employees. We therefore say Department has a “one or
many” relationship with Employee. As 2 result 2 Department could have exactly

one Employee.

it is sometimes helpful to express a relationship verbally. One way of doing this 1s
to plug the various components of a direction of the relationship into this formula:

entityl has lone and only one | one or many] entity2

Using this formula, Employee and Department would be expressed like so:

Fach Enployee must be assigned to one and only one Department.
Fach Department may be responsible for one or many Enplovyees.

We can use this formula to describe the entities in our data model. A CD contains
one or many Songs and a Song is contained on one and only one CD. In our data
model, this relationship can be shown by drawing a line between the two entities.
Degree is expressed with a straight line for “one and only one” relationships or
“crows feet” for “one or many” relationships. Figure 2-5 illustrates these conventons.

Figure 2-5. Anatomy of a relationship

Ny
!

Chapier 2: Database Design

How does this apply to the relationship between Song and CI¥ in reality, a Song
can be contained on many CDs, but we ignore this for the purposes of this exam-

ple. Figure 2-6 shows the data model with the relationships in place.

P RSA BALARR. LA EpEEEE SRR S

P T TN N PR e T

-
.
1
H
\
»
!
-
.
p -

-—

igure 2-6. CD-Song relationship

With these relationships firmly in place, we can go back to the normalization pro-

cess and improve upon the design. So far, we have normalized repeating song val-

ues into a new entity and modeled the relationship between it and the CD entity.

Second Normal Form (ZNF)

An entity is said to be in the second normal form if it is already in INF and ali

nonidentifving attributes are dependent on the entity’s entire unique identifier. It

any attribute is not dependent entirely on the entity's unique identifier, that
attribute has been misplaced and must be removed. Normalize these atiributes
either by finding the entity where it belongs or by creating an additional entity
where the attribute should be placed.

In our example, “Herbie Hancock” is the Band Name for two different CDs. This
fact illustrates that Band Name is not entirely dependent on CD ID. This duplica-
tion is a problem because if, for example, we had misspelled “Herbie Hancock,”
we would have to update the value in multiple places. We thus have a sign that
Band Name should be part of a new entity with some relatonship to CD. As
before, we resolve this problem by asking the question: “What does a band name
describe™ It describes a band, or more generally, an artist. Artist is yet another
thing we are capturing data about and is therefore probably an entity. We will add

Normalization | 21

it to our diagram with Band Name as an attribute. Since all artisis may not be
bands, we will rename the attribute Artist Name. Figure 2-7 shows the new state
of the model.

wu g u n el e e b e—_

- e wws des vew 44

P —sm A wwwbsme

Figure 2-7. The data model with the new Artist entily

Of course, the relationships for the new Artist table are missing. We know that
each Artist has one or many CDs. Each CD could have one or many Artists.
We model this in Figure 2-8.

We originally had the Band Name attribute in the CD entity. It thus seemed natural
to make Artist directly related to CD. But is this really correct? On closer inspec-
tion, it would seem that there should be a direct relationship between an Artist
and a Song. Fach Artist has one or more Songs. Each Song is performed by one
and only one Artist. The true relationship appears in Figure 2-9.

Not only does this make more sense than a relationship between Artist and CD,
but it also addresses the issue of compilation CDs.

Kinds of Relationships

When modeling the relationship between entities, it is important to determine both
directions of the relationship. After both sides of the relationship have been deter-
mined, we end up with three main kinds of relationships. If both sides of the rela-
tionship have a degree of one and only one, the relationship is called a “one-to-one”
or “1-to-1” relationship. As we will find out later, one-to-one relationships are rare.
We do not have one in our data model.

O\
o

Chapter 2: Database Design

| Artist .
-Artist Nams s 4“ &5 Tt -

o . | Record Label

S R R T AT, R R T N N s

Song D
| CDTitie
- Record Latief

Figure 2-9. The real relationship between Artist and the rest of our data model

If one of the sides as a degree of “one or many” and the other side has a degree of
“one and only one,” the relationship is a “one-to-many” or “1-to-M" relationship. All
of the relationships in our current data model are one-to-many relationships. This
is to be expected since one-to-many relationships are the most common.

The final kind of relationships is where both sides of the relationship are “one or
many” relationships. These kind of relationships are called “many-to-many” or “M-
t0-M” relationships. In an earlier version of our data model, the Artist-CD
relationship was 2 many-to-many relationship.

Refining Relationsbips

As we noted earlier, one-to-one relationships are quite rare. In fact, it you encoun-
ter one during your data modeling, you should take a closer look at your design.

Normalization 23

A one-to-one relationship may imply that two entities are really the same entity. If
they do turn out to be the same entity, they should be folded into a singie entity. |

Many-to-many relationships are more common than one-to-one relationships. In
these relationships, there is often some data we want to capture about the relation-
ship. For example, take a look at the earlier version of our data model in Figure 2-8
that had the many-to-many relationship between Artist and CD. What data might
we want to capture about that relationship? An Artist has a relationship with a CD
because an Artist has one or more Songs on that CD. The data model in
Figure 2-9 is actually another representation of this many-to-many relationship.

All many-to-many relationships should be resolved using the following technique:

1. Create 2 new entity (sometimes referred to as a junction entity). Name it
appropriately. If you cannot think of an appropriate name for the junction
entity, name it by combining the names of the two related entities (e.g,
ArtistCD). In our data model, Song is a junction entity for the Artist-CD

relationship.

2. Relate the new entity to the two original entities. Each of the original entities
should have a one-to-many relationship with the junction entity.

3. If the new entity does not have an obvious unique identifier, inherit the identi-
fying attributes from the original entities into the junction entity and make
them together the unique identifier for the new entity.

In almost all cases, you will find additional attributes that belong in the new junc-
tion entity. If not, the many-to-many relationship still needs to be resolved, other-
wise you will have a problem translating your data model into a physical schema.

More 2NF

Our data model is still not in 2NF. The value of the Record Label attribute has
only one value for each CD, but we see the same Record Label in multiple CDs.
This situation is similar to the one we saw with Band Name. As with Band Name,
this duplication indicates that Record Label should be part of its own entity.
Fach Record Label releases one or many CDs. Each CD is released by one and
only one Record Label. Figure 2-10 models this relationship.

Third Normal Form (3NFE)

An entity is said to be in the third normal form if it is already in ZNF and noO non-
identifying attributes are dependent on any other nonidentifying attributes.
Attributes that are dependent on other nonidentifying attributes are normalized by
moving both the dependent attribute and the attribute on which it is dependent

inlo a new enuty.

2 Chapter 2: Database Design

———

YA PR . e e oy

‘e =, . I B 2y

N TR «s oo me" e w b o LA T S R T
‘-A_.‘“’,..'_‘- . a
- .- - I. - s
X . : - .
- L4 * h-
' .‘ ¥ -
- ¥ -
e — - -

V%

Pl =)
S, 'w\'g
.n T2 d., l‘“.’;’ ;
e, q P .

S SONRE
. ¥

S
g
A}
~

'sx‘ ?

1"
|

o
: > I
- - -ay
. - B
J . - b S
¥ : - . " . ' . ' _-. o . o
- - - - - S | .-
N r - o
- . ~ .. - N s
. - * e
- - "
. . - - ot
CE—- . N . - .
- . N Sah e
- N e
- < - 0 - .
~

> ' S

- - ? o N . ~ e s

Y
A
AR Y

Pk
N

p(l

LD ,4.‘

)

W
4
' » L]
v FFTLA ey .
N « LT AN,
. shy Ay AN BT
% L) v 7 Y we
P AV ORI P
) vf'h-] o
3 . \\ YA

[Sepppp————— N WU ST S SR AL AL A e e e o 1 L

ARmALAYEASIRANEEANS

r: -
.
!‘ -
’I

B ol e

- - - -
- el \o—“-’ Ve -

e . aiay ps A

——

Figure 2-10. Our data model in the second normal form

if we wanted to track Record Label address information, we would have a prob-
lemm for 3NF. The Record 1.abel entity with address data would have State
Name and State Abbreviation atiributes. Though we really do not need this
information to track CD data, we will add it to our data model for the sake of our
example. Figure 2-11 shows address data in the Record Label entity.

et B M Bdd

AR B At S AR SR S SRR S PP e

Figure 2-11. Record Label address information in our CD database

4 Logical Data Modeling Metbhodology 25

The values of State Name and State Abbreviation would conform to INF
because they have only one value per record in the Record Label entity. The
problem here is that State Name and State Abbreviation are dependent on
each other. In other words, if we change the State Abbreviation for a particu-
lar Record Label—from MN to CA—we also have to change the State Name—
from Minnesota to California. We would normalize this by creating a State entity
with State Name and State Abbreviation attributes. Figure 2-12 shows how to
relate this new entity to the Record Label entity.

Figure 2-12. Our data model in the third normal form

Now that we are in 3NF, we can say that our data model is normalized. There are
other normal forms which have some value from a database design standpoint, but
these are beyond the scope of this book. For most design purposes, the third nor-
mal form is sufficient to guarantee a proper design.

A Logical Data Modeling Methodology

We now have a completed logical data model. Let’s review the process we went
through to get here.

1. Identify and model the entities.
2. Identify and model the relationships between the entities.

3. Identify and model the attributes.

26 Chapier 2: Database Desigr

4. identify unique identifiers for each entity.

5. Normalize.

In practice, the process is rarely so linear. As shown in the example, it is often
tempting and appropriate to jump around between entities, relatonships,
attributes, and unique identifiers. It is not as important that you follow a strict pro-
cess as it is that you discover and capture all of the information necessary to cor-
rectly mode! the systemn.

The data model we created in this chapter is quite simple. We covered an
approach to creating such a2 model which is in-line with the type and complexity
of databases you are likely to encounter in developing MySQL or mSQL data-
bases. We did not cover a whole host of design techniques and concepts that are
not so important to small-scale database design, but these can be found in any text
dedijcated to database design.

Physical Database Design

What was the point in creating the logical data model? You want to create a data-
base to store data about CDs. The data model is only an intermediate step along
the way. Ultimately, you would like to end up with a MySQL or mSQL database
where you can store data. How do you get there? Physical database design trans-

lates your logical data medel into a set of SQL statements that define your MySQL
or mSQL database.

Since MySQL and mSQL are relational database systems, it is relatively easy to
translate from a logical data model, such as the one we described earlier, into a
physical MySQL or mSQL database. Here are the rules for translation:

1. Entities become tables in the physical database.

2. Attributes become columns in the physical database. You have to choose an
appropriate datatype for each of the columns.

3. Unique identifiers become columns that are not allowed to have NULLs. These

are called primary keys in the physical database. You may also choose to create
2 unique index on the identifiers to enforce uniqueness. For your purposes,

mSQL does not have a concept of a primary key. It simply has unique indi-
ces. This issue does not apply to MySQL.

4. Relationships are modeled as foreign keys. We will cover this later.

If we apply these rules to our data model—minus the Record Label address
information—we will end up with the physical database described in Table 2-2.

Phystcal Database Desigit 27

Table 2-2. Physical Table Definitions for the CD Database

Tabie Column Datatype Notes
CD CDId INT primary key
| CDTitle TEXT(5G)
Artist Artstld INT primary key
ArtistName TEXT(50)
Song Songld INT primary key
SongName TEXT(50)
RecordLabel RecordLabelid INT primary key
RecordLabelName TEXT(50) primary key

The first thing you may notice is that all of the spaces are gone from the entity
names in our physical schema. This is because these names need to translate into
SQL calls to create these tables. Table names should thus conform to SQL naming
rules. Another thing to notice is that we made all primary keys of type INT.
Recause these attributes are complete inventions on our part, they can be of any
indexible datatype.” The fact that they are of type INT here is almost purely arbi-
trary. It is almost arbitrary because 1t is actually faster to search on numeric fields
in many database engines and hence numenc fields make good primary keys.
However, we could have chosen CHAR as the type for the primary key fields and
everything would work just fine. The bottom line is that this choice should be

driven by your criteria for choosing identifiers.

The rest of the columns are set 1o be of type TEXT with a length of 50. This defini-
tion works for both MySQL and mSQL. For MySQL, however, VARCHAR would be a
better choice but not important to this example. Picking the right datatype for col-
umns is very important, but we will not dwell on it here since we have not yet

covered the datatypes for MySQL and mSQL.

We now have a starting point for a physical schema. We haven' yet translated the
relationships into the physical data model. As we discussed earlier, once you have
refined your data model, you should have mostly 1-to-1 and 1-to-M relationships—
the M-to-M relationships were resolved via junction tables. We model relation-
ships by adding a foreign key to one of the tables involved in the relationship. A
foreign key is the unique identifier or primary key of the table on the other side of

the relationship.

+ Later in this book, we will cover the datatypes supported by MySQL and mSQL. Each database engine
has different rules about which datatypes can be indexible. Neither database, for example. allows indi-
ces 10 be created on whole TEXT fields. It would therefore be inappropnate to have a primary key col-

umn be of type TEXT.

28 Chapter 2: Database Design

The most common relationship is the 1-to-M relationship. This relationship is
mapped by placing the primary key on the “one” side of the relationship into the
table on the “many” side. In our example, this rule means that we need to do the
following:

> Place a RecordLabelId column in the CD table.
= Place a2 CDIA column in the Song table.

¢+ Place an ArtistId column in the Song table.

Table 2-3 shows the new schema.

Table 2-3. The Physical Data Model for the CD Database

Table g Column Datatype l{ Notes
CD - cdid INT - primary key
- CDTitle TEXT(50)
! RecordLabelld INT foreign key
Artist ; Artistid INT | primary key
| ArtistName TEXT(50)
Song i Songld - INT primary Key
. SongName TEXT(50)
| cdid INT foreign key
Artistid INT | foreign key
Recordlabel i RecordLabelld INT | primary key
. RecordlabeiName TEXT(50)

We do not have any 1-to-1 relationships in this data model. If we did have such a
relationship, it should be mapped by picking one of the tables and giving it a for-
eign key colurnn that matches the primary key from the other table. In theory, it
does not matter which table vou choose, but practical considerations may dictate
which column makes the most sense as a foreign Key.

We now have a complete physical database schema ready to go. The last remain-
ing task is to translate that schema into SQL. For each table in the schema, you
write one CREATE TABLE statement. Typically, you will choose to create unique
indices on the primary Keys to enforce uniqueness.

We are. in a sense, jumping ahead at this point. You may not be familiar with SQL
vet, and it is not the purpose of this chapter to introduce the MySQL and mSQL
variants of SQL. Nevertheless, here are two sample scripts to create the CD data-
base. The first script, Example 2-1 is for MySQL. Example 2-2is for mSQL.

., .
Lo . . N
P T e 12-

«F9
}M.&‘.o —

RRANIMAR BRIy AL AL WAL RI P NRE BT IS Y
RGT R %&ﬁf?&*ﬁvQ(\l".&r,ér-‘sm?'-?ﬁw-. ORI

"?:' ;}é\.{ L ‘-J..‘.‘/r 5: 1,4¢ '-"$"’ .
" wha by ii‘-;dwﬂubv’/s).,u PP l;f WNyade

iy

2,

Physical Database Design 29

Example 2-1. An Example Script for Creating the CD Database in MySQOL

CREATE TABLE CD (CD_ID INT NOT NULL,
RECORD_LABEL_I INT,
cD_TITLE TEXT,
PRIMARY KEY (CD_ID})
CREATE TARBLE Artist (ARTIST ID INT NOT NULL,
ARTIST NAME TEXT,
PRIMARY KEY (ARTIST_ID))
CREATE TABLE Song (SONG_ID INT NOT NULL,
¢D_ID INT,
SONG_NAME TEXT,
| PRIMARY KEY (SONG_ID})
CREATE TABLE RecorLabel (RECORD_LABEL_ID INT NOT NULL,
RECORD_LAREL,_NAME TEXT,
PRIMARY KEY (RECORD_LABEL_ID))

Example 2-2. An Example Script for Creating the CD Database in mSQL

CREATE TABLE CD (CD_ID INT NOT NULL,
RECORD LAREI, ID INT,
CD_TTTLE TEXT (50))
CREATE UNIQUE INDEX CD_IDX ON CD (CD_ID)
CREATE TABLE Artist (ARTIST_ID INT NO NULL,
ARTIST NAME TEXT(S0))
CREATE UNIQUE INDEX Artist_IDX ON Artist (ARTIST ID}

CREATE TABLE Song (SONG_ID INT NOT NULL,
CD_ID INT,
SONG_NAME TEXT (50))

CREATE UNIQUE INDEX Song_IDX ON Song (SONG_ID)

CREATE TABLE RecordLabel (RECORD_LABEL, 1D INT NOT NULL,
RECORD LABEI, NAME TEXT(50))

CREATE UNIQUE INDEX RecordLabel IDX

ON RecordLabel (RECORD _LABEL_ID}

Data models are meant to be database independent. You can therefore take the
techniques and the data model we have generated in this chapter and appljr them
not only to MySQL and mSQL, but to Oracle, Sybase, Ingres, or any other rela-
tional database engine. In the following chapters, we will discuss the details of
how you can merge your new database design knowledge into MySQL and mSQL.

