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PREMISE

A wide variety of Micro Pattern Gas Detectors (MPGD) is
today on the market, many developments are in progress, thanks
to the improvements of the photolithographic technologies.

RD-51 is the “forum” for this kind of developements
COMPASS has been and 1s a pioneer under several aspects.

In this talk =» prospects for the LHC experiments upgrades
* Quest for large dimensions ( = m?) detectors

* Time resolutions at the “ns” level

* Space resolutions at the “100 um” level

* Rate capability up to 10 kHz/cm? = MHz/cm?.
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OUTLINE

Introduction
* The MPGD and the LHC experiments

* The upgrades of the LHC experiments
* GEM

* The CMS muon spectrometer upgrade
* The new detector for the ALICE large TPC
* Possible new developments in LHCb

MicroMegas
* The New Small Wheel upgrade of the ATLLAS muon spectrometer
* The Large Eta Tagger upgrade

Recent developments
* Fast Time MicroPattern (FTM) concept
* uRWell concept

* Summary
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INTRODUCTION -1

* First MPGD in the *90s: precision det. for high-rate applications

* At that time not mature enough to provide large area detectors

for LHC experiments, with 2 “small” exceptions:

* LHCb M1 (20x20 cm? triple-GEMs for large-1 muon trigger)
* TOTEM T2 (half-circles triple-GEMs 14 cm radius)
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INTRODUCTION - II

* LHC upgrades: luminosity beyond baseline value =2 higher

rates are expected in the forward muon detectors.
* From p-p collisions: O(100 kHz/cm?) expected in the hottiest regions
* Heavy-ions collisions: bunch X-ing frequency up to 50 kHz (1 evt/20 us)

* MPGD now considered BUT =2 extension to large dimensions
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LS2: Upgrade injection to
increase beam brightness

LS3: Upgrade Int. Reg. to
increase beam overlaps
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INTRODUCTION - III

Upgrade projects involving MPGDs

ALICE TPC Read-Out chambers
* Quadruple- GEMs: 72 chambers 0.2 + 0.6 m? each (phase-I)

ATLAS forward muon spectrometer
* NEW SMALL WHELL: MicroMegas: 128 Q-plets 2+3 m? area each (phase-I)
* LARGE ETA TAGGER: Pad MicroMegas Concept OR uPIC OR uRWELL

CMS forward muon spectrometer
* GE1/1: 72 Triple-GEMs chambers 0.35 + 0.4 m? each (phase-I)

* MEO + GE2/1: options considered (phase-1I)
* Triple-GEM with X-Y read-out
* Fast Time MicroPattern new concept MPGD
* UWRWELL new concept MPGD

LHCDb forward muon spectrometer

* Sdll under discussion, probably small MPGDs (30x30 cm?) for triggering in a
huge rate environment OR uRWELL
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MULTIPLE-GEM: PRINCIPLE OF OPERATION -1

GEM foil: high-quality polymer foil coated on both sides with thin
metal layers; = shaped holes with a large electrical field inside

—> Amplification avalanche in the hole region
> Mostly “transparent” for electrons

—> Very small percentage of ions

=>» reduced space charge effect

=» reduced field distortion

backflow

F. Sauli, Nucl. Instr. and Meth. A386(1997)531

SVESVE

Simulated
avalanche
in GEM hole

Typical Electrical field lines |

Behaviour of electrons
and ions through a hole
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MULTIPLE-GEM: PRINCIPLE OF OPERATION - II

* The technique has been extended to = m? foils thanks to the
single-mask technology —> large area applications are possible

* Then go to Multiple-GEM allowing:

* High gain obtained with electrodes at “low voltages” = less prone to
discharges (Raether limit hard to be reached)

* Freedom in the choice of the electrical fields = optimization of the IBF
(Ion Back Flow) = reduction of field distortions

Dnftcathode | / )

GFEM3 m

Readout PCH

Amphiier
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CMS: FORWARD MUON UPGRADE
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Requirements:

- Single-chamber efficiency >

See CMS-TDR-013 CERN-LHCC-2015-012

—> Maximum geometric acceptance within the given CMS envelope
—> Rate capability up to 100’ kHz/cm?; no gain loss due to aging after 3000 b

98 % for mips; gain uniformity of < 10%

—> High angular (<300 prad) and good time resolution (<10 ns)
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CMS GE1/1: LARGE SIZE TRIPLE-GEM

Major features of the GE1/1, design are:

* Single-mask tehnology exploited

* The three GEM foils: gap config (3/1/2/1)

* Readout board with strips (3072 per chamber)
with fixed ¢ pitch (463 urad)

e Internal frame with lateral stretching screws

* External frame

72 trapezoidal triple-GEM Superchambers
0.22 + 0.45 m? size 1.28 m maximum length
Read-out through VFAT3

Exploded view of a long GE1/1 triple-GEM:

~. OPTICAL BOARD

DRIFT BOARD

<«
M
12g3 SO
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CMS GE1/1: IMPACT ON TRIGGER

In CMS, the ¢ coordinate is the precision one L1 single muon trigger rate reduction
=> Radial strips with a fixed pitch in ¢ according to present simulation:
=» Tracks perpendicular = charge centroid pr >20 GeV single muon trigger
Muon trigger: A¢p measured @ L1 trigger level Can be still used without prescale.
CSC+GEM improves the lever arm
=>» reduce fake muon rate 10 e | | PU=50,14TeV
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CMS: PERFORMANCE OF LARGE PROTOTYPES
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CMS: TRIPLE-GEM FOR MEJ

MEOQ extends muon coverage down to 1 = 3 B >

to take advantage of the pixel extension

Main requirements:
-- High granularity and spatial segmentation
-- Multi-layered structure to reduce fakes

-- Precision Timing

* P, assignment through A¢ measurement
* Discriminate muon (segment) against

neutrons (uncort hits). ‘
. . . . . Mechanical
* Reduce in-time PileUp , help vertex association  swors

Back flange

Guiding Rail

& Services Pocket
For package of 6

Thicknesses cm:

MEQ baseline layout consists of 216 triple-GEM chamber
arranged in 36 20° super-module wedge each consist of
6 layers of triple GEMs (3 back-to-back),

covering 2<|n|<3

2.5 borateq polyethylene

Alternative technology = uRWell

\ 20 degree
Chambers

! Az=30cm
Status of the art of the new generation of 14
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ALICE TPC READOUT

Heavy Ion collisions during Run3: 500 Hz = 50 kHz collisions

(1 crossing / 20 ws)

Important impact on the large ALICE TPC operation

Low mass, high pre- B
cision ﬁeld cage__ - — .

\‘-\
\. Inner, outer

readout
.\ chambers
| (MWPCs)
Central-drift
electrode
Endplate (100 kV) ,
/
" &m Alice TPC (Ar/CO,

Ion flow removal through the
“gating grid” method is NOT
possible anymore (=280 us
intrisic deadtime)

=» Continuous mode operation.

New Readout detector with:

- high gain

- good dE/dx resolution

- low IBF (Ion Back Flow)
=> Large Area Quadruple-GEM

90-10 V=90 m?)

ALICE-TDR-016 CERN-LHCC-2013-020

03/04/17
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ALICE QUADRUPLE-GEM -1

* Quadruple-GEM optimized to Covereeeee _
reduce IBF < 1% with high gain: e, ] = : C— j -
* Ne-based gas mixture: zz:i((ts'? : = [_:_]: ] 2::
2 NC—COZ—NZ (90'10‘5) Pad plane Ll:]_,_Em ——

* Standard and Large-Pitch GEMs ~ Stonabeck |
* Most of the gain in the last stage S o
* Few mm pads =2 drift time and

charge measurement

St

pad plane
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ALICE QUADRUPLE-GEM - 11

* 72 Large area chambers: 0.6 m?, 0.2 m?
* Single-mask technology exploited

* Results on first prototypes:
* Gain = 2000
- pAE T e SO S hatan]
* o(dE/dx) = 12% >°Fe

0
* [BF < 1% 164 cm
i T | T T T T | T T T T | T T T T | T T T I:
= 20 T 1200~ —— e: mean=101.55, 6=9.22, c/mean=9.08% .
% """""" UensYeena=0-8 Ugens/Ueen=0-95 = m: mean= 66.10, =6.89, o/mean=10.42%
1000 — —
3 4-GEM IROC
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400 .
- dE/dx spectra
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LHCB PROSPECTS

* Still under discussion in the collaboration
* Main points:
* Probably remove M1 chambers

* Additional small chambers (30x30 cm?) for triggering in the huge rate
regions (up to 0.5 MHz/cm?) M2

* Time resolutions below 5 ns required
= GEM with CF, based gas mixtures

= URWell also is a possible choice to exploit the optimal time resolution for

triggering purposes.

BUT the very high rate is in conflict with high resistivity.
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MICROMEGAS
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MICROMEGAS: PRINCIPLE OF OPERATION -1

First proposed by Y.Giomataris, NIMA 376 1 (1996) 25

() 300 V
Drift Cathode

@) _ Pillars

o) Micro Mesh 0V

® +550 V

(5)
PCB Read-out electrodes

Detector components (the quoted numbers refer to the ATLAS project):
(1) Planar metallic cathode
(2) Gas gap (5 mm) with low electric field (0.6 kV/cm): conversion and electron drift
(3) Thin metallic mesh standing on “pillars” (128 um high)
(4) 128 um gap with high electric field (40+50 kV/cm): avalanche
(5) Segmented anode with read-out strips (= 400 um pitch) on Printed Circuit Board (PCB).

Maximum drift time = gap size / v(drift) = 5 mm / 50 um/ns = 100 ns
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MICROMEGAS: PRINCIPLE OF OPERATION - II

Electric field lines in the mesh region

. : ‘ |
CONVERSION GAP (3mm) & '

Edrift 1-5KV/cm

L
B t
I

==y

A L N A N
gt MesthchSOpm S I T A

'(1ooum) ik
30-50KV/ecm

Huge electric field ratio:
=» The mesh is “transparent” for drift electrons

=» Avalanche ions almost fully collected by the mesh (within =100 ns); negligible IBF
Gain “Plateau” (10* +10°) around d = 100 um

Status of the art of the new generation of
MPGD detectors
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MICROMEGAS: PROTOTYPES PERFORMANCE - THE MTPC

10x10 cm? prototypes built and tested at CERN (MAMMA collaboration)

DDDDD Typical event Space resolution measured on Test-Beam
Single Plane Spatial Resolution

€
!
5
3
850

““““““““““““““““““““““““““““““ o

For each strip, are measured:

charge

X Important point: good measurement also for
tracks at an angle (=100 um for 8<0<32°)

=» Charge centroid
|
=>» UTPC (position and angle) = good for ATLAS Muons !
Status of the art of the new generation of "
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ATLAS: MUON FORWARD UPGRADE

12m

10
BOL

8 -

RPCs

/1N

ATLAS_TDR-020 LHCC-2013-006

EML

\

BML

TR

EEL

EOL

The New Small Wheel:
2 = 3 m? chambers

End-cap
magnet
2 9
“ MM
’ = = | |
0 s 6 \ 8 10 12
Large-n  sT1GCs
tagger
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ATILAS NSW - MOTIVATIONS
Let’s consider the ATLLAS forward muon case

Endcap muon trigger dominated by fake muons —
= R(p>20 GeV)=60 kHz (@ 3%x10% 14 TeV) MDT precision chambers:

A factor >3 reduction =2 “pointing trigger” Beyond pr.oject luminosity = efficiency loss
allows to elimate 90% of the fakes = “Tube 51233 ~3cm X 1m X 750 ﬂsz;
D R(p;>20 GeV)=21 kHz (@ 3x103,14 TeV) =2 @ 7x10°%, 14 TeV 2 = 4 kHz/cm
Compatible with allowed bandwidth >1 MHz/Tubo = 1 /750 ns
> 50% drop in chamber efficiency
A Big Wheel EM ~ S
| g ATLAS-TDR-020
|5
(3]
| H =
El C 30 mm @ tubes
New Small Whet{ |:| [ o— Single tube
. AO A 40: --- Chamber (2x4)—]
: 20
end-ca I
'(oroidp (‘ :
0 ol ol . " L
. : 0 200 400 600 800 1000 1200 1400
=>» Accept topologies A reject B / C st kb
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MICROMEGAS FOR ATLAS NSW -1

High expected rate: discharge probability to be
reduced by maintaining a high gain =~ 10*
—> Resistive strip anode

(=20 MQ/cm; =1MQ/[])

T.Alexopoulos et al. NIMA 640 (2011) 110-118

Mesh support pillar Resistive strip
/0 0.5-100 MQ/cm

PCB
\ - \
Insulator T Cu readout strip
Embedded resistor Resistive Strip
50 MQ 5mm long 0.5-100 MQ/cm

Large dimension chambers have to be
built (2 + 3m?) with challenging
mechanical precisions (30 ~ 80 wm)
—> new construction technique

—> Floating mesh

Drift Panel

— | Drift electrode

i "
n Pillars (128 um) "
" "

Read-Out Panel

. 4

Drift Panel
\ \
GND Copper readout strip Read-Out Panel
03/04/17 Status of the art of the new generation of =
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MICROMEGAS FOR ATLAS NSW - I1

The ATLAS MicroMegas chambers are organized in Q-plets:
5 panels 1 cm thick 2 m? surface (planarity RMS<40um)
2 RO panels (with RO PCB)
3 Drift panels + tensioned mesh
Stereo configuration to get the second coordinate at O(mm)
Operate in a moderate magnetic field (<0.3 T)

Cathode Outer skin
‘ | SM1 quadruplet:

* 425 pum strip pitch
* L1 & L2 vertical
strips (eta),

2 - Read-out panel x2  etastrips e [3&L4+1.5°wrt.
vertical axis (stereo)

Resistive

strips
R/O
Strips

ModuleOs (full size) Q-plets built in 2016
SM1 (INFN) tested on beam => Next slide

5 - Drift panel

Status of the art of the new generation of 26
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SM1 MODULEO - THE TEST-BEAM

H8€exp. Hall : 180 GeVic T+ @ 1kHz to ~0.5MHz

Measurements done on a 180 GeV beam in “standard” conditions
— Gas Mixture Ar/CO, (93%-7%) @ 20 1/hr
- HV(ampl) = 580 V, HV(drift) = 300 V
-- FE electronics APV25

Aim: validation of the first 2 m? Q-plet

Status of the art of the new generation of
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FIRST LARGE PROTOTYPE PERFORMANCE

Preliminary results obtained for perpendicular tracks (charge centroid method)

Space resolution
. i '.'I"'"'I"'I"'I"'I"'_— a t T T T T T T T T T T T T T T T T T T
Precision coordinate rinary 2Tt 2754719 | 7 E 10 ATLAS NSW Preliminary X2/ ndf 52.51/39
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00— Sigma  0.08136 +0.00141 | ] = Sigma 2.408 = 0.041
C 7 100— . —]
C Precision oF 2"d coordinate from
(’gaussian =81 um . — __ =24 mm —:
C —_ . coordinate from A Joaussian the stereo pIangs,__
- EvisinFitrange = 95% Layer1-Layer2 7 Evts in Fit range = 95% compared with ]
[Well within difference /y/2 3 Good agreement y-coord from =
requirements S | N ith expectations rence chambersH
0—1 = I—O.BI -0.6 -0.4 —02J = 0 = |0.2. 0.4 0.6 = _LO.B* I *1 om0 ey = NI B NI L, lmy e
(L1_x - L2_x)/sqrt(2) [mm] -15 -10 -5 0 5 10 15h' . h'20
phi-extr_phi
| _|
Cluster efficiency Vs Amplification HV for Layer1 Alighment between strip layers . ATLAS Requirement
- Twsrww v v ssvrrrrrr 1Q . .
' = 0.08f | Max misalignment < 60 um
Efficiency vs. HV - ] ‘ ,
T > 0.06 *- layerd |
= C . 1
O T 0.04
% 0.99 = [
= C T 0.02f *
o o L
C E
098 5 Of ? + + * + ]
. © i
C o —0.02}
0.97— = {.
- S 0.04f ., .
- [ * + ':
0.96]- ~0.06 - | l ]
[ ATLAS NSW Preliminary —0.081 T
095> v v L e L F 1
545 550 555 560 5656 570 575 580 585 -0.11 ' ‘ ' '
HV e [V] 600 700 800 900 1000
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LARGE ETA TAGGER

VCI‘Y large 1 9 27 < |T|| < 4 Muon tagger envelope =100 cm, 1=2.6
Hit rates up to 9 MHz/cm?
@ highest L. of HL-LHC (u = 200)
Resolution of few 100 um

Crucial points:
Hit granularity down to 1 mm level
Multi-layer

R=25 cm, n=4.0

~9 MHz/cm? (u=200)
(depends on y, n sensitivity)

~600 kHz/cm?

2D reconstruction Small-pads resistive Micromegas
................................................ & Mesh
: . — <«— Resistive pad
Three optlons are Con51dered; = * = <—— Embedded resistor
o e . ®~— Readout pad
1. Small-pads resistive Micromegas
2. Micro Pixel Chamber (u-PIC) = 1

3. Micro-Resistive Well (uRWell)

Pads with rectangular shape 0.82.8 mm?
R&D in progress, first test-beam recently

Status of the art of the new generation of
03/04/17 MPGD detectors 2



RECENT DEVELOPMENTS
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NEW DIRECTIONS

* MPGD principle of operation to obtain “triggering” and
“tracking” detectors with, at the same time:
* Stability of operation at high rates
* Good space resolution O(100 um)
* Improved time resolution O(ns)

* Simplified construction/assembly procedures

* Recent ideas:

* Micro-Resistive Well (simplicity of construction)

* Fast Time Micropattern (exploiting the possibility to reach O(1 ns) time

accuracy)

Status of the art of the new generation of
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MICRO-RESISTIVE-WELL

G. Bencivenni et al., 2015 JINST 10 P02008
“Micromegas with a GEM foil for amplification™.. 2 A

=>» Simple assembly procedure (no gluing, stretching) Drift cathode PCB
=» High-rate bahaviour depends on the resistive ]
stage (100 kHz/cm? up to 10 MHz/cm?)

=>» Time resolution 6 ns

=> Space resolution < 100 um ]
Well pitch: 140 pm

First large size prototype (GE1/1 size) g s e e GD Well diameter: 70-50 pm
under test, results soon \‘ Kapton thickness: 50 pm
- CMS GE2/1 and/or LHCb M2 chambers DLC layer (<0.1 ym)

and/or ATLAS Large Eta Tagger R ~100 MQ/L]

Orwere = (52+-6) ym Space resolution:

@ B= OT after TRKs Prototype 10x10 cm?
contribution

subtraction

Rigid PCB readout

Read-out through APV25 | electrode p-RWELL PCB
Ar/iC,H,,90/10 copper layer 7 3

800

600
400
200~

resistive stage

o_w R IR P A Lol S BT R B Insulating medium

)7".08 -06 04 02 0 02 04 06 08 1 :
Residual (mm) Pad/strip

Status of the art of the new generation of
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FAST TIME MICROPATTERN

The time resolution in a MPGD depends on the

. . . Siognals obtained on both electrodes
fluctuation of the arrival time of the first electron S

0,10

0,05

o,=1/(Av))

X . g 005 ==
This can be reduced by a factor Ny, Np being the g o
number of independent drift-amplification stages. -
R= . & 00 =
Resistive layers = structure transpatrent to signals B
that can be extracted at every amplification stage o0
M. Maggi, A. Sharma, R. De Oliveira -O%f,SE-US -10E-05 -50E-06 0,0E+00 5,0E-06 1,0E-05 1,5E-05
arXiv:1503.05330v1 Time (s)
Preliminary
Traditional MPGD ot driven by distance fluct's Fast Timing MPGD 2 40 Drift electrode
ot < 1/(Avarife) N = Entries 106
X = # primary cls £ 351 2/ ndf 24/4
o C Prob 0.66
[AMP = — A 9e+ + 6.2e+
electron-ion pairs AME A w30 ; Mre:;)n >9er02 +2652ie 0021‘
created close to E Sigma 1.7 £01
amplification structure 25 =
result |r1 f-ast signals AMP 7/ 20;
Fast Timing MPGD: E )
split drift volume in N/ 15:_ Pion Beam
layers, each with own c Bo'th L.ayers powered
AM amplification structure |AM = Drift l.:lleld§ =8 !(V/cm
——— 10 Amplification Fields = 120 kV/cm
i _l_{_>; ot < 1/(Avariee V) i / LD_ - Gas Mixture = Ar/CO, 70/30
) 5 Signal pickup from drift electrode
O:Illllll L1 b s b P b by
e resistive structure = signal from any layer induced in readout ’ ) 0 10 20 30 40 50 60 70 80 90
Time(ns)

o time resolution should improve with N = number of layers

O, = 2 ns with 2 stages

Status of the art of the new generation of
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SUMMARY AND CONCLUSIONS

¢ Starting from LHC Run3 (>2020) large area MPGD will be
used by the LHC experiments to support the expected large
particle rates.

* GEM technology will be widely used (Alice, CMS, LHCD)

* MicroMegas technology will be used by ATLAS reaching the
largest dimensions (up to 3 m? chambers)

* This 1s a challange under several points of view

* In the meantime new MPGD concepts are developed

Status of the art of the new generation of
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