ATLAS RESULTS ON QUARKONIA AND ITS ASSOCIATED PRODUCTION

Cesare Bini

Sapienza Università and INFN Roma On behalf of the ATLAS collaboration

Outline

- Study of Quarkonia with the ATLAS experiment
- Quarkonia production in pp, pPb and PbPb collisions
 - Motivations
 - Quarkonia production in pp and pPb collisions at 5.02 TeV
 - Prompt and non-prompt J/ ψ and ψ (2S) suppression in PbPb collisions at 5.02 TeV
- Quarkonia associated production
 - Motivations
 - di-J/ \u03c6 production at 8 TeV
 - DPS vs. SPS production and comparison with other results

Summary

Papers:

ATLAS Collaboration Eur.Phys.J. C 78 (2018) 171 ATLAS Collaboration Eur.Phys.J. C 77 (2017) 76 ATLAS Collaboration arXiv:1805.04077 [nucl-ex]

Study of Quarkonia with the ATLAS experiment - I

Quarkonia physics in ATLAS is mostly based on low p_T muon triggers and track reconstruction in the Inner Detector

Study of Quarkonia with the ATLAS experiment - II

- 1. M($\mu\mu$) and $\tau(\mu\mu)$ variables to characterize quarkonia production
- 2. \rightarrow 2D fit in these two variables
- 3. Prompt vs. Non-Prompt (mainly due to B decays in flight) prodction

QUARKONIA PRODUCTION IN P+P P+PB AND PB+PB AT 5.02 TEV

Quarkonia production in hadron collisions: Motivations

Quarkonia inclusive production in pp, pPb and PbPb collisions at Есм (NN) = 5.02 TeV

- Comparison with NRQCD (prompt production) and FONNL (non-prompt production) models
- Disentangling of CNM effects (in pPb) and QGP effects (in PbPb)

Results: prompt J/ ψ and ψ (2S) production in pp collisions at 5.02 TeV

Results: Y(1S-3S) production in pp collisions at 5.02 TeV

Significant discrepancies with NLO NRQCD calculations for $p_T < 15$ GeV (agreement at higher p_T)

Results: non-prompt J/ ψ and ψ (2S) production in pp collisions at 5.02 TeV

(better than 7 and 8 TeV data where some discrepancies were actually observed)

Results: nuclear modification factor R_{pPb} for J/ ψ production

Results: nuclear modification factor R_{pPb} for Y(1S) production - I

R_{pPb} < 1 at low p_T → CNM effects are relevant in the case of Y(1S) Nuclear PDF are modified relative to those of the nucleon ? This deserves additional investigations

Results: nuclear modification factor R_{pPb} for Y(1S) production - II

J/ψ and Y R_{pPb} data vs. p^T compared with Alice data on Inclusive J/ψ (left) Y R_{pPb} data vs. y^{*} compared to Alice and LHCb data (right) suggesting a common dependence on y^{*}

Results: R_{pPb} compared to R_{PbPb} for J/ ψ production

 J/ψ : pA nuclear modification factors vs. AA nuclear modification factors

Results: prompt quarkonia double ratios

The double ratios allow to test the nuclear modification factors of excited states with respect to ground states

DI-J/ YASSOCIATED PRODUCTION

Quarkonia associated production in hadron collisions - Motivations

Quarkonia associated production \rightarrow DPS vs. SPS production DPS = Double Parton Scattering SPS = Single Parton Scattering

W+J/ψ and Z+J/ψ associated production
di-J/ψ production at 8 TeV
four-jets production
→ Estimate of *σ*eff

$$\sigma_{(hh' \to ab)}^{DPS} = \left(\frac{m}{2}\right) \frac{\sigma_{(hh' \to a)}^{SPS} \sigma_{(hh' \to b)}^{SPS}}{\sigma_{eff}}$$

16

Results: di-J/ ψ production at 8 TeV - I

- Aim: select events with two prompt J/ψ → μμ decays from the same pp collision
- Step1) Select di-J/ψ events → Invariant mass fits
 J/ψ1 – leading, J/ψ2 – subleading
- Step2) Select Prompt-Prompt di-J/ψ → Pseudo-proper deca time fits
- Step3) Select Prompt-Prompt di-J/ψ from same vertex → vertex dz fit (pile-up removal)
- → 1170 events selected

17

Results: di-J/ ψ production at 8 TeV - II Fiducial cross-section measurement in two rapidity regions of J/ ψ ² (Fiducial region = pT(J/ ψ ²)>8.5 GeV, |y(J/ ψ ²)|<2.1, pT(μ)>2.5 GeV, | η (μ)|<2.3)

 $\sigma_{\text{Fid}}(pp \to J/\psi J/\psi + X) = \begin{cases} 15.6 \pm 1.3 \text{ (stat)} \pm 1.2 \text{ (syst)} \pm 0.2 \text{ (BF)} \pm 0.3 \text{ (lumi) pb, for } |y| < 1.05, \\ 13.5 \pm 1.3 \text{ (stat)} \pm 1.1 \text{ (syst)} \pm 0.2 \text{ (BF)} \pm 0.3 \text{ (lumi) pb, for } 1.05 \le |y| < 2.1. \end{cases}$ GeV dơ/dp_T(J/ψ₂) [pb/2.5 GeV] da/dp_(J/ψ J/ψ) [pb/5 GeV] 10 v_)| < 1.05</p> $|y(J/\psi_{-})| < 1.05$ Data Data Data [pb/5 10^{2} Stat + Syst Uncertainty Stat + Syst Uncertainty Stat + Syst Uncertainty 104 Spin-Alignment Spin-Alignment Spin-Alignment da/dm(J/ψ J/ψ) **DPS Estimate DPS Estimate** DPS Estimate 10 ATLAS ATLAS = 8 TeV, 11.4 fb⁻¹ is = 8 TeV, 11.4 fb⁻¹ = 8 TeV, 11.4 fb⁻¹ 10-1 10 10 10-2 12 14 16 18 20 22 24 26 20 30 40 50 60 10 20 30 40 60 70 80 10 50 p_(J/ψ_) [GeV] p_(J/ψ J/ψ) [GeV] m(J/\u03c6 J/\u03c6) [GeV] Extrapolating to the full muon acceptance (assuming unpolarized J/ψ)

 $\sigma(pp \to J/\psi J/\psi + X) = \begin{cases} 82.2 \pm 8.3 \text{ (stat)} \pm 6.3 \text{ (syst)} \pm 0.9 \text{ (BF)} \pm 1.6 \text{ (lumi) pb, for } |y| < 1.05, \\ 78.3 \pm 9.2 \text{ (stat)} \pm 6.6 \text{ (syst)} \pm 0.9 \text{ (BF)} \pm 1.5 \text{ (lumi) pb, for } 1.05 \le |y| < 2.1. \end{cases}$

Results: di-J/ ψ production at 8 TeV - III

DPS vs. SPS – summary of σ_{eff} estimates

Estimate of σ_{eff} from this analysis and comparison with other estimates

Summary

- Quarkonia production in pp, pPb and PbPb collisions
 - J/ ψ , ψ (2S) production well described by NLO NRQCD and FONNL
 - Y(1S) below pT<15 GeV deviates from NLO NRQCD
 - R_{pPb} ~ 1 for charmonium and < 1 for bottomonium (at low p_T)
 - Sizeable suppression in PbPb collisions is observed
- Prompt di-J/ ψ production in pp collisions at 8 TeV:
 - Differential cross-section measured in a wide kinematic range
 - ~ 9% of the cross-section is estimated to be due to DPS
 - Good description by NLO* estimates (LO DPS + NLO (CS) SPS)
 - σ_{eff} below previous estimates

BACKUP

Measuring the Pseudo-proper Decay Time

Pseudo-proper Decay Time

- Distinguishes non-prompt and prompt sources
- L: distance from the primary vertex to the secondary vertex
- Use signed L_{xy} as a proxy for
 b-hadron decay length
- Good approximation when \u03c6 momentum and b-hadron momentum are aligned

23

di-J/ ψ measurement: additional plots

di-J/ψ measurement: systematic uncertainties

Systematic uncertainty: $di J/\psi$ cross-section [%]					
Source	$ g(J/\psi_2) < 1.05$	$1.05 \le y(J/\psi_2) < 2.1$			
Trigger	±7.5	±8.3			
Muon reconstruction	±1.1	±1.3			
Kinematic acceptance	±0.4	±1.1			
Mass model	±0.1	±0.1			
Masa bias	±0.2	±0.2			
Prompt-prompt model	±0.2	±0.01			
Differential fpp corr.	±0.6	±0.3			
Pile-up	±0.03	±0.4			
Total	± 7.7	± 8.5			
Branching fraction	and the best seen	±1.1			
Luminosity	±1.9				

Systematic uncertainty: fpps [%]					
Source	Relative uncertainty [%]				
Trigger	±0.7				
Muon reconstruction	±0.1				
Mass model	± 0.01				
Mass bias	± 0.02				
Prompt-prompt model	±0.1				
Differential fpp corr.	±0.1				
Pile-up	±0.8				
DPS model	±5.6				
Total	± 5.7				

25

Measurement of associated production of the J/ψ with vector bosons W and Z

No model describes the large values of the associated production

Results: 4-jets analysis

• Fit data using the three templates above:

$$f_{\text{DPS}} = 0.092 \stackrel{+0.005}{_{-0.011}} (\text{stat.}) \stackrel{+0.033}{_{-0.037}} (\text{syst.})$$

 $\sigma_{\text{eff}} = 14.9 \stackrel{+1.2}{_{-1.0}} (\text{stat.}) \stackrel{+5.1}{_{-3.8}} (\text{syst.}) \text{ mb}$

Source of systematic uncertainty	$\Delta f_{\rm DPS}$	$\Delta \alpha_{2j}^{4j}$	$\Delta \sigma_{\rm eff}$	
Luminosity			±3.5%	
Model dependence for detector corrections		±2%	±2%	
Reweighting of AHJ	±6%		±6%	
Jet reconstruction efficiency			±0.1%	
Single-vertex events selection			±0.1%	
Jet energy and angular resolution	±15%	±3%	±15%	
JES uncertainty	+32 % -37 %	±12%	+31 -19 %	
Total systematic uncertainty	+36 % -40 %	±13%	+35 -25 %	

Quarkonia production on pPb collisions: additional plots - I

Quarkonia production on pPb collisions: additional plots - II

30

Quarkonia production on pPb collisions: systematics

Collision type	Sources	Ground-state sold [55]	Excited state yield [5]	Ratio [%]
	Laminiaity	27	2.7	125.00
collisions Accept Muon Muon Charm	Acceptance	1.1.1.1.1.1.1	1.4	1.124
	Muon reco.	1-2	1.2	-1
	Muon tragger	4.5	4.6	T
	Chargeneous fit	2.5	4-10	7-15
	Bettomonium fit	2.45	2-15	5.12
pp-collisions	Louismonty.	5.4	5.4	
	Acceptance	14	States Inc.	133(2)
	Muon reter.	1. S. S. S. T. S.	1000000000	1
	Muoa trigger	57	1000	1.00
	Charmoneum fit	2.7	4.10	7-11
	Bottomonium fit	1-15	2.15	5-12

Results: nuclear modification factor R_{PbPb} for J/ψ production

- Strong suppression of prompt and non-prompt J/ ψ and ψ (2S) observed in Pb+Pb data.
- Maximal suppression for the most central collisions.
- Same RAA vs centrality dependence for prompt and non-prompt J/ψ.

50 100 150 200 250 300 350 400

32

Quarkonia production in PbPb collisions: additional plots - I

Quarkonia production in PbPb collisions: additional plots - II

Quarkonia production in PbPb collisions: additional plots - III

07/07/18

Results – I: prompt production cross-sections vs. $p_T(\mu\mu)$ and |y|. Comparison with NRQCD predictions

Results – II: non-prompt production cross-section vs. $p_T(\mu\mu)$ and |y|. Comparison with FONLL predictions

Results: scaling 7-8 TeV

38

Results: non-prompt J/ ψ fraction vs. p_T($\mu\mu$) from \sqrt{s} = 2.76 to 13 TeV compared with CDF at \sqrt{s} =1.96 TeV

Significant difference btw the \sqrt{s} = 7 TeV data and lower \sqrt{s} data.

Production measurements of $\psi(2S)$ and X(3872) decaying to J/ $\psi \pi^+\pi^-$ at $\sqrt{s} = 8$ TeV

- Data sample
 - 11.4 fb⁻¹ @ 8 TeV
- Search in the $J/\psi \pi^+\pi^-$ with $J/\psi \rightarrow \mu\mu$ channel:
 - Dimuon trigger (p_T>4GeV)
 - Measurement of proper decay time → prompt/non-prompt discrimination
 - Attempt to discriminate short and long lifetime components for X(3872)
 - Analysis of $m(\pi\pi)$ spectra
- Analysis vs. p_T and y in the range |y|<0.75 and 10<p_T<70 GeV

See ATLAS-CONF-2016-028.

X(3872) "exotic" candidate: CMS data disagrees with D⁰D^{0*} molecule hypothesys

 $X(3872) = D^0D^{0*} + \chi_{c1}(2P)$ NRQCD incorporates this recipe CMS ok

Results – I: prompt and non-prompt $\psi(2S)$ and X(3872) production vs. p_T: comparison with theory

X(3872): well described by NLO NRQCD (prompt) and FONLL (non-prompt) **X(3872)**: well described by CMS-like mixing (prompt) not by FONLL (non-prompt)

Results – II: short vs. long-lived X(3872) non-prompt production; $m(\pi\pi)$ spectra

Double-exponential non-prompt time distributions tried for X non-prompt: $\rightarrow \psi(2S)$: a single-exponential is ok $\rightarrow X(3872)$: short-lived (due to B_c) and long-lived (due to B, B*, Bs) R = (SL)/(LL) = (25±10(stat)±2(syst)±5(spin))%

42

Analysis of $m(\pi\pi)$ spectra:

 \rightarrow ψ(2S): good agreement with Voloshin-Zakharov formula λ=4.16±0.08 → X(3872) evidence of ρ-dominance in the decay

