

The ATLAS Muon System

Massimo Corradi (INFN Roma-1)

Summary

- Overall design
- Track reconstruction
- Performance measurements
- Trigger
- Outlook

"specifications"

"Physics Requirements" from the Technical Design Report (TDR) :

- Identify and reconstruct muon tracks, measure their momenta, and provide matching information for association with inner-detector data [...].
- Trigger on single- or multi-muon event topologies [...].
- Unambiguously associate the muon with its parent bunch crossing.

The scale of the performance requirements is set by a number of benchmark reactions:

3

1) H->ZZ*-> $\mu\mu ll$ SM (120< m_{H}^{-170} GeV) [...]

2) H->ZZ*-> $\mu\mu ll$, A-> $\mu\mu$ MSSM (180<m_H<2m_{top}) [...]

3)New vector bosons Z'-> $\mu\mu$, W'-> $\mu\nu$ (1<m<5 TeV);

4) B-physics

4

In practice for Higgs analysis we would like a detector with

- coverage |n|<~3
- Reco from $p_{\tau} > \sim 5 \text{ GeV}$
- Trigger: 1 mu with $p_{T} > \sim 25 \text{ GeV}$ or 2 mu with $p_{T} > \sim 10 \text{ GeV}$
- Best possible momentum resolution

The actual choices are driven by costperformance optimization

Parameter	Main physics criteria	Perfori desired	mance actual	Comments
Momentum measurement				
$\Delta p_T/p_T$ at 20 GeV	$H \rightarrow ZZ^* \rightarrow 4l$	1–2%	~2.5%	Muon spectrometer only limited by energy loss and multiple scat- tering
			~1.6%	Combined with inner tracker
$\Delta p_T/p_T$ at 75 GeV	$H \rightarrow ZZ \rightarrow 4l$ (MSSM)	1–2%	~2.4%	Muon spectrometer only limited by energy loss and multiple scat- tering
			~2.0%	Combined with inner tracker
$\Delta p_T/p_T$ at 1000 GeV	$Z' ightarrow \mu \mu$	few %	~11%	Resolution limited by cost–perfor- mance optimization; charge deter- mination is the driving criterion
Rapidity coverage	Above processes	~3	2.7	Limited by system integration and shielding
Trigger				
Low-p _T threshold	b physics and CP violation (event rate)	~ 5 GeV	6 GeV	Limited by muon energy loss for triggering behind the calorimeter and by hadron decays in flight
High-p _T threshold	$H \rightarrow ZZ^* \rightarrow 4\mu$ (event rate)	20 GeV	20 GeV	Background-dependent, tunable
Rapidity coverage	b → µx (event rate)	~ 2.7	2.4	Limited by low-p _T rate and acci- dentals
	$H {\rightarrow} ZZ^{*} {\rightarrow} 4\mu$	~2.5	2.4	Single-muon trigger at high p _T provides good trigger efficiency
	$Z' \rightarrow \mu\mu$ (asymmetry)	~2.0	2.4	Single-muon trigger at high p _T provides good trigger efficiency
Bunch crossing identification	Event matching	$\sigma < 5 \text{ ns}$	$\sigma < 4 \text{ ns}$	

Muon identification

- Muon identification is based on the absorption of other paricles producing EM and Hadronic showers in the calorimeters
- In ATLAS >~10 interaction lengths provide shower containement [<95% of energy] for pions up to approx 100 GeV
- Simulations provide the number and momentum of charge particles "leaking" from showers

Magnetic field configuration: two different choices

ATLAS:

- thin solenoid inside EM CALI, $\ B{\sim}2T$
- muon system in large air-core toroidal field
- "smaller" inner tracker
- precise stand-alone muon momentum measurement in the MS

ATLAS A Toroidal LHC Apparatus

CMS:

- large solenoid outside calorimeters, B~4 T
- muon system in the iron yoke for magnetic field return
 - large inner tracker

CMS Compact Muon Solenoid

The ATLAS magnetic system

- Central barrel solenoid B=2T, R=1 m
- Barrel toroid (8 coils)
- Two End-Cap toroids (8 coils)
- MS: bending in $\eta,\;$ straight tracks in ϕ
- Complex field configuration due to "few" coils and Barrel/End Cap transition
- Field integral seen by a muon in MS:
 ∫ B dI = 2.5 : 10 Tm

The Barrel toroid coils during construction

The Inner Detector (ID)

- Pixel: 3 layers 2D Hit resolution bending plane: 10 μm (NOW 4 Layers with the IBL)
- Silicon Strips: (SCT) 4-9 layers 2D (stereo strips) Hit resol bending plane: 17 μm
- Straw Tubes (TRT): up to 160 planes -1D Hit resol bending plane: 130 μm
- > Magnetic Field : Solenoid 2 T, Angular Coverage η <2.5

The muon system (MS)

- Three layers of "precision" chambers for precise measurement in the bending plane
 MDT (monitored drift tubes)
 - CSC (cahode strip chambers) inner layer $|\eta|>2$
- 3(4) layers of "trigger" chambers for triggering and φ coordinate
 - RPC (resistive plate chambers) in barrel
 - TGC (Thing gap chambers) in endcaps

The muon system (MS)

- Three layers of "precision" chambers for precise measurement in the bending plane
 MDT (monitored drift tubes)
 - CSC (cahode strip chambers) inner layer $|\eta|>2$
- 3(4) layers of fast "trigger" chambers for trigger and φ coordinate
 - RPC (resistive plate chambers) in barrel
 - TGC (Thing gap chambers) in endcaps

Total hits along track:

- ~ 20 precision hits
- ~ 6 (barrel) to 12 (endcap) trigger hits

Example:

"Barrel Middle Large" station: 3+3 precision and 2+2 trigger points

In Reality ? ... a bit more complicated

$ZZ^* \rightarrow 4\mu$ candidate

Run Number: 183081, Event Number: 10108572

A

Date: 2011-06-05 17:08:03 CEST

ATLAS

Sunday, November 10, 13

Run Number: 189280, Event Number: 143576946 Date: 2011-09-14, 11:37:11 CET

EtCut>0.3 GeV PtCut>3.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Cells:Tiles, EMC

MDTs

Drift tubes:

- d=30 mm, wire d=50 μ m
- P=3 bar (abs)
- Ar-N₂-CH₄ (91%/4%/5%) - HV=3270 V

The time of first electron gives is converted into a "drift radius" using the known r(t) relation.

Max drift time ~700 ns

Space resolution ~80 µm (*)

NB:

* knowing the "start" time, and the position of the muon along the tube

Track Reconstruction

- Once hits are produced in the detectors
 - The ATLAS reconstruction program should
 - identify the muons with high efficiency and purity
 - reconstruct muon parameters (charge, momentum, direction)
- Online version to be run in the trigger should also be fast

Pattern recognition

The MS is filled by hits, not only muons but also :

- Tails of hadronic showers
- Neutron and photons from hadronic int. including a long-lifetime component from slow neutrons (cavern background)
 electronic noise

Not possible to try all hit combinations (CPU time would diverge) Need to find patterns from charged tracks

Pattern recognition

IP

3 tubes MDT multilayer :

- combining tangents to drift circles gives many possibilities
- Need to consider that tubes are very efficient and accept only the possibilities with more hits
- Simple histogramming technique:
 - project hits along the direction pointing to the interaction point (IP)
 - Select cases with Nhits>=5
 - Can use trigger and precision chambers together with different weights (e.g. trigger hits weight=2)
 > very fast, linear with num of hits
 > works only for straight tracks from IP

• Extension :

do different histograms, one for each possible slope => Hough Transform

Hough transform

- Each point in x,y belongs to a family of of straight lines identified by slope Φ and intercept R₀, i.e. it is represented by a curve in the R₀Φ plane
- The curves in R₀Φ from points on the same segment cross at the same R₀Φ point
- fill histograms in $R_0 \Phi$
- select maxima
- Very simple and general approach

Hough transform, example

associated maximum value in Hough

Good signal/bkg separation for Run-1/2 backgrounds Will need to add more constraint for Run-2/3

Pattern recognition in the full MS

- Segments found in different chambers are combined starting from outer layers and following the the track trajectory inward
- Combinations with common segments are removed based on number of holes
- Finally we are left with "MS-only" tracks

Momentum from sagitta measurement

Momentum component perpendicular to B is related to local curvature R by

 $p_{T} \sim = k q B R$ k ~=0.3 GeV/T/m

• With three points in a magnetic field we can measure the muon momentum from the sagitta S:

q/p ~= 8 S / (k B L²)

- Typically 1 TeV correspond to S~1 mm
- In practice the B field is not homogeneous, there are more than 3 measurements, we need to extract the track parameters from a fit

Track fit in the MS

- A track is characterised by 5 parameters,
- e.g. choosing as a reference surface the cylinder with radius r_0 corresponding to the MS entrance : $V(r_0) = (q/p, z(r_0), \phi(r_0), dz/dr(r_0), d\phi/dr(r_0))$
- Given V(r₀) it is possible to extrapolate the track to any ith detector layer using a precise numerical transport code, together with a precise map of the B field and of detector positions:

 $V(r_{0}) => V(r_{i})$

the track covariance matrix is propagated as well.

- A global $\chi 2$ can be calculated from the residuals Δz_i between extrapolated track at r_i and the actual ith measurements.
- A global $\chi 2$ minimization gives the best parameters at MS entrance

Multiple scatterig in the MS

- The previous picture is complicated by multiple scattering: the MS contains many radiation lengths of support structures and detectors
- Multiple scattering: RMS angular deflection from material:

 $\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} \ z \ \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$

- Multiple scattering is a stochastic phenomenon that introduces irreversibility into track transport
- Additional "kink" parameters in global fit that allow a deflection ($\theta_k \phi_k$) at reference scattering planes.

They are treated as nuisance parameter in the fit giving a penality if the deflection is too large. $\Delta(\chi 2)_{k} = (\theta_{k}/\theta_{rms,k})^{2} + (\phi_{k}/\theta_{rms,k})^{2}$

At this point we have the best track at the MS entrance

Extrapolation to the IP: energy loss

- What we are really interested in are the muon parameters at the IP: need to backextrapolate through the calorimeters
- Energy loss : approx. 3 GeV (eta dependent)
- Landau tail: large fluctuations
- Use a combination of parametrization and CAL mesurement to estimate energy loss
- CAL measurement used only for isolated muons and for large losses
- Final "Muon Extrapolated" fit including the IP connstraint gives the track parameters at the IP

ID-MS combined muons

- Outside-In reconstruction: "Muon-Extrapolated" tracks are matched with Inner Detector (ID) tracks to form "Combined Muons", a full combined fit of ID and MS hits is performed to obtain the final parameters.
- MS dominates the CB measurement for pT>80 (20) GeV, depending on η
- Inside-Out reconstruction: start from ID tracks and add hits in the MS allows to recover acceptance for low-quality muons with few hits in the MS

Reconstruction output

Final Muon "collection" for analysis

- Outside-in CB muons (best quality): two possible combination algorithms: Muid (track refit) or Staco (statistical combination)
- Inside-out muons: (two algorithms Mugirl, MuTag)
- Stand-Alone Extrapolated muons (recover ID failures, |η|>2.5)

Momentum resolution of the MS

Main contribution to momentum error:

- Error on hit measurements (e.g. uncertainty on sagitta): $\Delta p/p \sim k_{2}p$
- Multiple scattering : $\Delta p/p \sim k_1$
- Energy loss fluctuations : $\Delta p/p \sim k_0/p$

For p_{τ} < 100 GeV multiple scattering dominates (k₁ = 2-2.5%) For p_{τ} >100 GeV the "intrinsic term" (k₂~10%/TeV) Energy loss fluctuations relevant at low p ($k_0 \sim 250 \text{ MeV}$) Contribution to resolution (%) Contribution to resolution (%) Tube resolution and autocalibration Tube resolution and autocalibration 11 Chamber alignment Chamber alignment 10 Multiple scattering 10 Multiple scattering Energy loss fluctuations Energy loss fluctuations 9 9 △ Total △ Total 8 8 |η| < 1.5 $|\eta| > 1.5$ 7 7 6 6 5 5 4 3 3 2 2 0 10² 10² 10 10 10 10 p_T (GeV) p_T (GeV)

MDT r(t) calibration

Alignment System

- The "intrinsic" term of p resolution has two components:
 - hit resolution
 - knowledge of detector position: alignment
- The MDT chambers are constructed as precision objects: wires can be located inside a chamber within few tens of µm
- Location and orientation of MDT chambers in ATLAS not trivial: we aim at precision <50 µm over distances of O(~10 m)
- "Absolute" alignment based on tracks (next page)
- Optical alignment system used to

 follow the relative displacements between different alignment runs
 - Constraint "weak modes"

Barrel optical alignment

Track-based alignment

- "Absolute" alignment is performed in special runs with the toroidal magnetic field off
 - all tracks are approx. straight lines no sensitivity to knowledge of B field or material
 - ID (solenoid) allows to select high-pT tracks to reduce multiple scattering
- Cosmic rays are used for the Barrel
- Special collision runs for End-Caps (expensive !)
- In practice only sensitive to sagitta bias
- weak modes: common shifts + radial distortions partially recovered from overlaps between sectors and cosmic rays crossing different sectors
- Current precision on sagitta bias ~40 µm RMS using ~50M events from collisions with toroid off

Magnetic field measurement

- The B field integral (actually ∫ B L dL !) should be known precisely to avoid momentum scale biases
- B field maps are made with numerical codes based on the Biot-Savart law, plus non-linear perturbations from ferromagnetic materials (e.g. calorimeters, iron supports of the calorimeters, iron inside concrete walls, cranes etc.)
- The currents in the coils are known precisely, the actual shape of the superconductor coil inside the cryogenic vessel is not so well known
- 3D Hall probes measure B on each chamber
 => coil shape is fitted to get the best model/measurements agreement
- B known to ~3*10⁻³ T

Backgrounds from π , K decays

- Muons in the MS originate from
 - π/K decays
 - heavy quark decays

8

õ

Muons

Lower-p

Muon tra

In MS

High-pt

in ID

pion track

μ

Π

400

350

300

250

200

150

100

50

0-

- (Z,W decays)
- π/K decays can be removed with tighter cuts on ID-MS momentum difference
- Probability that a π/K is identifed as a muon (pT=20 GeV) : ~0.2%, ~0.1% with tight cut on ID-MS momentum matching

ATLAS Preliminary

Data 2010 (\s = 7 TeV)

-0.2

-0.4

0

0.2

 17 nb^{-1}

Best-fit

Pion/kaon

-0.8 -0.6

Heavy-flavour

Measurement of performance

- Main Performance parameters to be measured in data
 - Efficiency
 - Momentum resolution and scale
- In physics analyses MC simulations are used to unfold the detector response
- The differences in efficiency and momentum resolution/scale are compared between data and simulation
 - => corrections are applied to MC simulation to give the best description of the data

Example Higgs mass:

Not so important that reco mass is correct But that Simulations reproduces the data

Efficiency: Tag and Probe method

- Need a sample of "unbiased" muons
- "Tag and probe" method : select Z-> $\mu\mu$ by
 - Tag: isolated high-pT CB muon
 - Probe: ID track making the correct invariant mass once combined with the Tag
- Use the probe to check combined muon efficiency (given an ID track): P(CB | ID) = N(probes matched to CB)/ N(probes)
- The approach can be inverted using MS muons as probes to check the ID efficiency (TP approximation):

eff(CB) = P(CB | ID) P(ID | true-µ) ~= P(CB | ID) P(ID | ME)

- Requirement that Calorimeter deposit associated to ID probes is compatible with a muon (CaloTag) to reduce the remaining backgrounds
- J/ ψ decays used for low-p_{τ}

Efficiency: uncertainties and Scale Factors

- · Main systematics uncertainties from
 - "TP approximation" estimted comparing measured and true efficiency in MC
 - backgrounds at large \textbf{p}_{τ} estimated from same-sign dimuons and MC
- Scale factors for physics analysis: η-φ maps of eff(Data)/eff(MC) to be used to correct MC in physics analyses
- Data/MC differences in general within 1% Few differences due to problematic chambers, or to low efficiency of trigger chambers.

Momentum corrections

- Resonances of well known mass are used to "calibrate" the momentum response.
- MC corrections (in η bins): Scale: $p_{\tau} \rightarrow s_0 + p_{\tau} (1 + s_1)$ Resolution: add random smearing terms to p_{τ} of sigma Δr_0 , $\Delta r_1 p_{\tau}$, $\Delta r_2 p_{\tau}^2$
- The best parameters are obtained by comparing data and smeared MC distributions for a set of invariant mass distributions from J/ψ and Z samples.
- Same apporach repeated for ID and MS measurements separately. Then comined to obtain the correction for CB muons

Momentum scale: results

- Momentum scale in data wrt ideal MC : •
 - 0.1% offset in ID scale
 - bias at low-pt (E-loss)
- Corrected MC agrees with data within • uncertainties (<0.1% from fit syst + stat)

ATLAS

1.004

1.002

1.001

0.999

0.998

0.995

10

l.003<mark>⊱</mark> ml<1

ATLAS

Momentum resolution: results

- Good data/MC agreement after correction
- Mass resolution $\tilde{\sigma}(m)/m \sim 1/\sqrt{2} \sigma(p)/p$
- At the Z: $\sigma(m)/m \sim 1.5$ to 2%.

ATLAS Trigger

- In Run-2 ATLAS has a two-level trigger:
- Level 1, hardware, Input 40 MHz => Output 100 kHz Time to take a decision (latency) < 2.6 μs
- High-Level Trigger (HLT) sofware on a computer farm Input 100 kHz => output ~1 kHz
- In Run-1 the HLT was further divided in level-2 (reading only partial data) and Event Filter (EF)

L1 Muon Trigger

- Level-1 muon Trigger
- Barrel: low-pt: (4-10 GeV) two-stations High-pt: (11-20 GeV) three stations
- Endcap:
 - two-stations (4 GeV)
 three stations (6-20 GeV)
 From Run-2 additional coincidence on TGC-Inner
- Barrel (Roma-1):

- "coincidence matrix" ASIC performs programamble space and time coincidence betwen pivot and confirm planes

- η and ϕ matrices are combined by the "Pad" board

Trigger: rates

- L1 rate allocated by ATLAS for single muons is ~20 kHz (out of 100 kHz total)
- In Run-1 pT>15 GeV threshold, well within 10kHz
- In Run-2 expected ~20 kHz with pT>20 GeV (factor ~2 for increased luminosity)
- Most rate from the Endcaps, mainly charged tracks (protons) from secondary interactions downstream of the IP
- Partly reduced in Run-2 with further coincidence with inner plane
- Dimuon triggers 2MU10 (plus 2MU4, 2MU6 for B physics)

Efficiency and thresholds

Efficiency "turn-on" curves for - L1 : p_{T} >15 GeV - HLT : p_{T} >24 GeV

Barrel ~70%: due to large acceptance holes for coils support and atlas structures and calorimeter services

Endcap: ~90%

Holes In barrel 3-station trigger

0

10

20

30

Muon p_T [GeV] 5

50

Summary

- Overall design
- Track reconstruction
- Performance measurements
- Trigger
- Outlook

Backup slides

Hough transform, selecting only pointing segments

800

700E

600

500

400E

300F

200

100

-0.6

-0.4

-0.2

0

Momentum is determined by measurement of track curvature $\kappa = 1/\rho$ in B field: Measure sagitta s of the track. For the momentum component transverse to B field:

$$p_{T} = qB\rho$$
Units: $p_{T}[\text{GeV}] = 0.3B[\text{T}]\rho[\text{m}]$

$$\frac{L/2}{\rho} = \sin\frac{\theta}{2} \approx \frac{\theta}{2} \text{ (for small } \theta) \Rightarrow \theta \approx \frac{L}{\rho} = \frac{0.3B \cdot L}{p_{T}}$$

$$s = \rho \left(1 - \cos\frac{\theta}{2}\right) \approx \rho \left(1 - \left(1 - \frac{1}{2}\frac{\theta^{2}}{4}\right)\right) = \rho \frac{\theta^{2}}{8} \approx \frac{0.3L^{2}B}{8} \frac{p_{T}}{p_{T}}$$

For the simple case of three measurements: $s = x_2 - (x_1 + x_3)/2 \Rightarrow ds = dx_2 - dx_1/2 - dx_3/2$ with $\sigma_x \approx dx_i$ uncorrelated error of single measurement:

$$\sigma_s^2 = \sigma_x^2 + \frac{\sigma_x^2}{4} \cdot 2 = \frac{3}{2}\sigma_x^2$$