Perspectives on $\eta - \eta'$ physics

S. Giovannella (INFN–LNF)

F. Ambrosino (Università e Sezione INFN, Napoli)

Working hypothesis: 20 fb⁻¹ of integrated luminosity (a factor 10 more w.r.t. the expected KLOE final data sample)

$$\sum_{\phi} = 3.3 \ \mu b \\ BR(\phi \to \eta \gamma) = (1.295 \pm 0.025)\%$$

$$N_{\eta}(20 \ \text{fb}^{-1}) \approx 8.6 \times 10^{8}$$

$$\sigma_{\phi} = 3.3 \ \mu b \\ BR(\phi \rightarrow \eta' \gamma) = (6.2 \pm 0.7) \times 10^{-5}$$

$$\left. \begin{array}{c} \mathbf{N}_{\eta'}(\mathbf{20} \ \mathbf{fb}^{-1}) \approx \mathbf{4} \times \mathbf{10}^{6} \\ \mathbf{N}_{\eta'}(\mathbf{20} \ \mathbf{fb}^{-1}) \approx \mathbf{4} \times \mathbf{10}^{6} \end{array} \right.$$

η **identification**

γ produced through
$$\phi \rightarrow \eta \gamma \implies$$

E_{recoil}(η) = 363 MeV

Very clean and tagged η sample

Main η decay channels

Decay	BR (PDG04)	ε _{ana} (KLOE)	N _{exp}
$\eta \to \gamma \gamma$	$(39.43 \pm 0.26)\%$	70%	2.4×10^{8}
$\eta ightarrow \pi^0 \pi^0 \pi^0$	$(32.51 \pm 0.29)\%$	45%	1.3×10^{8}
$\eta ightarrow \pi^+ \pi^- \pi^0$	$(22.6 \pm 0.4)\%$	36.5%	0.7×10^{8}
$\eta ightarrow \pi^+ \pi^- \gamma$	(4.68 ± 0.11) %	46%	1.8×10^{7}

• PDG fit needs to scale BRs of main η decay modes from 1.2 to 1.3

- Main BRs known with O(%) precision. Further improvement requires a complete measurement of all main decay channels
- All these decays already studied @ KLOE By tagging the recoil photon, it is possible to overcome the normalization problem

Main η decay channels

Decay	BR (PDG04)	ε _{ana} (KLOE)	N _{exp}
$\eta ightarrow \gamma \gamma$	$(39.43 \pm 0.26)\%$	70%	2.4×10^{8}
$\eta ightarrow \pi^0 \pi^0 \pi^0$	$(32.51 \pm 0.29)\%$	45%	1.3×10^{8}
$\eta ightarrow \pi^+ \pi^- \pi^0$	$(22.6 \pm 0.4)\%$	36.5%	0.7×10^{8}
$\eta ightarrow \pi^+ \pi^- \gamma$	$(4.68 \pm 0.11)\%$	46%	1.8×10^{7}

Probably not too much to say on main decay channels after the analysis of the first to a the analysis of the final KLOE data sample (2.5 fb⁻¹)

 $\eta \rightarrow \pi^+ \pi^- \gamma$

- At the moment just poor experimental data from the 70's
- 1. Dalit plot: left-right asymmetry parameter
- 2. Shape of the E_{γ} spectrum to test ChPT predictions
 - Resonant contribution:
 - ρ production whit its subsequent decay to a pion pair (VDM)
 existence of a small non-VDM contribution
 - Anomalous contribution:

box anomaly (similar to the classical triangle anomaly), responsible for $\eta/\eta' \rightarrow \pi^+\pi^-\gamma$ decays predicted by PCAC and by the Wess-Zumino-Witten chiral lagrangian

$\eta \rightarrow \pi^+ \pi^- \gamma$: box anomaly

G.M. Shore, G. Veneziano, Nucl. Phys. B 381 (1992) 3

J.F. Donoghue, B.R. Holstein, Y.R. Lin,

Phys. Rev. Lett. 55 (1985) 2766

$\eta \rightarrow \pi^+ \pi^- \gamma : \mathbf{M}_{\pi\pi}$ spectrum

Box Anomaly and $\eta/\eta' \rightarrow \pi^+\pi^-\gamma$

$$BW(\rho) = \frac{1}{(m_{\pi\pi}^2 - m_{\rho}^2) - im_{\pi\pi}\Gamma_{\rho}} + \frac{\xi}{m_{\eta/\eta'}^2} e^{i\phi}$$

Unfortunately $\eta \rightarrow \pi^+ \pi^- \gamma$ not sensitive to the box anomaly contribution

$\eta \rightarrow \pi^+ \pi^- \gamma @ KLOE$

Preliminary KLOE analysis looks promising...

First sample analyzed: **29 pb⁻¹ of 2001 data**

Analysis scheme:

- \geq 1 vtx with 2 tracks
- \geq 2 prompt neutral clusters
- ≻ Kin fit: $P(\chi^2) > 10^{-4}$
- > 357.8 < E_{γ recoil} < 368.2 MeV
- $> M^{\text{miss}}(\pi^+\pi^-) > 160 \text{ MeV}$

S/B ~ 460

 $\eta \rightarrow \eta$

Interesting from the theoretical point of view because the bigger contribution comes from p^6 in χ_{PT}

 $\pi^- + p \rightarrow \eta + n$ (CERN, Brookhaven, GAMS, Crystal Ball) $\pi^+ + d \rightarrow p + p + \eta$ (67) $\pi^+ + p \rightarrow \pi^+ + p + \eta \ (67,69)$ $K^- + p \rightarrow \Lambda + \eta (70 \text{ AGS})$ $\pi^+ + n \rightarrow \eta + p$ (71) $\pi^- + n \rightarrow \pi^- + n + \eta (80)$ $\phi \rightarrow \eta \gamma \text{ (SND 01)}$

$\eta \rightarrow \pi^0 \gamma \gamma$: mass spectrum measurement

A further improvement on BR is expected with 20 fb⁻¹, but more interesting is the shape of the $\gamma\gamma$ mass spectrum

E.Oset, J.R.Pelaez, L.Roca, PRD67 (2003) 073013

Dalitz decays

The study of the e.m. structure of neutral mesons can be done through the $\eta \rightarrow \gamma l^+ l^-$

A transition form factor $f(q^2)$ arising in the vertex provides information on the meson structure

$$\frac{d\Gamma}{d\mathbf{m}_{ll}^{2}} = \frac{d\Gamma}{d\mathbf{q}^{2}} = \left[\frac{d\Gamma}{d\mathbf{q}^{2}}\right]_{pointlike} |\mathbf{F}_{\mathbf{\eta}'\mathbf{\eta}}(\mathbf{q}^{2})|^{2}$$

$$\stackrel{\uparrow}{\underset{QED}{\text{def}}}$$

✓ Observable: l^+l^- invariant mass ✓ F(q²) calculations: (1) VMD (2) Quark triangle loop (3) ChPT

η **Dalitz decays**

Dalitz and double Dalitz decay can be easily reached with 20 fb⁻¹

Decay	BR (PDG04)	
$\eta ightarrow e^+ e^- \gamma$	$(6.0 \pm 0.8) \times 10^{-3}$	$ Bckgs: \phi \to \pi^+ \pi^- $
$\eta ightarrow \mu^+ \mu^- \gamma$	$(3.1 \pm 0.4) \times 10^{-4}$	$\int \qquad \eta \to \pi^+ \pi$
$\eta ightarrow e^+ e^- e^+ e^-$	$< 6.9 \times 10^{-5}$	≈ 60,000 produced
$\eta ightarrow \pi^+\pi^- e^+ e^-$	$(4.0^{+14.0}_{-2.7}) \times 10^{-4}$	

All these measurements can be significantly improved and a first observation of $e^+e^-e^+e^-$ can be achieved (theoretical expectations: BR($\eta \rightarrow e^+e^-e^+e^-$) = 6.5 × 10⁻⁵ [PR 98 (1955) 1355])

$\eta \rightarrow \pi^+ \pi^- e^+ e^-$: test of CP violation beyond CKM

- Standard model: source of CP violation is a single phase in CKM mixing matrix describing quark flavor changing weak interaction couplings
- Test CP simmetry in flavour conserving process, where Standard Model predictions are vanishingly small

TEST OF NEW PHYSICS BEHOND THE STANDARD MODEL

CP violation in $K_L \rightarrow \pi^+ \pi^- e^+ e^-$

dominant amplitudes

CP violating bremsstrahlung

CP conserving MI y emission

interference of amplitudes

 \Rightarrow CP violating circular photon polarisation

 \Rightarrow CP violating asymmetry in sin φ cos φ

L.M.Schgal, M.Wanninger, FR D 46 (1992) 1035, P.Heiliger, L.M.Schgal, PR D 48 (1993) 4146

 $\varphi = \angle (\pi^+\pi^-), (e^+e^-)$ planes in K_L cms

$$\mathbf{A}_{\phi} = \frac{\mathbf{N}_{\sin\varphi\cos\varphi>0} - \mathbf{N}_{\sin\varphi\cos\varphi<0}}{\mathbf{N}_{\sin\varphi\cos\varphi>0} + \mathbf{N}_{\sin\varphi\cos\varphi<0}}$$

NA48 result (A.Lai et al., EPJC 30 (2003) 33)

CP violation in $\eta \rightarrow \pi^+ \pi^- e^+ e^-$

interference of amplitudes

 \Rightarrow CP violating asymmetry in sinφcosφ $φ = ∠(π^+π^-), (e^+e^-)$ planes in η cms

 \Rightarrow construct operators, that do not contribute directly to $\eta \rightarrow \pi^{+}\pi^{-}$ and K^{0} decays

⇒ flavor conserving CP violating four-fermion operators involving two s-quarks

> C.Q. Geng, J.N. Ng, T.H. Wu, MPLA 17 (2002) 1489, D.N. Gao, MPLA 17 (2002) 1583

$$\eta \rightarrow e^+ e^- / \mu^+ \mu^-$$

Decay	BR (PDG04)	Prediction
$\eta ightarrow e^+ e^-$	$< 7.7 imes 10^{-5}$	6×10^{-9}
$\eta \rightarrow \mu^+ \mu^-$	$(5.8 \pm 0.8) \times 10^{-6}$	4×10^{-6}

- A large improvement on U.L. expected from the statistical point of view for $\eta \rightarrow e^+e^-$
- However... large background from $e^+e^- \rightarrow e^+e^-(\gamma)$ expected
- 1. Kinematic fit imposing η mass
- Study of angular and momentum distributions of the decay products

C, P, CP, LF violating η decays

Already measured with KLOE 2001/2002 data:

Decay	BR (KLOE)	Violation
$\eta ightarrow \pi^+\pi^-$	< 1.3×10 ⁻⁵	Р, СР
$\eta ightarrow \gamma \gamma \gamma \gamma$	< 1.6×10 ⁻⁵	С

Upper limits on $\pi^+\pi^-/\gamma\gamma\gamma$, background limited, will improve with $\sqrt{(L_{NEW}/L_{OLD})}$

Other decays:

Decay	BR (PDG04)	Violation	`
$\eta ightarrow \pi^0 \pi^0$	< 4.3×10 ⁻⁵	Р, СР	$\begin{bmatrix} & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & $
$\eta ightarrow \pi^0 \pi^0 \pi^0 \pi^0$	< 6.9 ×10 ⁻⁷	Р, СР	$\int 100 \text{ much bckg:} \phi \rightarrow K_{\rm s}$
$\eta ightarrow \pi^0 e^+ e^-$	< 4×10 ⁻⁵	С	$\int \pi^+ \pi^- \pi^0$ bckg to
$\eta { ightarrow} \pi^0 \mu^+ \mu^-$	< 5×10 ⁻⁶	С	be removed
$\eta \rightarrow \mu^+ e^-, \mu^- e^+$	< 6×10 ⁻⁶	LF	Similar search of $\phi \rightarrow \eta \gamma$
			· will $\eta \rightarrow \mu \mu$

Competitors: Crystall Ball @ MAMI

✓ 30M η acquired @ AGS (BNL) [$\pi^-(720 \text{ MeV/c})p \rightarrow n\eta$]

- ✓ 30M η acquired @ MAMI (MAINZ) in 2004, 300 hours run [γ(180-820 MeV)p→pη]
- ✓ MAMI upgrade in progress: next run E_{γ} up to 1.5 GeV 300M η expected + η' sample

Competitors: WASA @ COSY

- ✤ CsI calorimeter
- Plastic scintillator barrel
- ✤ Mini drift chamber
- Forward detector

- ✓ Production mechanism: $pp \rightarrow pp\eta(\eta')$
- \checkmark Expected rate : 2500 η/s 30 η'/s
- ✓ Expected start-up: January 2007

η' decays

 $N_{\eta'}(20 \text{ fb}^{-1}) \approx 4 \cdot 10^{6}$

DAFNE2 is an η' factory! But beware: WASA@ COSY claims 2 · 10⁶ η'/day

Decay	BR (PDG04)	
$\eta' \rightarrow \pi^+ \pi^- \eta$	(44.3 ± 1.5)%	
$\eta' ightarrow \pi^+ \pi^- \gamma$	(29.5 ± 1.0) %	
$\eta' ightarrow \pi^0 \pi^0 \eta$	(20.0 ± 1.2) %	
$\eta' \rightarrow \omega \gamma$	(3.03 ± 0.31) %	
$\eta' ightarrow \gamma\gamma$	$(2.12 \pm 0.14)\%$	

 $\checkmark \eta'$ main BRs known with an error of 3–10%

- ✓ We can probably improve the situation on the less frequent decay by measuring ratio of BRs (sth already @ KLOE/DAFNE)
- ✓ For the others, we need tagged measurement of all the decay chain Hard, but this could reduce the systematic error in the measurem of <u>R= BR(ϕ → $\eta'\gamma$)/BR(ϕ → $\eta\gamma$) which dominates already its error</u>

-BR currently known at 7%.

, BR is the main uncertainty in the extraction of the η ' full width

 $\sim 8 \cdot 10^4$ events produced. With 10 % efficiency can improve BR accuracy to about 4%. But <u>hard</u> from the exp. point of view (QED bkg

 $\Gamma\gamma\gamma$ is already known to 3% thus <u>no improvement</u> for $\eta-\eta$ ' mixing parameters.

....not a big issue....

$\eta' \rightarrow \eta \pi \pi$: Dalitz plot analysis

- Interesting to study scalar mesons (no tree contributions from VMD) Sensitive to $\sigma(600)$ (PRD 60, 034002)
- Expect 200.000 evts in Dalitz plot with realistic efficiency.

/Interesting, because is sensitive to isospin violating part of strong Lagrangian, and proportional to m_d-m_u

Currently only upper limit @ 5% (!)

Expected at O(10⁻³) i.e. 4000 evts produced

With realistic efficiency can expect to measure BR @ some % level

$\eta' \rightarrow \pi^+ \pi^- \gamma$: asymmetry and spectrum

- Interesting, because γ energy spectrum is sensitive to the "box anomaly" term of the WZW chiral Lagrangian
- Asymmetry related to possible C violation in strong interactions
- Difficult background from $\rho\pi$ (but we know we can deal with it reasonably for the η)
- More than 1 million events produced

With an expected BR of $2 \cdot 10^{-4}$ the Dalitz decay could be observed with order 10% accuracy or less (transition form factor, light by light scattering etc.)

 $\sqrt{4\pi}$ decays could possibly be observed... but we could not find theoretical prediction for that....

Reasonably one could slightly improve limits on C, CP violating decays down to 10⁻⁴ level.