Perspectives on $\eta-\eta^{\prime}$ physics

S. Giovannella (INFN-LNF)

F. Ambrosino

(Università e Sezione INFN, Napoli)

Expected data sample

Working hypothesis: $20 \mathrm{fb}^{-1}$ of integrated luminosity (a factor 10 more w.r.t. the expected KLOE final data sample)

$$
\left.\begin{array}{l}
\sigma_{\phi}=3.3 \mu \mathrm{~b} \\
\operatorname{BR}(\phi \rightarrow \eta \gamma)=(1.295 \pm 0.025) \%
\end{array}\right\} \quad \mathbf{N}_{\eta}\left(\mathbf{2 0} \mathbf{f b}^{-\mathbf{1}}\right) \approx \mathbf{8 . 6} \times \mathbf{1 0}^{\mathbf{8}}
$$

$$
\sigma_{\phi}=3.3 \mu \mathrm{~b}
$$

$$
\mathrm{BR}\left(\phi \rightarrow \eta^{\prime} \gamma\right)=(6.2 \pm 0.7) \times 10^{-5}
$$

$$
N_{\eta^{\prime}}\left(20 \mathrm{fb}^{-1}\right) \approx 4 \times 10^{6}
$$

η produced through $\phi \rightarrow \eta \gamma \longrightarrow \mathrm{m}$ Very clean and tagged η sample

Identified by the

 monochromatic recoil photon$$
\mathrm{E}_{\text {recoil }}(\eta)=363 \mathrm{MeV}
$$

Decay	BR (PDG04)	$\varepsilon_{\text {ana }}$ (KLOE)	$\mathbf{N}_{\exp }$
$\eta \rightarrow \gamma \gamma$	$(39.43 \pm 0.26) \%$	70%	2.4×10^{8}
$\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$	$(32.51 \pm 0.29) \%$	45%	1.3×10^{8}
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$(22.6 \pm 0.4) \%$	36.5%	0.7×10^{8}
$\eta \rightarrow \pi^{+} \pi^{-} \gamma$	$(4.68 \pm 0.11) \%$	46%	1.8×10^{7}

PDG fit needs to scale BRs of main η decay modes from 1.2 to 1.3

* Main BRs known with $O(\%)$ precision. Further improvement requires a complete measurement of all main decay channels
* All these decays already studied @ KLOE By tagging the recoil photon, it is possible to overcome the normalization problem

Decay	BR (PDG04)	$\varepsilon_{\text {ana }}$ (KLOE)	$\mathbf{N}_{\exp }$
$\eta \rightarrow \gamma \gamma$	$(39.43 \pm 0.26) \%$	70%	2.4×10^{8}
$\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$	$(32.51 \pm 0.29) \%$	45%	1.3×10^{8}
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$(22.6 \pm 0.4) \%$	36.5%	0.7×10^{8}
$\eta \rightarrow \pi^{+} \pi^{-} \gamma$	$(4.68 \pm 0.11) \%$	46%	1.8×10^{7}

PDG fit needs to scale BRs of main η decay med

* Main BRs known with $O(\%)$ n. nain decay $(2.5$ requires a complete ma

$\eta \rightarrow \pi^{+} \pi^{-} \gamma$

At the moment just poor experimental data from the 70's

1. Dalit plot: left-right asymmetry parameter

2. Shape of the E_{γ} spectrum to test ChPT predictions
$>$ Resonant contribution:
3. ρ production whit its subsequent decay to a pion pair (VDM)
4. existence of a small non-VDM contribution
$>$ Anomalous contribution:
box anomaly (similar to the classical triangle anomaly), responsible for $\eta / \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ decays predicted by PCAC and by the Wess-Zumino-Witten chiral lagrangian

Anomalies in QCD

triangle anomaly

S. L. Adler, Phys. Rev. 117 (1969) 2426
J.S. Bell, R. Jackiw, Nuovo Cim. A 60 (1969) 47
G.M. Shore, G. Veneziano, Nucl. Phys. $B 381$ (1992) 3

Wess-Zumino-Witten Lagrangian
J. Wess, B.Zumino, Phys.Lert. B 37 (1971) 95 E. Witten, Nucl. Phys. B 223 (1983) 422
$+$

box anomaly

M.S. Chanowitz, Phys.Rev. Lett. 35 (1975) 977 J. Gasser, H. Leutwyler, Nucl. Phys. B 250 (1985) 465
J. F. Donoghue, B. R. Holstein, Y. R. Lin, Phys. Rev. Lert. 55 (1985) 2766

$\eta \rightarrow \pi^{+} \pi^{-} \gamma: \mathrm{M}_{\pi \pi}$ spectrum

Box Anomaly and $\eta / \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$

$$
\operatorname{BW}(\rho)=\frac{1}{\left(\mathrm{~m}_{\pi \pi}^{2}-\mathrm{m}_{\rho}^{2}\right)-i \mathrm{~m}_{\pi \pi} \Gamma_{\rho}}+\frac{\xi}{\mathrm{m}_{n / \eta}^{2}} \mathrm{e}^{i \phi}
$$

EChPT, HLS model
M. Benayoun et al.,

Eur. Phys. J.C 31 (2003) 525

Unfortunately $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ not sensitive to the box anomaly contribution

Preliminary KLOE analysis looks promising...

First sample analyzed: $29 \mathrm{pb}^{-1}$ of 2001 data

Analysis scheme:
>1 vtx with 2 tracks
>2 prompt neutral clusters
$>$ Kin fit: $\mathrm{P}\left(\chi^{2}\right)>10^{-4}$
$>357.8<\mathrm{E}_{\gamma \text { recoil }}<368.2 \mathrm{MeV}$
$\xrightarrow{\prime} \mathrm{S} / \mathrm{B} \sim 460$
$>\mathrm{M}^{\mathrm{miss}}\left(\pi^{+} \pi^{-}\right)>160 \mathrm{MeV}$

Interesting from the theoretical point of view because the bigger contribution comes from p^{6} in $\chi_{\text {PT }}$

$\pi^{-}+\mathrm{p} \rightarrow \eta+\mathrm{n}$
(CERN, Brookhaven, GAMS,
Crystal Ball)
$\pi^{+}+\mathrm{d} \rightarrow \mathrm{p}+\mathrm{p}+\eta$ (67)
$\pi^{+}+\mathrm{p} \rightarrow \pi^{+}+\mathrm{p}+\eta(67,69)$
$\mathrm{K}^{-}+\mathrm{p} \rightarrow \Lambda+\eta(70$ AGS $)$
$\pi^{+}+\mathrm{n} \rightarrow \eta+\mathrm{p}(71)$
$\pi^{-}+\mathrm{n} \rightarrow \pi^{-}+\mathrm{n}+\eta(80)$
$\phi \rightarrow \eta \gamma(S N D 01)$

A further improvement on BR is expected with $20 \mathrm{fb}^{-1}$, but more interesting is the shape of the $\gamma \gamma$ mass spectrum
E.Oset, J.R.Pelaez, L.Roca, PRD67 (2003) 073013

VMD-p ${ }^{4}$ int. $\quad a_{0}$ contr. very small

Rescaling KLOE results: 3500 events expected at the end of the analysis

The study of the e.m. structure of neutral mesons can be done hrough the $\eta \rightarrow \gamma l^{+} l^{-}$

A transition form factor $f\left(\mathrm{q}^{2}\right)$ arising in the vertex provides information on the meson structure
\checkmark Observable: $l^{+} l^{-}$invariant mass
$\checkmark \mathrm{F}\left(\mathrm{q}^{2}\right)$ calculations:
(1) VMD
(2) Quark triangle loop
(3) ChPT

Dalitz decays

Dalitz and double Dalitz decay can be easily reached with $20 \mathrm{fb}^{-1}$

Decay	BR (PDG04)		
$\eta \rightarrow e^{+} e^{-} \gamma$	$(6.0 \pm 0.8) \times 10^{-3}$		
$\eta \rightarrow \mu^{+} \mu^{-} \gamma$	$(3.1 \pm 0.4) \times 10^{-4}$		
$\eta \rightarrow e^{+} e^{-} e^{+} e^{-}$	$<6.9 \times 10^{-5}$		
$\eta \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$	$\left(4.0^{+14.0}-2.7\right) \times 10^{-4}$	\quad	Bckgs: $\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$
---:			
$\eta \rightarrow \pi^{+} \pi^{-} \gamma$			

All these measurements can be significantly improved and a first observation of $e^{+} e^{-} e^{+} e^{-}$can be achieved (theoretical expectations:
$\operatorname{BR}\left(\eta \rightarrow e^{+} e^{-} e^{+} e^{-}\right)=6.5 \times 10^{-5}$ [PR 98 (1955) 1355])

* Standard model: source of CP violation is a single phase in CKM mixing matrix describing quark flavor changing weak interaction couplings

Test CP simmetry in flavour conserving process, where Standard Model predictions are vanishingly small

CP violation in $K_{L} \rightarrow \pi^{+} \pi^{-} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$

dominant amplitudes

CP violating bremsstrahlung

CP conserving $M 1$ үemission

interference of amplitudes
$\Rightarrow C P$ violating circular photon polarisation
$\Rightarrow C P$ violating asymmetry in $\sin \varphi \cos \varphi$
 PHetlige, L.MStyal FeD4 (153) 4146
$\varphi=\angle\left(\pi^{+} \pi^{-}\right),\left(e^{+} e^{-}\right)$planes in K_{L} cms

NA48 result (A. Ai it al., Eptc so (2003) 33)

CP violation in $\eta \rightarrow \pi^{+} \pi^{-} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$

amplitudes
$C P$ violating bremsstrahhing

CP conserving MI γ emission

interference of amplitudes
\Rightarrow CP violating asymmetry in $\sin \varphi \cos \varphi$ $\varphi=\angle\left(\pi^{+} \pi^{-}\right),\left(e^{+} e^{-}\right)$planes in $\eta \mathrm{cms}$
\Rightarrow construct operators, that do not contribute directly to $\eta \rightarrow \pi^{+} \pi^{-}$and K^{0} decays
\Rightarrow flavor consenving $C P$ violating four-fermion operators imolving two s-quarks
C. Qug, JNMg. T.H Wn MPLA $17(20 \mathrm{H})$ 1489, D.M.Gao, MPLA 17 (2002) 1583
A_{ϕ} up to 2%

Decay	BR (PDG04)	Prediction
$\eta \rightarrow e^{+} e^{-}$	$<7.7 \times 10^{-5}$	6×10^{-9}
$\eta \rightarrow \mu^{+} \mu^{-}$	$(5.8 \pm 0.8) \times 10^{-6}$	4×10^{-6}

A large improvement on U.L. expected from the statistical point of view for $\eta \rightarrow e^{+} e^{-}$

However... large background from $e^{+} e^{-} \rightarrow e^{+} e^{-}(\gamma)$ expected

1. Kinematic fit imposing η mass
2. Study of angular and momentum distributions of the decay products

Already measured with KLOE 2001/2002 data:

Decay	BR (KLOE)	Violation
$\eta \rightarrow \pi^{+} \pi^{-}$	$<1.3 \times 10^{-5}$	$\mathbf{P}, \mathbf{C P}$
$\eta \rightarrow \gamma \gamma \gamma$	$<1.6 \times 10^{-5}$	\mathbf{C}

Upper limits on $\pi^{+} \pi^{-} / \gamma \gamma \gamma$, background limited, will improve with $\downarrow\left(\mathbf{L}_{\text {NEW }} / \mathbf{L}_{\mathrm{OLD}}\right)$
Other decays:

Decay	BR (PDG04)	Violation	$\} \text { Too much bckg: } \begin{aligned} & \phi \rightarrow S \gamma \\ & \phi \rightarrow \mathrm{~K}_{\mathrm{S}} \mathrm{~K} \end{aligned}$
$\eta \rightarrow \pi^{0} \pi^{0}$	$<4.3 \times 10^{-5}$	P, CP	
$\eta \rightarrow \pi^{0} \pi^{0} \pi^{0} \pi^{0}$	$<6.9 \times 10^{-7}$	P, CP	
$\eta \rightarrow \pi^{0} e^{+} e^{-}$	$<4 \times 10^{-5}$	C	$\pi^{+} \pi^{-} \pi^{0}$ bckg to
$\eta \rightarrow \pi^{0} \mu^{+} \mu^{-}$	$<5 \times 10^{-6}$	C	be removed
$\eta \rightarrow \mu^{+} e^{-}, \mu^{-} e^{+}$	$<6 \times 10^{-6}$	LF	Similar search of $\phi \rightarrow \eta \gamma$ with $\eta \rightarrow \mu^{+} \mu^{-}$

TAPS: $510 \mathrm{BaF}_{\text {, }}$-detectors

```
Crystal Ball:
672 NaI -detectors
* \(\sigma_{\mathrm{E}} / \mathrm{E}=2 \% / 4 \sqrt{ } \mathrm{E}(\mathrm{GeV})\)
* \(\sigma_{\theta}=2-3\) degrees
```


Vertex Detectors:

2 cylindrical wire chambers
480 wires, 320 strips
24 thin plastic counters
particle separation
\checkmark 30M η acquired @ AGS (BNL) [$\left.\pi^{-}(720 \mathrm{MeV} / \mathrm{c}) \mathrm{p} \rightarrow \mathrm{n} \eta\right]$
$\checkmark 30 \mathrm{M} \eta$ acquired @ MAMI (MAINZ) in 2004, 300 hours run [$\gamma(180-820 \mathrm{MeV}) \mathrm{p} \rightarrow \mathrm{p} \eta$]
\checkmark MAMI upgrade in progress: next run E_{γ} up to 1.5 GeV $300 \mathrm{M} \eta$ expected $+\eta^{\prime}$ sample

* CsI calorimeter
* Plastic scintillator barrel
* Mini drift chamber
* Forward detector
\checkmark Production mechanism: $\mathrm{pp} \rightarrow \mathrm{pp} \mathrm{\eta}\left(\eta^{\prime}\right)$
\checkmark Expected rate : $\mathbf{2 5 0 0} \eta / \mathbf{s} 30 \eta^{\prime} / \mathrm{s}$
\checkmark Expected start-up: January 2007

$\mathrm{N}_{\eta^{\prime}}\left(20 \mathrm{fb}^{-1}\right) \approx 4 \cdot 10^{6}$

DAFNE2 is an η ' factory!

 But beware: WASA@ COSY claims $2 \cdot 10^{6} \eta^{\prime} /$ day| Decay | BR (PDG04) |
| :--- | :---: |
| $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta$ | $(44.3 \pm 1.5) \%$ |
| $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ | $(29.5 \pm 1.0) \%$ |
| $\eta^{\prime} \rightarrow \pi^{0} \pi^{0} \eta$ | $(20.0 \pm 1.2) \%$ |
| $\eta^{\prime} \rightarrow \omega \gamma$ | $(3.03 \pm 0.31) \%$ |
| $\eta^{\prime} \rightarrow \gamma \gamma$ | $(2.12 \pm 0.14) \%$ |

η^{\prime} main BRs known with an error of $3-10 \%$
\checkmark We can probably improve the situation on the less frequent decay by measuring ratio of BRs (sth already @ KLOE/DAFNE)
\checkmark For the others, we need tagged measurement of all the decay chair Hard, but this could reduce the systematic error in the measurem of \qquad which dominates already its error
-BR currently known at 7\%.
$\checkmark B R$ is the main uncertainty in the extraction of the η ' full width
$\checkmark 8 \cdot 10^{4}$ events produced. With 10% efficiency can improve BR accuracy to about 4%. But hard from the exp. point of view (QED bkg
$\checkmark \Gamma \gamma$ is already known to 3% thus no improvement for $\eta-\eta$ ' mixing parameters.
r...not a big issue....

$\eta^{\prime} \rightarrow \eta \pi \pi:$ Dalitz plot analysis

Interesting to study scalar mesons (no tree contributions from VMD) Sensitive to $\sigma(600)$ (PRD 60, 034002)
Expect 200.000 evts in Dalitz plot with realistic efficiency.

Interesting, because is sensitive to isospin violating part of strong Lagrangian, and proportional to $\mathrm{m}_{\mathrm{d}}-\mathrm{m}_{\mathrm{u}}$

Currently only upper limit @ 5% (!)

Expected at $\mathrm{O}\left(10^{-3}\right)$ i.e. 4000 evts produced

With realistic efficiency can expect to measure BR @ some $\%$ level

Interesting, because γ energy spectrum is sensitive to the "box anomaly" term of the WZW chiral Lagrangian

Asymmetry related to possible C violation in strong interactions

Difficult background from $\rho \pi$ (but we know we can deal with it reasonably for the η)

More than 1 million events produced

With an expected BR of $2 \cdot 10^{-4}$ the Dalitz decay could be observed wit order 10\% accuracy or less (transition form factor, light by light scattering etc.)
4π decays could possibly be observed... but we could not find theoretical prediction for that....

Reasonably one could slightly improve limits on C, CP violating decays down to 10^{-4} level.

