Contributo dello scambio di due fotoni al processo $e^+e^-
ightarrow p\overline{p}$ e spettroscopia dei mesoni leggeri

> Simone Pacetti INFN Laboratori Nazionali di Frascati

Road-Map INFN: Fisica e^+e^- a LNF

Milano 4 Novembre 2005

Indice

Contributo $\gamma\gamma$ in $e^+e^- \rightarrow p\overline{p}$

- Introduzione
- Contributo $\gamma\gamma$ time-like
- 2 Spettroscopia dei mesoni leggeri a E687
 - Fotoproduzione diffrattiva dello stato finale $3\pi^+3\pi^-$
 - Fotoproduzione diffrattiva dello stato finale $2\pi^+2\pi^-$

Introduzione Contributo $\gamma\gamma$ time-like

Fattori di Forma dei Nucleoni

Operatore corrente dei nucleoni (Dirac e Pauli)

$$\Gamma^{\mu}(q) = \gamma^{\mu} F_1(q^2) + \frac{i}{2M_N} \sigma^{\mu\nu} q_{\nu} F_2(q^2)$$

Fattori di forma elettrico e magnetico

$$\begin{aligned} G_E(q^2) &= F_1(q^2) + \tau F_2(q^2) \\ G_M(q^2) &= F_1(q^2) + F_2(q^2) \end{aligned} \quad \tau = \frac{q^2}{4M_N^2} \end{aligned}$$

$$\frac{d\sigma}{d\omega} = \frac{\alpha^2 E'_{\theta} \cos^2 \frac{\theta}{2}}{4E^3_{\theta} \sin^4 \frac{\theta}{2}} \left[G^2_E - \tau \left(1 + 2(1-\tau) \tan^2 \frac{\theta}{2} \right) G^2_M \right] \frac{1}{1-\tau}$$

$\overset{\bullet^-}{\longrightarrow}\overset{\bullet^+}{\swarrow}$

Annichilazione

$$rac{d\sigma}{d\omega} = rac{lpha^2 \sqrt{1-1/ au}}{4q^2} \left[(1+\cos^2 heta) |G_M|^2 + rac{1}{ au} \sin^2 heta |G_E|^2
ight]$$

Introduzione Contributo $\gamma\gamma$ time-like

Incompatibilità tra Rosenbluth e Polarizzazione

Introduzione Contributo $\gamma\gamma$ time-like

Incompatibilità tra Rosenbluth e Polarizzazione

Legge di "scaling"

$$G_E^{
m p}\simeq G_M^{
m p}/\mu_{
m p}$$

Misura a Jlab

Polarizzazione del nucleone

$$\frac{G_{E}^{\rho}(q^{2})}{G_{M}^{\rho}(q^{2})} = -\sqrt{\frac{-2\epsilon}{\tau(1+\epsilon)}} \frac{P_{\parallel}}{P_{\perp}}$$
$$\frac{1}{\epsilon} = 1 + 2(1-\tau)\tan^{2}\left(\frac{\theta}{2}\right)$$

Correzione 2γ +GPD

P GPD

Introduzione Contributo $\gamma\gamma$ time-like

Incompatibilità tra Rosenbluth e Polarizzazione

Legge di "scaling" $G^p_F \simeq G^p_M/\mu_p$ Misura a Jlab Polarizzazione del nucleone $G_E^p(q^2)$ $\frac{1}{G^{p}_{M}(q^{2})} = -\sqrt{\frac{1}{\tau(1+\epsilon)}} \frac{1}{P_{\perp}}$ $\frac{1}{\tau} = 1 + 2(1 - \tau) \tan^2$ Correzione 2γ +GPD н

GPD

Introduzione Contributo $\gamma\gamma$ time-like

Incompatibilità tra Rosenbluth e Polarizzazione

Introduzione Contributo $\gamma\gamma$ time-like

La regione time-like

Nella regione time-like il problema della modellizzazione del "blob" dei nucleoni può essere aggirato utilizzando i dati di

 $\gamma\gamma
ightarrow p\overline{p}$

Generalizzazione della corrente $\gamma\gamma$ dei nucleoni

Corrente $\gamma\gamma$ Lorentz invarinate

Ampiezza:

$$\mathcal{A} = \overline{u}(q_1) \Gamma^{\mu\nu}(s, x) v(q_2) \epsilon_{\mu}(k_1) \epsilon_{\nu}(k_2)$$

dove:

•
$$s = (k_1 + k_2)^2$$
 e $x = \cos \theta$

•
$$\Gamma^{\mu\nu}(s,x) = \sum_{i=1}^{6} b_i^{\mu\nu}(s,x) A_i(s,x)$$

- $\{b_i^{\mu\nu}(s,x)\}$ è una base dello spazio $M(4 \times 4)^{\mu\nu}$
- A_i(s, x) sono fattori di forma

Introduzione Contributo $\gamma\gamma$ time-like

Estrazione dei fattori di forma $A_i(s, x)$ dai dati di

Distribuzioni angolari e fit

Sezione d'urto $\gamma \gamma \rightarrow p \overline{p}$

$$\frac{d\sigma}{d|x|} = \frac{\alpha^2}{32\pi} \frac{1}{s} \sqrt{1 - \frac{4M_p^2}{s}} \sum_{i,i=1}^6 A_i(s, x) A_j^*(s, x) c_{i,j}(s, x)$$

I coefficienti $c_{i,i}(s, x)$ sono noti, le funzioni $A_i(s, x)$ sono da determinare

Introduzione Contributo $\gamma\gamma$ time-like

Calcolo della correzione

Sezione d'urto $e^+e^-
ightarrow p\overline{p}$

$$\frac{d\sigma}{d\Omega} \simeq \left[\frac{d\sigma}{d\Omega}\right]_{1\gamma} \left(1 + 2\frac{\mathsf{Re}(\mathcal{A}_{1\gamma}\mathcal{A}^*_{2\gamma})}{|\mathcal{A}_{1\gamma}|^2}\right) \simeq \left[\frac{d\sigma}{d\Omega}\right]_{1\gamma} \left(1 + 2\frac{\mathsf{Im}(\mathcal{A}_{2\gamma})}{|\mathsf{Im}(\mathcal{A}_{1\gamma})|}\right)$$

La seconda identità è conseguenza di: $A_{1\gamma}(s) \simeq Im[A_{1\gamma}(s)]$ per $s \ge 4M_p^2$

Introduzione Contributo $\gamma\gamma$ time-like

Introduzione Contributo $\gamma\gamma$ time-like

Dalla regione time-like a quella space-like

Sezione d'urto $e^+e^- \rightarrow p\overline{p}$: Im[$\mathcal{A}_{2\gamma}(s)$] può essere misurata per $s > 4M_p^2$

$$\frac{d\sigma}{d\Omega} \simeq \left[\frac{d\sigma}{d\Omega}\right]_{1\gamma} \left(1 + 2\frac{\mathsf{Re}(\mathcal{A}_{1\gamma}\mathcal{A}_{2\gamma}^*)}{|\mathcal{A}_{1\gamma}|^2}\right) \simeq \left[\frac{d\sigma}{d\Omega}\right]_{1\gamma} \left(1 + 2\frac{\mathsf{Im}(\mathcal{A}_{2\gamma})}{|\mathsf{Im}(\mathcal{A}_{1\gamma})|}\right)$$

Relazioni di dispersione

Per usare le relazioni di dispersione

$$\mathcal{A}_{2\gamma}(q^2) = rac{1}{\pi} \int_{s_{ ext{th}}}^{\infty} rac{ ext{Im}[\mathcal{A}_{2\gamma}(s)]ds}{s-q^2}$$

al fine di legare valori time-like (s > 0) e space-like ($q^2 < 0$) di $\mathcal{A}_{2\gamma}(s)$ è necessario richiedere che il "blob" dei nucleoni non possa essere "tagliato", ovvero che $\mathcal{A}_{2\gamma}(q^2)$ space-like sia reale.

Sezione d'urto
$$e^- p \to e^- p$$
 $(\mathbf{q}^2 < \mathbf{0})$
$$\frac{d\sigma}{d\Omega}(\mathbf{q}^2) \simeq \left[\frac{d\sigma}{d\Omega}(\mathbf{q}^2)\right]_{1\gamma} \left(1 + 2\frac{\operatorname{Re}[\mathcal{A}_{1\gamma}(\mathbf{q}^2)]\mathcal{A}_{2\gamma}(\mathbf{q}^2)}{|\mathcal{A}_{1\gamma}(\mathbf{q}^2)|^2}\right)$$

Fotoproduzione diffrattiva dello stato finale $3\pi^+3\pi^-$ Fotoproduzione diffrattiva dello stato finale $2\pi^+2\pi^-$

Connessione tra fotoproduzione e annichilazione e^+e^-

Fotoproduzione diffrattiva dello stato finale $3\pi^+3\pi^-$ Fotoproduzione diffrattiva dello stato finale $2\pi^+2\pi^-$

Stato finale $3\pi^+3\pi^-$ a E687

Ris.	M(MeV)	Γ(MeV)	
V ₀	1910 ± 10	37 ± 13	
V_{O} (PLB514)	1911 ± 4	29 ± 11	
V ₁	1730 ± 34	315 ± 100	

Fotoproduzione diffrattiva dello stato finale $3\pi^+3\pi^-$ Fotoproduzione diffrattiva dello stato finale $2\pi^+2\pi^-$

Altre misure dello stato finale $3\pi^+3\pi^-$ ($2\pi^+2\pi^-2\pi^0$) in annichilazione e^+e^-

Fotoproduzione diffrattiva dello stato finale $3\pi^+3\pi^-$ Fotoproduzione diffrattiva dello stato finale $2\pi^+2\pi^-$

Altre misure dello stato finale $3\pi^+3\pi^-$ ($2\pi^+2\pi^-2\pi^0$) in annichilazione e^+e^-

Fotoproduzione diffrattiva dello stato finale $3\pi^+3\pi^-$ Fotoproduzione diffrattiva dello stato finale $2\pi^+2\pi^-$

6π : sommario

Fotoproduzione diffrattiva dello stato finale $3\pi^+3\pi^-$ Fotoproduzione diffrattiva dello stato finale $2\pi^+2\pi^-$

E831: $3\pi^+3\pi^-$ analisi in corso

Fotoproduzione diffrattiva dello stato finale $3\pi^+3\pi^-$ Fotoproduzione diffrattiva dello stato finale $2\pi^+2\pi^-$

Metodo di analisi nel caso dello stato finale $\pi^+\pi^-$

Fotoproduzione diffrattiva dello stato finale $3\pi^+3\pi^-$ Fotoproduzione diffrattiva dello stato finale $2\pi^+2\pi^-$

Stato finale $2\pi^+2\pi^-$ (P. Lebrun, "Hadron 97") fit totale e residuo

Fotoproduzione diffrattiva dello stato finale $3\pi^+3\pi^-$ Fotoproduzione diffrattiva dello stato finale $2\pi^+2\pi^-$

Fit del residuo $2\pi^+2\pi^-$ e possibili risonanze

Residuo e fit dei termini d'interferenza

Res.	$\Gamma_{e^+e^-j}B_{j2\pi^+2\pi^-}(KeV)$	M(MeV)	Γ(<i>M</i> eV)	ϕ (rad)
<i>V</i> ₁	$(4 \pm 2) \times 10^{-2}$	1209 ± 6	218 ± 16	2.56 ± 0.04
V ₂	$(5\pm 2) imes 10^{-2}$	1465 ± 8	265 ± 23	4.26 ± 0.08
<i>V</i> ₃	$(1.1\pm 0.6) imes 10^{-3}$	1820 ± 25	100 ± 30	0.7 ± 0.6
<i>V</i> ₄	$(3\pm 2) imes 10^{-3}$	2030 ± 20	170 ± 80	2.6 ± 0.4
V ₅	$(1.3\pm0.7) imes10^{-3}$	2460 ± 24	190 ± 60	2.5 ± 0.3

4π : sommario

L'analisi dei dati di E687 per lo stato finale $2\pi^+2\pi^-$ suggerisce la possibile presenza di alcune sottostrutture con accoppiamento elettromagnetico $\Gamma_{e^+e^-}$ debole. Comunque, l'interpretazione di queste strutture in termini di risonanze necessita una statistica di almeno un ordine di grandezza superiore a quella attuale.