

η-η' mixing at LNF: status and prospects

Rafel Escribano Grup de Física Teòrica & IFAE (UAB)

January 20, 2006 Laboratori Nazionali di Frascati

Meeting on e⁺e⁻ physics perspectives at LNF

Work partly supported by the EU, HPRN-CT-2002-00311, EURIDICE network

Introduction

* mixing of mass eigenstates

with

$$\begin{aligned} |\eta_8\rangle &= \frac{1}{\sqrt{6}} (u\bar{u} + dd - 2s\bar{s}) & \text{and} & |\eta_q\rangle &= \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d}) \\ |\eta_0\rangle &= \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s}) & |\eta_s\rangle &= s\bar{s} \end{aligned}$$

$$\theta_P = \phi_P - \arctan\sqrt{2} \simeq \phi_P - 54.7^\circ$$

Assumptions:

- no energy dependence
- $\Gamma_{\eta,\eta'} \ll m_{\eta,\eta'}$
- no mixing with other pseudoscalars (π^0 , η_c , glueballs)

Introduction

mixing of decay constants

octet-singlet basis

and $A^s_{\mu} = \bar{s} \gamma_{\mu} \gamma_5 s$

 f_P^i $(i = q, s) P = \eta, \eta')$

 $\langle 0|A^a_{\mu}|P(p)\rangle = if^a_P p_{\mu}$ with $A^a_{\mu} = \bar{q}\gamma_{\mu}\gamma_5 \frac{\lambda^a}{\sqrt{2}}q$ $\begin{pmatrix} f^8_{\eta} & f^0_{\eta} \\ f^8_{\eta'} & f^0_{\eta'} \end{pmatrix} = \begin{pmatrix} f_8\cos\theta_8 & -f_0\sin\theta_0 \\ f_8\sin\theta_8 & f_0\cos\theta_0 \end{pmatrix}$ f_P^a (a = 8,0; P = η, η') 2 decay constants quark-flavour basis $\langle 0|A^i_{\mu}|P(p)\rangle = if^i_P p_{\mu}$ with $A^{q}_{\mu} = \frac{1}{\sqrt{2}} (\bar{u}\gamma_{\mu}\gamma_{5}u + \bar{d}\gamma_{\mu}\gamma_{5}d) \qquad \qquad \left(\begin{array}{cc} f^{q}_{\eta} & f^{s}_{\eta} \\ f^{q}_{\omega'} & f^{s}_{\eta'} \end{array}\right) = \left(\begin{array}{cc} f_{q}\cos\phi_{q} & -f_{s}\sin\phi_{s} \\ f_{q}\sin\phi_{q} & f_{s}\cos\phi_{s} \end{array}\right)$

2 mixing angles

• Introduction

* mixing of decay constants

Large Nc ChPT = ChPT + η_0 in a combined perturbative expansion

octet-singlet basis:quark-flavour basis:
$$f_8^2 = \frac{4f_K^2 - f_\pi^2}{3}, \quad f_0^2 = \frac{2f_K^2 + f_\pi^2}{3} + f_\pi^2 \Lambda_1, \quad f_q^2 = f_\pi^2 + \frac{2}{3}f_\pi^2 \Lambda_1, \quad f_s^2 = 2f_K^2 - f_\pi^2 + \frac{1}{3}f_\pi^2 \Lambda_1, \quad f_s^2 = 2f_K^2 - f_\pi^2 + \frac{1}{3}f_\pi^2 \Lambda_1, \quad f_s = \frac{\sqrt{2}}{3}f_\pi^2 \Lambda_1,$$

Approximate relations valid for $\ \phi_q=\phi_s\equiv\phi$

$$f_8 = \sqrt{\frac{1}{3}f_q^2 + \frac{2}{3}f_s^2}, \qquad \theta_8 = \phi - \arctan\left(\frac{\sqrt{2}f_s}{f_q}\right)$$
$$f_0 = \sqrt{\frac{2}{3}f_q^2 + \frac{1}{3}f_s^2}, \qquad \theta_0 = \phi - \arctan\left(\frac{\sqrt{2}f_s}{f_s}\right)$$
$$SU(3) \text{ breaking effect}$$

• Present status

most precise determination from a single experiment !

• Present status

* mixing with gluonium

theory PRD 27, 1101 (1983)

$$\begin{split} |\eta\rangle &= X_{\eta} |u\bar{u} + d\bar{d}\rangle / \sqrt{2} + Y_{\eta} |s\bar{s}\rangle + Z_{\eta} |\text{glue}\rangle, \\ |\eta'\rangle &= X_{\eta'} |u\bar{u} + d\bar{d}\rangle / \sqrt{2} + Y_{\eta'} |s\bar{s}\rangle + Z_{\eta'} |\text{glue}\rangle \\ \end{split}$$
A gluonium component of η'

$$\begin{split} Z_{\eta'}^2 &> 0 \quad \text{or} \quad X_{\eta'}^2 + Y_{\eta'}^2 < 1 \end{split}$$

experiment PLB 541, 45 (2002)

KLOE results:

$$Z_{\eta'}^2 = 0.06^{+0.09}_{-0.06}$$

Gluonium fraction below 15%!

- Future prospects
 - * to measure as precise as possible the η - η ' mixing angle

better theoretical determinations of:

$$\begin{split} \phi &\to \pi^0 \eta \gamma \\ \eta &\to \pi^+ \pi^- \pi^0 / \pi^0 \pi^0 \pi^0 \\ \eta &\to \pi^0 \gamma \gamma \end{split}$$

to be compared with future KLOE measurements

- \star to establish the gluon admixture of the η and η'
- to help measuring the mixing parameters in the two mixing angle scenario

Rafel Escribano

Grup de Física Teòrica and IFAE (UAB)

• Study of the η-η' system in the two mixing angle scheme December 21, 2005

R. E., J.-M. Frère, JHEP 06, 029 (2005) AB (Barcelona)

Motivation:

Not apperform an updated phenomenological analysis of various decay processes using the two mixing angle description of the η - η' system The decay roomstants of the η - η' usystem etck the validity of the basis mixing f_P^a $(a = 8_{a} h_{g} R_{schenne})$ and $f_{e} R_{schenne}$ and $f_{e} R_$ picture • The analysis also tests the sensitivity to the mixing angle schemes: where $A^{8,0}_{\mu}$ dret-the located singlet laxial vector currents with * Notacionalia $(m_u \bar{u} i \gamma_5 u + m_d \bar{d} i \gamma_5 d - 2m_s \bar{s} i \gamma_5 s)$, December 21, 2005 UAB (Barcelona The decay g_{μ} that g_{μ} the $g_$

$$\langle 0 | \partial^{\mu} A^{a}_{\mu} | P \rangle \stackrel{(p)}{=} f^{a}_{P} m^{j}_{P} f^{a}_{P} p_{\mu} ,$$

The decay constants are parameterized in terms of f_8, f_0 and θ_8, θ_0 as

Rafel Escribano

Northering the contribution of the up and down quark marcae, the matrix algorante

• Study of the number of the system in the two mixing angle scheme $\eta, \eta' \rightarrow \gamma \gamma \text{ decays}_{0 \pm 0.026}^{0 \pm 0.026} \text{ keV},$ $R_{J/\psi} \equiv rac{\Gamma(J/\psi o \eta' \gamma)}{\Gamma(J/\psi o \eta \gamma)} = 5.0 \pm 0.6 \; .$ The Interpolating fields on and grave tries to with the stabues tor currents $\begin{aligned} & \forall (e_{x}) = \frac{1}{m_{\eta'}^{0}} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\partial \mu A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)} \\ & \forall (e_{x}) = \frac{1}{m_{\eta'}^{2}} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\partial \mu A^{0}(x)} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{8}(x) - f_{\eta'}^{8} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} f_{\eta'}^{0}} \\ & = \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} - f_{\eta'}^{8} + \frac{1}{\eta'} \frac{f_{\eta'}^{0} \partial^{\mu} A^{0}(x)}{\int \eta' f_{\eta'}^{8} - f_{\eta'}^{8} - f_{\eta'}^{8} + \frac{1}{\eta'} \frac{f_{\eta'}^{0} + f_{\eta'}^{8} - \frac{1}{\eta'} \frac{f_{\eta'}^{8} - f_{\eta$ This fearly factors $F_{VP\gamma}(0,0)$ are fixed by the AVV triangle anomaly $\Gamma(\eta \to \gamma \gamma) \not = \rho \frac{\alpha^2 m_{\eta}^3}{\eta p 6 \pi^3} \left(\int_{\pi'}^{f_{\eta'}^0} \frac{-2\sqrt{2} f_{\eta \eta'}^{80}}{f_{\eta'}^0} \right)^2 \sqrt{2} f_{\eta \eta'}^8 \frac{\alpha^2 m_{\eta}^3}{f_{\eta}^8} \left(\frac{c\theta_0/f_8 - 2\sqrt{2}s\theta_8/f_0}{c\theta_0 c\theta_8 + s\theta_8 s\theta_0} \right)^2 ,$ $\Gamma(\eta' \to \gamma \gamma) \stackrel{F}{=} \stackrel{\alpha}{\xrightarrow{\eta}} \stackrel{\gamma}{\xrightarrow{\eta}} \stackrel{(0)}{\xrightarrow{\eta}} \stackrel{f_{\eta}}{\xrightarrow{\eta}} \stackrel{\gamma}{\xrightarrow{\eta}} \stackrel{\gamma}$ We extend our analysis to the couplings of the radiative decays, $V \to (\eta, \eta')\gamma$ and $\eta' \to V\gamma$ with $V = \rho, \psi, \phi^{(0,0)} = -\frac{1}{2\sqrt{2\pi^2}} f_{\eta'}^0 f_{\eta'}^8 - f_{\eta'}^8 f_{\eta}^0$, $V \to (\eta, \eta')\gamma$ and The form factors $F_{V} \mathbb{P}_{\text{phi}}(0,0)$ or fixed by the $A_{\gamma} \mathcal{P}_{\gamma}(f)$ for an end of $F_{\gamma}(0,0)$ for $f_{\gamma}(0,0)$ Using their analytic properties December el Escribano

UAB (Barce

$$F_{VP\gamma}(0,0) = \frac{f_V}{m_V}g_{VP\gamma} + \cdots$$
 (Vector Meson Dominance)

FAE (UAB)

where the vertex couplings $g_{VP\gamma}$ are the on-shell V-P electromagnetic form factors

$$\langle P(p_P) | J^{\rm EM}_{\mu} | V(p_V, \lambda) \rangle |_{(p_V - p_P)^2 = 0} = -g_{VP\gamma} \epsilon_{\mu\nu\alpha\beta} p^{\nu}_P p^{\alpha}_V \varepsilon^{\beta}_V(\lambda) .$$

$$E_{\downarrow} = (0, 0) = -\frac{1}{(s\theta_V + c\theta_V/\sqrt{2})} f^{0}_{\eta'} + c\theta_V f^{8}_{\eta'}$$

Stud Popelaction and the new backtons angle scheme V-P electromagnetic form factors

V	P		$g_{VP\gamma}$ (th.)		$g_{VP\gamma}$ (exp.)
	V	P	$_{g_{VP\gamma}}^{g_{VP\gamma}}$ (th.)		$g_{VP\gamma}$ (exp.)
ho	η		$\frac{\sqrt{3m\rho}}{4\pi^2} \frac{c\theta_0/f_8 - \sqrt{2s\theta_8}/f_0}{c\theta_0 c\theta_8 + s\theta_8}$	$= (1.48 \pm 0.08) \text{ GeV}^{-1}$	$(1.59 \pm 0.11) \text{ GeV}^{-1}$
ρ	$^{ ho}_{\eta'}$	η	$\frac{\sqrt{3} p_{\pi} 2}{4 - 2} \frac{\beta p_0}{c \theta_0} \frac{\beta p_0}{c \theta_0} \frac{\gamma 2 s \delta g}{s \theta_0} \frac{\beta p_0}{s \theta_0} \frac{\gamma 2 s \delta g}{s \theta_0} \frac{\beta p_0}{s \theta_$	$= (1.48 \pm 0.08) \text{ GeV}^{-1}$ = (1.23 \pm 0.08) \text{ GeV}^{-1}	$(1.59 \pm 0.11) \text{ GeV}^{-1} \\ (1.35 \pm 0.06) \text{ GeV}^{-1}$
ω	ho n	η'	$\frac{4\pi^2\sqrt{3}m_{\rho}^{c}}{4\pi\sqrt{2}f_{\rho}}\frac{(c\theta_{0}c\theta_{3}\theta_{3}\theta_{3}\theta_{3}\theta_{3}\theta_{3}\theta_{3}\theta_{3}$	$= (1.23 \pm 0.08) \text{ GeV}^{-1}$ $= (0.57 \pm 0.04) \text{ GeV}^{-1}$	$(1.35 \pm 0.06) \text{ GeV}^{-1}$ $(0.46 \pm 0.02) \text{ GeV}^{-1}$
/ . 3	$\omega'_{n'}$	η	$\frac{2\sqrt{2\pi^2} f_{\omega}}{2\pi\sqrt{2\pi^2} f(c\theta_V - s\theta_V/c\theta_0)} \frac{1}{2\theta_0} \frac{1}$	$= (0.57 \pm 0.04) \text{ GeV}^{-1}$ = (0.56 ± 0.04) \text{ GeV}^{-1}	$(0.46 \pm 0.02) \text{ GeV}^{-1}$ (0.46 ± 0.03) GeV^{-1}
ũ	ω''	η'	$\frac{1}{2\sqrt{2\pi^2\eta_{\text{W}}}} (c\theta_V - s\theta_V) (\alpha\theta_2) + \theta_0 (\beta_1 + \beta_2) $	$= (0.56 \pm 0.04) \text{ GeV}^{-1}$ $= (0.56 \pm 0.04) \text{ GeV}^{-1}$	$(0.46 \pm 0.03) \text{ GeV}$
ϕ	ϕ^{η}	η	$-\frac{2\sqrt{2}\overline{\sigma}^{-}J\omega}{2\sqrt{2}\pi^{2}f\phi}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}}{(s\theta_{V}+c\theta_{V})\sqrt{2}\varepsilon\theta_{0}}\frac{(s\theta_{V}$	$= (-0.76 \pm 0.04) \text{ GeV}^{-1}$ $= (-0.76 \pm 0.04) \text{ GeV}^{-1}$	$(-0.690 \pm 0.008) \text{ GeV}^{-1} \\ (-0.690 \pm 0.008) \text{ GeV}^{-1}$
ϕ	$_{\phi}\eta'$	η'	$ - \frac{fn^{v}\phi^{2n}}{2\sqrt{2\pi^{2}f}\phi} \frac{f(\phi_{s}\theta_{V} + c\theta_{V}/\sqrt{2})s\theta_{0}^{2}/f_{s}^{2} - c\theta_{V}c\theta_{s}/f_{0}}{(s\theta_{V} + c\theta_{V}/\sqrt{2})s\theta_{0}^{2}/s\theta_{0}^{2}/s\theta_{0}^{2}} \frac{f(\phi_{s}\theta_{V} + c\theta_{V}/\sqrt{2})s\theta_{0}^{2}/s\theta_{0}^{2}}{(s\theta_{V} + c\theta_{V}/\sqrt{2})s\theta_{0}^{2}/s\theta_{0}^{2}/s\theta_{0}^{2}} + s\theta_{s}s\theta_{0}^{2}} $	$ \stackrel{= (0.86 \pm 0.05)}{= (0.86 \pm 0.05)} \stackrel{\rm GeV}{}_{\rm GeV}^{-1} $	$(0.71 \pm 0.04)_{\text{GeV}} \underline{\text{GeV}}^{-1}$

 $\mathsf{Tabfgble} \ \mathbf{I} \mathsf{hepretical} and \mathsf{herese inverse of the on-shell } V_{(\eta,\eta)} \mathsf{herese transmission} \mathsf{exect} \mathsf{ex$ $f_{P,V}f_{P}$, η dathe thinking ing global set θ_{θ} and θ_{θ_0} . We use $\theta_V \equiv (38.7\pm0022)^\circ$ for the ϕ -minimizing global experimental set of the set of th values lars taken known other Rapticie Detat a Good por Coll., Phys. Lett. B 5992 (2000).

- (• quite remarkable agreement except for the $\omega\eta\gamma$ and $\omega\eta'\gamma$ couplings
 - $\omega\eta\gamma$: (0.53 ± 0.05) GeV⁻¹ (PDG'02) $\rightarrow (0.46 \pm 0.02)$ GeV⁻¹ (PDG'04) because se of $e^+e^- \rightarrow \eta\gamma$ exclusion

 $\omega \eta' \gamma$: rather sensitive to θ_V , for instance $\theta_V = 35.3^\circ \Longrightarrow 10\%$ reduction

• for
$$f_8 = 1.28 f_{\pi}$$
: $g_{\phi\eta\gamma} = (-0.80 \pm 0.04)$ GeV⁻¹ and $g_{\phi\eta'\gamma} = (0.91 \pm 0.06)$ GeV⁻¹ $_{-1}$

- fixing $\theta_8 = \theta_0 \equiv \theta$ implies an increase of $\chi^2/d.o.f.$ by a factor of 3, and $g_{\phi\eta'\gamma} = (1.20 \pm 0.06) \text{ GeV}^{-1}$, in clear contradiction with data.

December 21, 2005

• Study of the η - η ' system in the two mixing angle scheme

 \star

Results						
	Assumptions	Results	$\chi^2/d.o.f.$	Assumptions	Results	$\chi^2/d.o.f.$
asis	θ_0 and θ_0 free	$\theta_{0} = (-22.2 \pm 1.4)^{\circ}$	40 5/5	$\theta_0 - \theta_0 = \theta$	$\theta = (-18.9 \pm 1.2)^{\circ}$	73 7/6
۵ ح	$f_8 = 1.28 f_{\pi}$	$\theta_0 = (-5.5 \pm 2.3)^\circ$	10.575	$f_8 = 0_0 = 0$ $f_8 = 1.28 f_\pi$	$f_0 = (1.11 \pm 0.03) f_\pi$	15.110
	Its for th		baram	eters		
qua <mark>rk d</mark> lavo	ur ₀₈ basis _{0 free}	$\theta_8 = (-23.8 \pm 1.4)^\circ$	17.9/4	$ heta_8= heta_0\equiv heta$	$\theta = (-18.2 \pm 1.2)^{\circ}$	66.9/5
Assumptions	f ₈ free Re	$\theta_0 = (-1.1 \pm 2.3)^\circ$ esults $t_8 = (1.51 \pm 0.05) t_{\pi}^{2/d.o.f.}$. Ase	f_8 free umptions	$f_8 = (1.39 \pm 0.04) f_{\pi}$ $f_0 = (\overset{\text{Results}}{1.13 \pm 0.03}) f_{\pi}$	χ^2 /d.o.f.
$\phi \mathbf{Q} \neq \phi_s$ $f_a = f_{\pi}$	$\phi_q = (40)$ $\phi_q = (41)$	$0.4_{0^{\pm -1}}(4).32 \pm 0.034f_{\pi}^{6}$	$\phi_q = f_{d}$	$\phi_s \equiv \phi_s \equiv \phi$	$\phi = (40.8 \pm 0.9)^{\circ}$ $f_{e} = (1.66 \pm 0.06) f_{\pi}$	34.9/7
$\phi_V = 4 \pm 0.$	$f_s = (1.6)$ $\phi_q \text{ and } \phi_s \text{ free}$ $\phi_q = (39)$ $f_q = \phi_s \pi = (41)$ $f_q = (1.0)$ $f_s = (1.6)$	$ \begin{aligned} \phi_q &= (42.7 \pm 2.0)^\circ \\ \phi_q &= (42.7 \pm 2.0)^\circ \\ 0.9 \pm 1.3)^\circ & 18.8/5 \\4 &= \overline{1.4}/61.6 \pm 1.3)^\circ \\ \theta_{f_s} &= 0.3 \\ \theta_{f_s} &= 0.03 \\ \theta_{f_s} &= 0.06 \\ \theta_{f_s} &= 0.0$	$\phi_V = 0$ $32.6/5$ $\phi_q = 0$ $\phi_V = 0$	$ \begin{aligned} 3.4 \pm 0.2)^{\circ} \\ \phi_q &= \phi_s \equiv \phi \\ \phi_q &= f_\pi \\ f_q &= f_\pi \\ (3.4 \pm 0.2)^{\circ} \end{aligned} $	$\phi = (41.8 \pm 1.2)^{\circ}$ $\phi = (40.6 \pm 0.9)^{\circ}$ $f_q f_{\Xi} = (1.66 \pm 0.06) f_{\pi}$	32.8/6 19.4/6
ο φ φ φ φ φ φ φ φ φ φ s free φ φ s free	$\phi_q \text{ and } \phi_g \text{free}^{39}$ $\phi_s = (41)$ $f_q \text{free}_{q} = (1.0)$ $f_s = (1.6)$ $\phi_V = (4)$	$\begin{array}{l} 2.8 \notin_{q} \underline{1} \underline{-3} (41.6 \pm 2.3)^{9} \\ 1.2 \pm 1.5)^{\circ} \\ 9 \pm 9 \underbrace{-3}_{0} \underbrace{-3}_{0} \underbrace{-3}_{1} \underbrace{-5}_{1} \underline{-5}_{1} \underline{-1}_{0} \\ 7 \notin_{q} \underbrace{-0}_{0} \underbrace{-0}_{1} \underbrace{-0}_{0} \underbrace{-0}_{1} \underbrace{-5}_{0} \pm 0.03 \\ f_{\pi} \\ 1.2 \pm 2.1)^{\circ} \\ f_{s} = (1.68 \pm 0.07) f_{\pi} \end{array}$	17.9/4q = ; ¢		$ \begin{array}{l} & \phi \not = \pm 4(44.5 \pm 0.2)^{\circ} \\ f_q = (1.10 \pm 0.03) f_{\pi} \\ f_s f_{\not =} = (1.60 \pm 0.09) f_{\pi} f_{\pi} \\ & f_s f_{\not =} = (1.60 \pm 0.09) f_{\pi} f_{\pi} \\ & \phi f_s = (1.68 \pm 0.07) f_{\pi} \end{array} $	197.3975

Table 3: Results for the *B* for the *n* mixing angles and decay constants in the quark flaxour basis of the two mixing angle scheme (*right*). The conventions are the same as in Table 2. basis (*down part*) of the two mixing angle scheme (*left*) and the one mixing angle scheme (*left*).

- in the octet-singlet basis a two mixing angle scheme is needed to describe experimental data in a better way;
- in the quark-flavour basis a one mixing angle description of data is enough at the current experimental accuracy.

Study of the η-η' system in the two mixing angle scheme
 ★ Ascussionabout the boixing parameters

Our **best results** for the mixing parameters are

$$f_8 = (1.51 \pm 0.05) f_\pi , \qquad \theta_8 = (-23.8 \pm 1.4)^\circ ,$$

$$f_0 = (1.29 \pm 0.04) f_\pi , \qquad \theta_0 = (-2.4 \pm 1.9)^\circ ,$$

in the octet-singlet basis, and

$$f_q = (1.09 \pm 0.03) f_\pi , \qquad \phi_q = (39.9 \pm 1.3)^\circ ,$$

$$f_s = (1.66 \pm 0.06) f_\pi , \qquad \phi_s = (41.4 \pm 1.4)^\circ ,$$

in the quark-flavour basis.

At the present accuracy, our results satisfy the approximate relations

$$f_8 = \sqrt{1/3f_q^2 + 2/3f_s^2} , \qquad \theta_8 = \phi - \arctan(\sqrt{2}f_s/f_q) ,$$
$$f_0 = \sqrt{2/3f_q^2 + 1/3f_s^2} , \qquad \theta_0 = \phi - \arctan(\sqrt{2}f_q/f_s) .$$

For comparison:

Large $N_c \ \chi$ PT (H. Leutwyler, Nucl. Phys. Proc. Suppl. **64** (1998) 223): $f_8 = 1.28 f_{\pi}, \ \theta_8 = -20.5^{\circ}, \ f_0 \simeq 1.25, \ \text{and} \ \theta_0 \simeq -4^{\circ}$ phenomenological analysis (T. Feldmann *et. al.*, Phys. Rev. D **58** (1998) 114006): $f_q = (1.07 \pm 0.02) f_{\pi}, \ f_s = (1.34 \pm 0.06) f_{\pi} \ \text{and} \ \phi = (39.3 \pm 1.0)^{\circ}$

December 21, 2005 UAB (Barcelona)

Study of the η - η' system in the two mixing angle scheme (page 11) Work in collaboration with J.-M. Frère (ULB), JHEP06(2005)029

Study of the η-η' system in the two mixing angle scheme Discussion about the mixing parameters

Large $N_c \chi PT$

H. Leutwyler, Nucl. Phys. Proc. Suppl. 64 (1998) 223R. Kaiser and H. Leutwyler, arXiv:hep-ph/9806336

octet-singlet basis

quark-flavour basis

$$\begin{aligned} f_8^2 &= \frac{4f_K^2 - f_\pi^2}{3} , \qquad & f_q^2 &= f_\pi^2 + \frac{2}{3}f_\pi^2\Lambda_1 , \\ f_0^2 &= \frac{2f_K^2 + f_\pi^2}{3} + f_\pi^2\Lambda_1 , \qquad & f_s^2 &= 2f_K^2 - f_\pi^2 + \frac{1}{3}f_\pi^2\Lambda_1 , \\ f_8 f_0 \sin(\theta_8 - \theta_0) &= -\frac{2\sqrt{2}}{3}(f_K^2 - f_\pi^2) . \qquad & f_q f_s \sin(\phi_q - \phi_s) = \frac{\sqrt{2}}{3}f_\pi^2\Lambda_1 . \end{aligned}$$

Our best results for the mixing parameters can be used to check the experimental consistency of the former Large $N_c \chi PT$ equations.

- our fitted values for f_8 and $f_0 \Longrightarrow \theta_8 \theta_0 = (-13.7 \pm 0.6)^\circ$, to be compared with our prediction $\theta_8 \theta_0 = (-21.4 \pm 2.4)^\circ$
- our fitted value for $f_0 \implies \Lambda_1 = 0.34 \pm 0.10$ for the OZI-rule violating parameter Λ_1
- the fitted values for $f_{q,s}$ and $\phi_{q,s} \Longrightarrow \Lambda_1 = 0.32 \pm 0.10$, 2.34 ± 0.60 and -0.10 ± 0.13

The wide range of different values for Λ_1 as well as the disagreements obtained for $\theta_8 - \theta_0$ and f_8 seem to indicate a possible discrepancy with the Large $N_c \chi \text{PT}$ framework.

Conclusions

 <u>best</u> measurement of the <u>η-η' mixing angle</u> from a <u>single</u> experiment

$$\varphi_P = (41.8^{+1.9}_{-1.6})^{\circ}$$

 $Z_{\eta'}^2 = 0.06^{+0.09}_{-0.06}$

<u>precise melowing</u> tof the <u>gluon admixture</u> of the η' (Gluonium fraction below 15%)

- * good a have bettering and a charge bettering and better and a set of the se
- - on the combinany, in the quank flavour basis and dvit ht bhtherese receptoremental accuracy a one mixing angle class in pit is no fit here proceeds is is is is in the age of the proceeds is is is is in the age of the proceeds is in the proceeds of the
 - this behaviour gives experimental support to the fact that the difference of the two with mixing angles in the octet-singlet basis is a SU(3)-breaking effect while in the quark-flavour basis is a OZI-rule violating effect which appears to be smaller quark-mayour basis is a OZI-rule violating effect which appears to be smaller
 - finally, we have found that our best fitted mixing parameters seem to show a sh