#### Neutrinoless Double Beta Decay: CUORICINO results & perspectives for CUORE

#### Fabio Bellini

C. Cosmelli, I. Dafinei, S. Di Domizio, F. Ferroni, C. Gargiulo, E. Longo, S. Morganti



#### Università di Roma "La Sapienza" & INFN Roma Roma 07/10/05

### All we know from Neutrino oscillation





## We don't know from neutrino oscillation



Dirac or Majorana nature
Absolute mass scale and hierarchy

- ♦ Limit on v mass:
  - Model dependent limit from cosmology

$$\sum m_{v_k} < 0.94 \, eV$$

 Model independent limit from direct β decay

$$m_{\beta} = (\sum m_{\nu_k}^2 |U_{ek}|^2)^{0.5} < 2.2 \, eV$$

Neutrinoless ββ0ν

$$m_{\beta\beta} = \sum m_{\nu_k} \eta_k |U_{ek}|^2 < (0.2 - 1.1) eV$$

 $\Delta m^{2} = m_{3}^{2} - m_{2}^{2} \approx m_{3}^{2} - m_{1}^{2} \approx (1.1 - 3.3) \cdot 10^{-3} eV^{2}$  $\delta m^{2} = m_{2}^{2} - m_{1}^{2} \approx (7.2 - 8.5) \cdot 10^{-5} eV^{2}$ 



**Degenerate if m**  $>>\Delta m^2$ 

### Neutrinoless Double Beta Decay: ββ0v



#### Forbidden in Standard Model for Dirac massive v



 $\beta\beta 0\nu:(A,Z)\rightarrow(A,Z+2)+2e^{-}$ 

chirality flip:  $m_v \neq 0$   $v_{majorana}$ :  $v \equiv \overline{v}$  (Lepton number violation) Many non SM decays can contribute



#### **KK-Heidelberg Moscow claim**



- ◆ 5 Ge diodes: 10.9Kg total active mass enriched (86%) in <sup>76</sup>Ge
- Run from 1999 to 2003 in LNGS lab
- 2001: <u>part</u> of the collaboration claimed  $\beta\beta0\nu$  evidence @ 2.2 $\sigma$
- ◆ 2004: claim confirmed @ 4.4σ with a total statistics of 71.7 Kg•y (2.5 10^26 nuclei•y)



#### **Detector sensitivity**



• Experimental rate with  $N_{\beta\beta0\nu}$  observed



Sensitivity  $S^{\beta\beta0\nu}$ : lifetime corresponding to the min. number of detectable events above bkgd @ a given C.L.







### ββ2vbackground





# **CUORICINO: the bolometric way**



- Bolometric technique: energy is measured as a temperature increase in the detector
- Low temperature calorimeter
   ΔT= E/C ⇒ low C ⇒ dielectrics @ low T (~ 10mK) : C~T<sup>3</sup>~10<sup>10</sup>eV/K
- Thermometer: NTD Ge thermistor  $\Delta T \Rightarrow \Delta R$   $R \sim R^0 \exp(T^0/T)^{-0.5}$  $\Rightarrow 0.1 \text{ mK/MeV} \rightarrow 0.1 \text{mV/MeV}$
- Phonon energy eccitation:  $\epsilon K_B T \mu eV$ , Statistical fluctuation:  $\sigma(E) = (K_B CT^2)^{0.5} - 10 eV$
- Heat sink Thermal coupling Thermometer Incident particle Crystal absorber

• Typical pulse decay time: τ ~C/G~10<sup>2-3</sup> ms

#### **Typical Pulse**





# Why Tellurium?



5 40 ♦ Active isotope: <sup>130</sup>Te isotopic abundance transition energy 0 4 Natural abundance  $33.9\% \Rightarrow \text{low cost}$ 20 Ô 0 3 0 Transition energy  $Q_{BB} = (2528.8 \pm 1.2) \text{ KeV}$ 0 2 0 large phase space <sup>82</sup>Se <sup>96</sup>Zr <sup>76</sup>Ge <sup>100</sup>Mo <sup>116</sup>Cd <sup>130</sup>Te <sup>136</sup>Xe <sup>150</sup>Nd <sup>48</sup>Ca <sup>76</sup>Ge <sup>82</sup>Se <sup>96</sup>Zr <sup>100</sup>Mo <sup>116</sup>Cd <sup>130</sup>Te <sup>136</sup>Xe <sup>150</sup>Nd low background Predicted half life: 1030 half life  $\langle m_{\nu} \rangle \approx 0.3 \, eV \rightarrow \tau^{\beta \beta 0 \nu} \approx 10^{25} \, v$ 1027 Absorber material: TeO, X 880 Low heat capacity

1024

<sup>48</sup>Ca <sup>76</sup>Ge <sup>82</sup>Se <sup>96</sup>Zr <sup>100</sup>Mo <sup>116</sup>Cd <sup>130</sup>Te <sup>136</sup>Xe <sup>150</sup>Nd

- Possibility to grow large crystals
- Good intrinsic purity

# Moore's scaling law of TeO<sub>2</sub> bolometers



11

### CUOR(ICINO) @ LNGS





Cuoricino experiment is installed in the

Underground National Laboratory of Gran Sasso L'Aquila – ITALY

the mountain providing a 3500 m.w.e. shield against cosmic rays

CUORE -(hall A)

Cuoricino<sup>-</sup>

R&D final tests for CUORE (hall C)



#### **CUORICINO Tower**





Installed in a dilution refrigerator (10 mK) surrounded by: • Roman Pb inner shield (1cm) lateral • 20 cm Pb external shield • Neutron shield: B-polyethylene ~10 cm

• Anti-radon box:

nitrogen overpressure

### **CUORICINO** assembly



- Careful material selection: crystals grown from pre-tested activity powders
   Careful cleaning of PTFE, Cu and TeO<sub>2</sub> surfaces
- Clean conditions for detector assembling





### Data taking and performances





#### Calibration spectra: energy resolution

• <sup>232</sup>Th  $\gamma$ -source external to the cryostat:

 $<\Delta E>$  @ 2615 KeV <sup>208</sup>Tl  $\gamma$ -line average 5x5x5 cm<sup>3</sup> crystal: FWHM 7.5±2.9 KeV average 3x3x6 cm<sup>3</sup> crystal: FWHM 9.6±2.5 KeV

#### **Resolution limited by:**

- phononic ~10 eV
- electronic <1 KeV
- microphonic < 1 KeV





#### Sum background spectra





 $<\!\Delta E\!> @2615 \text{ KeV}^{208}\text{Tl}\,\gamma\!-\text{line} \\ 5x5x5 \text{ cm}^3 \text{ crystal} \\ 3x3x6 \text{ cm}^3 \text{ natural crystal} \\ 3x3x6 \text{ cm}^3 \text{ enriched crystal} \\ 0.5Kg^{130}\text{Te} \bullet \text{y} \\ 0.2Kg^{130}\text{Te} \bullet \text{y} \\ \text{peak not visible} \end{aligned}$ 

# **CUORICINO** ββ0v result



- ◆ Total statistics: **3.09**(<sup>130</sup>Te) Kg•y  $(1.43 \bullet 10^{25} \text{ nuclei } \bullet \text{y})$
- ◆ ML fit in **2470-2560 KeV** region N gaussian response function with individual FWHM @ 2615KeV
- No peak found @  $\beta\beta0\nu$  energy
- Bkgd ( $\beta\beta0\nu$  region): 0.18 ±0.01 c/KeV/Kg/y
- ◆ Detector efficiencies: ~85%
- ◆ Fitting systematic error: ~5%

Phys. Rev. Lett. 95 142501 2005



# CUORICINO sensitivity & discovery potential



**CUORICINO results:**  $\langle m_{\beta\beta0\nu} \rangle = \sum m_{\nu_{\mu}} \eta_k |U_{ek}|^2 < [0.2 - 1.1] eV$ Klapdor-Kleingrothaus HM:  $\langle m_{y} \rangle < [0.1 \div 0.9] eV \langle m_{y} \rangle = 0.44 eV$ Could CUORICINO test HM result? 1 disfavoured by 0v2B Nuclear Matrix Element Staudit et al. degenerate  $10^{-1}$ (24, 83)Ref.: (20) inverted 80 82 84 8  $\Delta m_{23}^2 < 0$  $|m_{ee}|$  in eV Expected event number in 3 y in a 16 keV energy window (2 FWHM) disfavoured by cosmology  $10^{-2}$ 37 251 53 57 141 44  $\Delta m_{23}^2 > 0$ normal  $10^{-3}$  $1 \sigma$  BKG fluctuation = (0.18 \* 16 \* 40.7 \* 3)<sup>0.5</sup> = 19 90% CL (1 dof) S/N ratio (o)  $10^{-4}$  $10^{-2}$  $10^{-3}$  $10^{-4}$  $10^{-1}$ lightest neutrino mass in eV 7.4 2.0 13 3.0 2.3 2.8

- A. Strumia, F. Vissani hep-ph 0503246
- Good chances to have a positive indication
  But : cannot falsify HM if no signal is seen

#### **Present experimental situation**



positive result

running experiments

| ope               |                   | est         | i.a. | Q <sub>BB</sub> | enrich | exp    | ÷  | erial                          | τ <sup>1/2<sup>0ν</sup></sup> | < <u>(</u> n | $n_{\nu}$ |
|-------------------|-------------------|-------------|------|-----------------|--------|--------|----|--------------------------------|-------------------------------|--------------|-----------|
| sot               | experiment        | lato<br>res | [%]  | [ev]            | [%]    | [ку×у] | te | nat                            | [10 <sup>23</sup> y]          | le           | VJ        |
|                   |                   |             |      |                 |        |        | S  | L                              |                               | TUIL         | max       |
| <sup>48</sup> Ca  | Elegant VI        | 2004        | 0.19 | 4271            | 170    | 4.2    | S  | CaF <sub>2</sub>               | 0.14                          | 7.20         | 44.70     |
| <sup>76</sup> Ge  | Heidelberg/Moscow | 2001        | 7.8  | 2039            | 87     | 71.7   | I  | Ge                             | 190.0                         | 0.12         | 1.00      |
| <sup>76</sup> Ge  | Klapdor et al.    | 2004        | 7.8  | 2039            | 87     | 71.7   | i  | Ge                             | 120.0                         | 0.44         | -         |
| <sup>82</sup> Se  | NEMO-3            | 2005        | 9.2  | 2995            | 97     | 0.93   | t  | Se                             | 1.0                           | 1.75         | 4.86      |
| <sup>100</sup> Mo | NEMO-3            | 2005        | 9.6  | 3034            | 95-99  | 6.9    | t  | Mo                             | 4.6                           | 0.66         | 2.81      |
| 116 <b>Cd</b>     | Solotvina         | 2003        | 7.5  | 3034            | 83     | 0.5    | S  | CdWO <sub>4</sub>              | 1.7                           | 1.70         | -         |
| <sup>130</sup> Te | Cuoricino         | 2005        | 33.8 | 2529            | -      | 5      | b  | TeO <sub>2</sub>               | 18.0                          | 0.20         | 1.10      |
| <sup>136</sup> Xe | DAMA              | 2002        | 8.9  | 2476            | 69     | 4.5    | s  | Ge                             | 12.00                         | 1.10         | 2.90      |
| 150Nd             | Irvine TPC        | 1997        | 5.6  | 3367            | 91     | 0.01   | t  | Nd <sub>2</sub> O <sub>3</sub> | 0.012                         | 3.00         | -         |

s scintillation

i ionization

t tracking

b bolometric

Range of uncertainties in NME

#### Cryogenic Underground Observatory for Rare Events proposal hep/ph 0501010 ββ0ν, Cold Dark Matter, Axion searches Closed packed array of 988 TeO<sub>2</sub> 5x5x5 cm<sup>3</sup> crystals Single dilution refrigerator ~10 mk 741 Kg TeO<sub>2</sub> $\Rightarrow$ 203Kg <sup>130</sup>Te 300K 776 4K 2112 IVI Still 50 mK 1 1 ELS. 30.4851 **19 CUORICINO like towers: 13 planes of 4 crystals each**

### **CUORE expected sensitivity**



#### CUORE $\beta\beta0\nu$ sensitivity will depend strongly on the bkgd level and detector performance



CUORE GOAL:

test inverse hierarchy: 10-50 meV

#### In five years of data taking

| B(counts/keV/kg/y) | $\Delta(\text{keV})$ | $T_{1/2}(y)$         | $ \langle m_{\nu} \rangle  (\mathrm{meV})$ |
|--------------------|----------------------|----------------------|--------------------------------------------|
| 0.01               | 10                   | $1.5 \times 10^{26}$ | 23-118                                     |
| 0.01               | 5                    | $2.1 	imes 10^{26}$  | 19-100                                     |
| 0.001              | 10                   | $4.6 \times 10^{26}$ | 13-67                                      |
| 0.001              | 5                    | $6.5 	imes 10^{26}$  | 11-57                                      |

#### Spread due to NME uncertainties: main obstacle to answer basic questions on v nature

#### **CUORICINO** background



# **CUORICINO background:** ββ0v region





2505 KeV 60Co line (1173+1332 KeV gamma)

• CUORICNO ββ0ν background:

~30% 2615keV <sup>208</sup>Tl line tail: from Th chain via multi-Compton events. <u>Source located in the</u>
 <u>cryostat</u>

• ~60% flat bkgd: degraded  $\alpha$  particles from crystal surface(20%) & material facing crystals (50%)

• ~negligible contribution from 2505 KeV <sup>60</sup>Co tail due <u>Cu cosmogenic activation</u>

### **CUORICINO vs CUORE** background

- **CUORE Evaluation** (MonteCarlo simulation based on CUORICINO, miDBD, Ge measurements)
  - Neutron & environmental background reduced by lead and neutron shield
  - Cosmogenic Cu and Te activation reduced by underground storage of materials
  - $\beta\beta 2\nu$  decay contribution < 10<sup>-3</sup> counts/Kg/keV/y
  - ◆ Bulk contaminations: Te0<sub>2</sub> ~10<sup>-13</sup>g/g, Cu ~10<sup>-12</sup>g/g  $\Rightarrow$  2•10<sup>-3</sup> counts/Kg/keV/y 2615keV <sup>208</sup>Tl reduced by properly shielding in CUORE cryostat + selection of construction materials
  - ♦ Surface contamination ~10<sup>-9</sup>g/g for Te0, & Cu  $\Rightarrow$  7 10<sup>-2</sup> counts/Kg/keV/y

Reduced by compact and granular CUORE structure (self-shielding detector) but not enough

to reach CUORE goal: require reduction factor 4 for Te0 & 10 for Cu surface



problem!!



### **CUORE R&D: passive bkgd rejection**



Cleaning test (Hall C Sept-Nov 2004):

- **♦ Cu:** etching, electro-polishing, passivation
- Crystal: etching (Nitric acid), lapping with clean powder (2μ SiO<sub>2</sub>)
- New assembling procedure with selected materials



- Reduction of a factor 4 on crystal surface contamination(<u>CUORE milestone reached</u>) and
- a factor 2 on Cu surfaces (still a factor 5 missing)
- Excluded contribution from Wires, Teflon, Thermistors
- New passive procedure (plasma cleaning)

### **CUORE R&D:active bkgd rejection**

COORE

Surface sensitive detectors: composited bolometer with a thin Ge, SI, te02 crystal







#### **CUORE R&D: scintillating crystal**

Measure heat phonon and light to disentangle  $\beta$ ,  $\gamma$  from n,W

Crucial for dark matter search: wimp  $\Rightarrow$  elastic scattering on nuclei

Mg, Mn, Nb, Zr doped TeO<sub>2</sub> crystal

**First results:** X ray excited steady-state luminescence







Rome

### CUORE R&D: scintillating crystal



#### **Thermal quenching**





#### Next steps:

- Low temperature photoluminescence
- Specific heat of doped crystal
- Search for best dopant concentration

Echoes in "inorganic scintillators" world : scintillating bolometer taken into account for the first time @ scint05

#### **R&D: new CUORE structure**

#### $CUORE = 16 \cdot CUORICINO$ ⇒ impossible to use CUORICINO assembly procedure

♦ Goal:

- reduce to a minimum Cu facing crystals
- simplify assembly procedure and material cleaning (eliminate screws)
- improve reproducibility
- better thermal & mechanical coupling

#### can use only Teflon and Cu

- Vibrational test performed in <u>Collaboration</u> with <u>Enea Lab</u> hot test @ room temperature
  - cold test @LN, temperature
    - (90% total thermal contraction)
- Study the modal cage behavior w/out crystals
  - **Optimal stress** to hold crystals bound to the frame
  - check reproducibility
  - check stability after thermal cycle















#### The pot in reality





#### The Analysis



# COOR

#### Frequency response function (signal/reference excitation amplitude ratio) for different applied stress on crystals



100

200

34

#### The survivors





#### Summer bolometric test





Teflon pieces and Cu frame modified using ENEA results
Bolometric test performed in this summer: preliminary good results!!





New cage and assembly procedure adopted, ultimate test in January....

### Summary



#### CUORICNO:

• The most sensitive  $\beta\beta0\nu$  decay running experiment:

$$\tau_{1/2}^{\beta\beta0\nu} > 1.8 \cdot 10^{24} \, y @ 90 \, C.L. \Rightarrow \langle m_{\beta\beta0\nu} \rangle < [0.2 \div 1.1] eV$$

- Good chances to confirm KK-HM experiment
- CUORICNO proved the feasibility of CUORE
- Crucial information for background identification
- CUORE:
  - Cryostat and hut construction will start soon
- Intense R&D activity to reduce background and optimize construction and assembly
  - Enrichment option still open: only core (2<sup>nd</sup> phase)
  - The inverse hierarchy will be explored
  - Start data taking: 1<sup>st</sup> January 2010

# Next Generation proposed experiments



|             | isotope           | <b>i.a.</b><br>[%]<br>nat | <b>Q</b> <sub>ββ</sub><br>[eV] | i.a.<br>[%]<br>enrich | size<br>[kmol] | <b>Т<sub>м</sub></b><br>[y] | σ <sub>ε</sub><br>[keV] | <b>b</b><br>[c/y] | τ <sub>½</sub> <sup>0</sup> ν<br>[10 <sup>28</sup> y] | technique | min       | ⟨ <b>m</b> ,⟩<br>[meV<br>max | ]<br>Staudt |
|-------------|-------------------|---------------------------|--------------------------------|-----------------------|----------------|-----------------------------|-------------------------|-------------------|-------------------------------------------------------|-----------|-----------|------------------------------|-------------|
| CUORE       | <sup>130</sup> Te | 34                        | 2533                           | 90                    | 1.7            | 5                           | 2.5                     | 3.8               | 0.18                                                  | b         | 9         | 57                           | 17          |
| GERDA III   | <sup>76</sup> Ge  | 7.8                       | 2039                           | 90                    | 13.0           | 5                           | 2                       | 3.5               | 0.20                                                  | S         | 29        | 94                           | 34          |
| Majorana    | <sup>76</sup> Ge  | 7.8                       | 2039                           | 90                    | 6.6            | 10                          | 2                       | 0.6               | 0.40                                                  | i         | 21        | 67                           | 24          |
| GENIUS      | <sup>76</sup> Ge  | 7.8                       | 2039                           | 90                    | 13.0           | 10                          | 2                       | 0.4               | 1.00                                                  | t         | 13        | 42                           | 15          |
| SuperNEMO   | <sup>82</sup> Se  | 8.7                       | 2995                           | 90                    | 1.2            | 5                           | 76                      | 1                 | 0.02                                                  | t,s       | <b>54</b> | 167                          | 55          |
| EXO         | <sup>136</sup> Xe | 8.9                       | 2476                           | 65                    | 48.0           | 10                          | <b>49</b>               | 0.55              | 1.30                                                  | t         | 12        | 31                           | 13          |
| MOON III    | <sup>100</sup> Mo | 9.6                       | 3034                           | 85                    | 8.5            | 10                          | 66                      | 3.8               | 0.17                                                  | t         | 13        | <b>48</b>                    | 27          |
| DCBA-II     | <sup>150</sup> Nd | 5.6                       | 3367                           | 80                    | 2.7            |                             | 85                      |                   | 0.01                                                  | t         | 16        | 22                           | 16          |
| CANDLES IV+ | <sup>48</sup> Ca  | 0.19                      | 4271                           | 2                     | 1.3            | 5                           | 73                      | 0.35              | 0.30                                                  | S         | 29        | 54                           | -           |
| CARVEL      | <sup>48</sup> Ca  | 0.19                      | 4271                           | ?                     | 0.4            | 10                          | 46                      | =                 | 0.10                                                  | S         | 50        | 94                           | -           |
| GSO         | <sup>160</sup> Gd | 21.8                      | 1730                           | 21.8                  | 2.5            | 10                          | 83                      | 200               | 0.02                                                  | S         | 65        | 65                           | 65          |

projected experimental parameters

projected background levels

large spread

► too large gap with respect to present

nuclear matrix elements *F*<sub>N</sub> selected by Elliott & Vogel \*

 $\langle m_{v} \rangle$  evaluated according to

staudt et al Europhys. Lett. 13 (1990) 31

#### Some like it Majorana.....



#### Natural explanation of smallness of v mass



#### Most general Majorana-Dirac Mass term

$$-\mathcal{L}_{\text{mass}}^{\nu} = \frac{1}{2} \begin{bmatrix} \nu_L & (\nu_R)^c \end{bmatrix} C \begin{pmatrix} m_{M,L} & m_D \\ m_D & m_{M,R} \end{pmatrix} \begin{bmatrix} \nu_L \\ (\nu_R)^c \end{bmatrix} + \text{h.c.}$$
Gauge invariance
See-saw mechanism:
$$\mathcal{M} \simeq \begin{pmatrix} \mathbf{0} & m_D \\ m_D & M \end{pmatrix} \xrightarrow{\text{Dirac mass } \mathbf{M}_{\text{EW}}} Majorana mass \mathbf{M}_{\text{GUT}}$$

**•Diagonalize Matrix Mass:**  $m_N \simeq M$  and  $m_\nu \simeq m_D^2/M$ 

#### **Neutron Fluxes @ LNGS**



#### Neutron bkgd @ Cuore in ββ0vregion

- from thermal to  $1 \text{keV} \rightarrow \text{absorbed by a "thin" n shield}$
- ♦ from 1keV to 10 MeV → flux from measures + simulation of radiation in the rock
   total 7 10<sup>-3</sup> counts/Kg/keV/y
  - global anticoincidence 2•10<sup>-4</sup> counts/Kg/keV/y
- ◆ from 10 MeV to 2 GeV → flux simulation of muon interaction in the rock
   total 3 10<sup>-5</sup> counts/Kg/keV/y
  - global anticoincidence 6•10<sup>-7</sup> counts/Kg/keV/y
- ◆ from 1keV to 2 GeV → flux simulation of muon interaction in the muon shield
   total 3 10<sup>-3</sup> counts/Kg/keV/y
  - global anticoincidence 2•10<sup>-4</sup> counts/Kg/keV/y

#### Same background in Dark Matter search region

No limit to CUORE sensitivity due to neutron flux in LNGS







#### **Nuclear Matrix Spread**



TABLE I. Effective Majorana mass of the electron neutrino,  $\langle m_{\nu} \rangle$ , corresponding to  $T_{1/2}^{0\nu}(^{130}\text{Te}) = 1.8 \times 10^{24} \text{ yr}$  derived from various nuclear (QRPA) models.

| Authors/Reference                | Method                         | $\langle m_{\nu} \rangle ~({\rm eV})$ |  |  |  |
|----------------------------------|--------------------------------|---------------------------------------|--|--|--|
| [47] Staudt et al., 1992         | pairing (Paris)                | 0.21-0.22                             |  |  |  |
|                                  | pairing (Bonn)                 | 0.22 - 0.24                           |  |  |  |
| [48] Pantis <i>et al.</i> , 1996 | no <i>p</i> - <i>n</i> pairing | 0.66                                  |  |  |  |
|                                  | p-n pairing                    | 1.05                                  |  |  |  |
| [49] Vogel, 1986                 | ··· · ···                      | 0.61                                  |  |  |  |
| [50] Civitarese, 1987            |                                | 0.54                                  |  |  |  |
| [51] Tomoda, 1991                |                                | 0.54                                  |  |  |  |
| [52] Barbero et al., 1999        |                                | 0.43                                  |  |  |  |
| [53] Simkovich, 1999             | pn-RQRPA                       | 0.88                                  |  |  |  |
| [54] Suhonen et al., 1992        |                                | 0.83                                  |  |  |  |
| [55] Muto et al., 1989           |                                | 0.51                                  |  |  |  |
| [56] Stoica et al., 2001         | large basis                    | 0.77                                  |  |  |  |
|                                  | short basis                    | 0.72                                  |  |  |  |
| [57] Faessler et al., 1998       |                                | 0.72                                  |  |  |  |
| [58] Engel et al., 1989          | seniority                      | 0.37                                  |  |  |  |
| [59] Aunola et al., 1998         | Woods Saxon (WS)               | 0.50                                  |  |  |  |
|                                  | Adjusted WS                    | 0.54                                  |  |  |  |