

Oscillazioni del mesone D⁰

Gianluca Cavoto
INFN Roma La Sapienza

Seminario di fisica dei campi e particelle Roma, 22 marzo 2007

Outline

- Neutral mesons flavour oscillation
- Charm meson mixing
- Evidence from B-factories

$$-D^0 \rightarrow K^-\pi^+$$

$$-D^0 \rightarrow K_s \pi^+ \pi^-, D^0 \rightarrow K^+ K^- / \pi^+ \pi^-$$

Outlook

Neutral Mesons systems

- Two-level system (M⁰, M⁰)
 - Weak interactions remove degeneracy, make them unstable

Time evolution by Schrödinger eq.:
$$i\frac{\partial}{\partial t}\binom{|M^{\,0}(t)\rangle}{|\overline{M}^{\,0}(t)\rangle} = \left(\mathbf{M} - \frac{i}{2}\Gamma\right)\binom{|M^{\,0}(t)\rangle}{|\overline{M}^{\,0}(t)\rangle}$$
 2x2 hermitian matrices Mesons decay!

Mass eigenstates:

$$|M_{1,2}\rangle = p|M^0\rangle \pm q|\overline{M}^0\rangle$$

Propagate with separate mass $m_{1,2}$ and width $\Gamma_{1,2}$:

$$|M_{1,2}(t)\rangle = e^{-i(m_{1,2}-i\Gamma_{1,2}/2)t}|M_{1,2}(t=0)\rangle$$

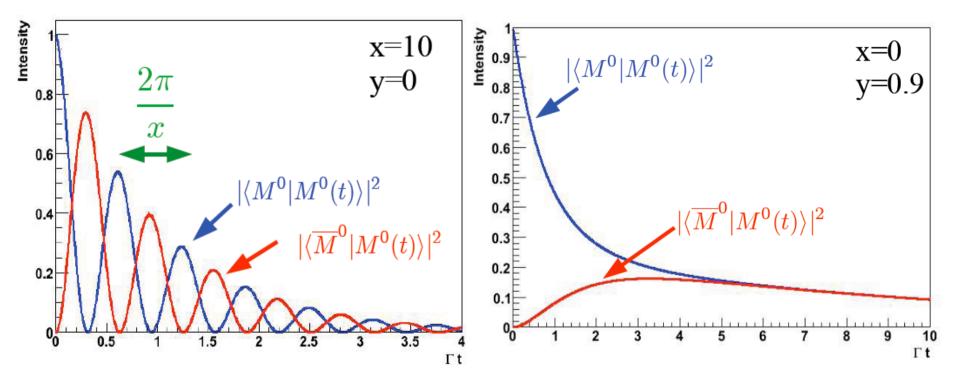
Neutral mesons oscillations

Time evolution for meson of **known flavour at t=0**

$$x=rac{m_2-m_1}{\Gamma} \ y=rac{\Gamma_2-\Gamma_1}{2\Gamma}$$
 $\Gamma=rac{\Gamma_2+\Gamma_1}{2}$

$$|M^0(t)
angle = e^{-ar{\gamma}t/2}\left(\cosh(\Delta\gamma t/2)|M^0
angle - rac{q}{p}\sinh(\Delta\gamma t/2)|\overline{M}^0
angle
ight)$$
 Where $\Delta\gamma = (y+ix)\Gamma$ $ar{\gamma} = (\Gamma_1+\Gamma_2)/2 - i(m_1+m_2)$

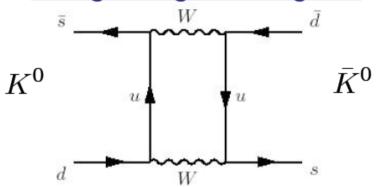
Where
$$\Delta \gamma = (y+ix)\Gamma$$
 $\bar{\gamma} = (\Gamma_1 + \Gamma_2)/2 - i(m_1 + m_2)$


M⁰ "oscillates" into M⁰! (also dubbed "mixing")

An opposite flavour component appears after a while!

Some visual examples

Probability to find a $M^0(\overline{M}^0)$ after a given time

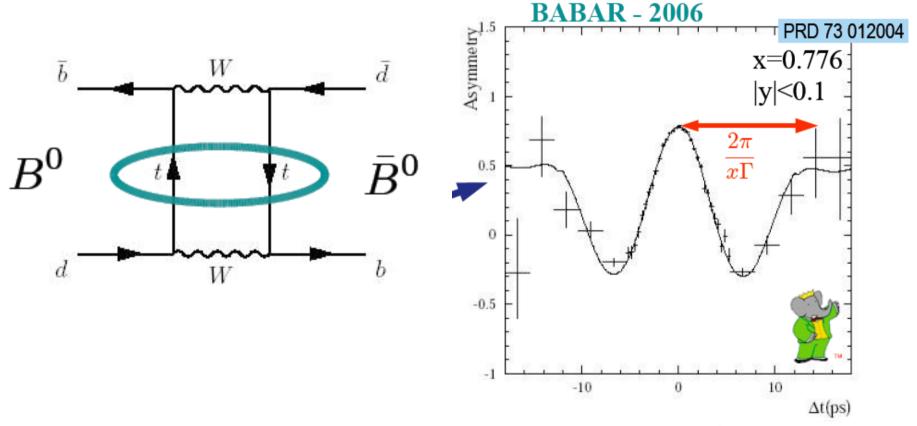


Lifetime units

How to generate this ??

Mixing through box diagram:

No tree level Flavour Changing Neutral Currents (FCNC) in SM

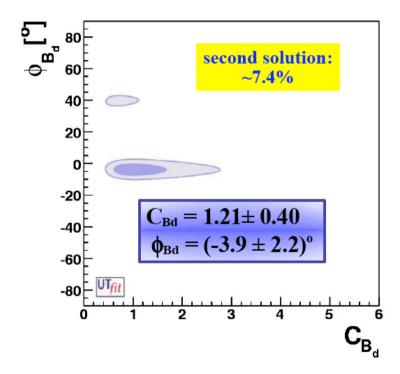

Glashow, Iliopoulus and Maiani (1970): FCNC calculated from single quark loop still too large Introduce additional loop with new c quark

GIM predicted charm quark 4 years before observation

Can you see New Physics?

 B^0 mixing first observed by ARGUS experiment in 1987 Large mixing frequency implied t quark was heavy ($m_t > 50 \text{ GeV}/c^2$)

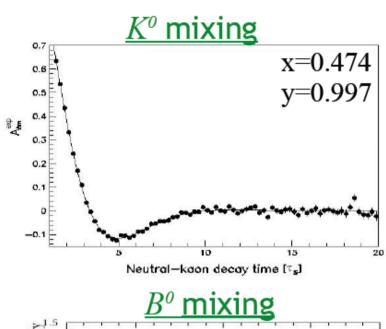
And the top was discovered 8 years after!

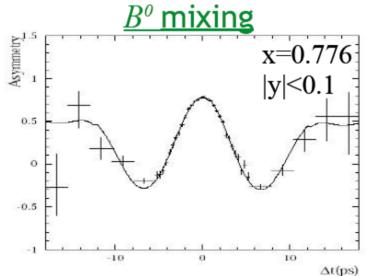


Even more ambitious today!

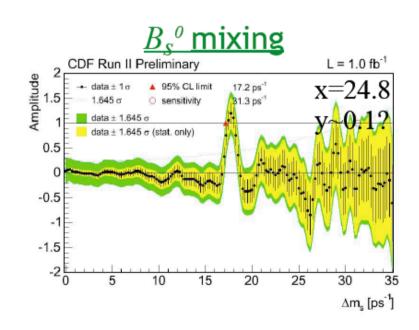
B_{d,s} (K) mixing on the punch line for virtual effects from NP Not only x and y but also *phases* in the mixing

$$C_{B_{q}}e^{2i\phi_{B_{d}}} = \frac{\langle B_{q}^{0}|H_{eff}^{full}|\overline{B}_{q}^{0}\rangle}{\langle B_{q}^{0}|H_{eff}^{SM}|\overline{B}_{q}^{0}\rangle}, \quad (q=d,s)$$


$$C_{\epsilon_{\kappa}} = \frac{\Im[\langle K^{0}|H_{eff}^{full}|\overline{K}^{0}\rangle]}{\Im[\langle K^{0}|H_{eff}^{SM}|\overline{K}^{0}\rangle]}$$

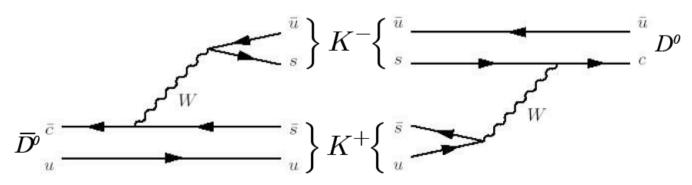


M. Bona *et al.* (UTfit Collaboration) Phys.Rev.Lett.97:151803,2006 hep-ph/0605213


The missing tile

D^{ϱ} mixing

Charm Meson Mixing

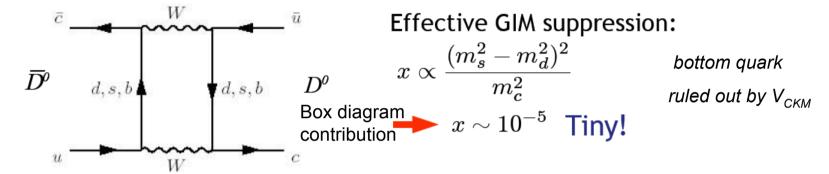


Short and **Long** distance

Prediction x and y

$$\begin{pmatrix} \mathbf{M} - \frac{i}{2} \Gamma \end{pmatrix}_{ij} = \frac{\langle D_i | H_{\mathrm{eff}} | D_j \rangle}{2m_D} = m_D^{(0)} \delta_{ij} \\ + \frac{\langle D_i | H_w | D_j \rangle}{2m_D} + \frac{1}{2m_D} \sum_n \frac{\langle D_i | H_w | n \rangle \langle n | H_w | D_j \rangle}{m_D^{(0)} - E_n + i\epsilon}.$$
 Sum of intermediate REAL states

$$\mathbf{y} \qquad \Gamma_{ij} = \frac{1}{2m_D} \sum_{n} \langle D_i | H_w | n \rangle \langle n | H_w | D_j \rangle \ \delta(E_n - m_D).$$



Makes it difficult to predict SM expectation

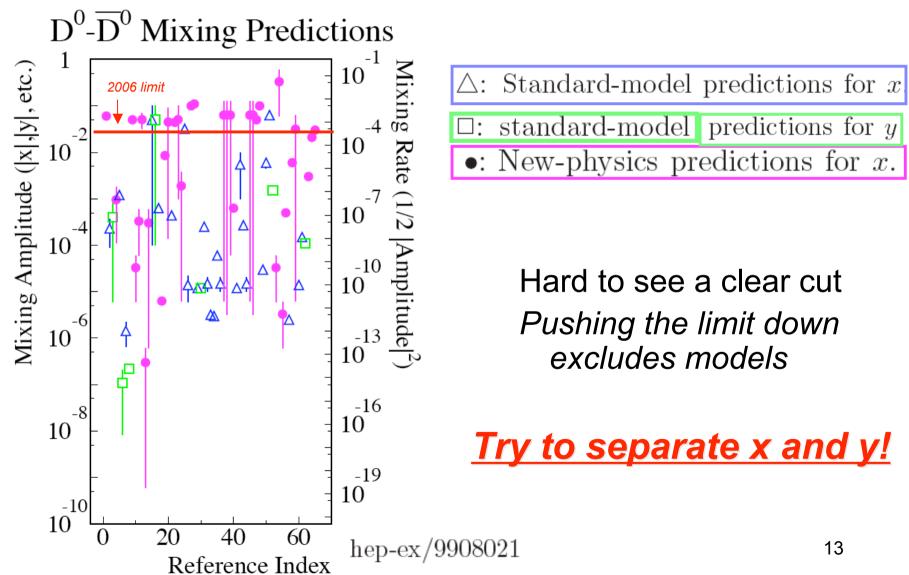
SM prediction for charm mixing

SM charm mixing box has down-type quarks in loop

$$x, y \sim \sin \theta_c^2 \times [SU(3) \text{ breaking}].$$
 Naively $x, y \sim \sin \theta_c^2 \times \left(\frac{m_s}{\Lambda_{\text{hadr.}}}\right)^2 \lesssim O(10^{-3})$

Always hard to evaluate SU(3) breaking !!!

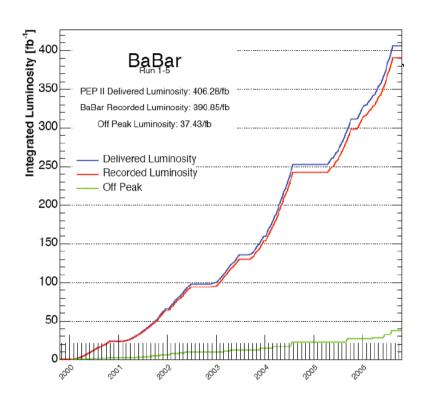
(HQET, propagation of common hadronic states,...)


SU(3) breaking effect more important for y

$$x \lesssim 10^{-3}, \quad y \lesssim 10^{-2}.$$

G. Burdman and I. Shipsey, Ann. Rev. Nucl. and Part. Sci. **53**, 431 (2003).

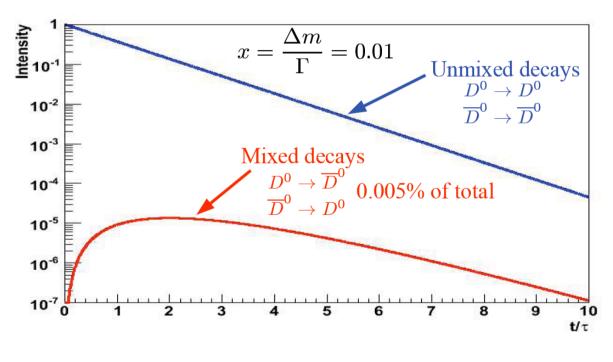
New Physics in Charm?



Experimental Searches

Charm physics with B-factory

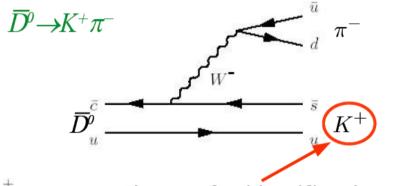
BaBar is a B-factory: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow b\bar{b}$ $\sigma_{\rm eff}(b\bar{b}) = 1.1 \text{ nb, but}$ $\sigma(c\bar{c}) = 1.3 \text{ nb}$ \longrightarrow Millions of reconstructed charm hadrons BaBar is also a charm factory



Run1-5, more than 500M ccbar events

The technique

- ightharpoonup Produce clean sample of D^{ϱ} and \overline{D}^{ϱ}
- **!**Identify flavor (D^{θ} or \overline{D}^{θ} ?) at decay time
- Measure rate of mixed decays as function of time



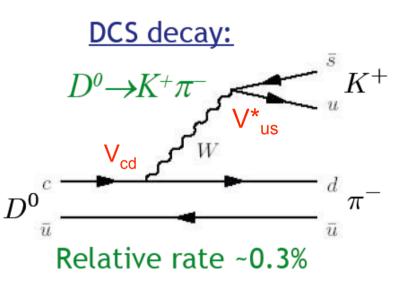
Flavour tagging

Use D^{θ} from $D^{*+} \rightarrow D^{\theta} \pi^{+}$ decays:

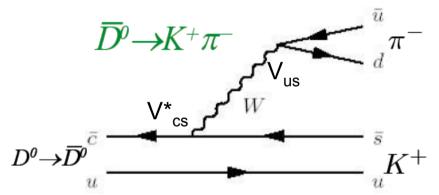
$$D^{*+}\left\{\frac{c}{\overline{d}}\right\} D^0 \qquad \begin{array}{c} \text{Flavour at production} \\ \text{Charge of pion "tags"} \\ \text{initial flavor as } D^0 \text{ or } \overline{D}^0 \end{array}$$

Charge of *K* identifies decay flavor

Flavour at decay

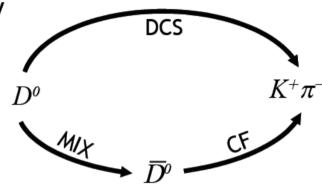

- Same flavour: Wrong-Sign (WS) mixing may have occured
- Opposite flavour: Right-Sign (RS) unmixed events

$$\overline{A}_f \equiv \langle f|H|\overline{D}^0\rangle$$


Double-Cabibbo Suppressed Decays

Hadronic decays do not uniquely identify decay flavor Get unmixed wrong-sign decays from DCS decays

Mixed decay:


Relative rate: 0.005% (for x=0.01)

Time evolution

Discriminate DCS and mixing by their different time evolution

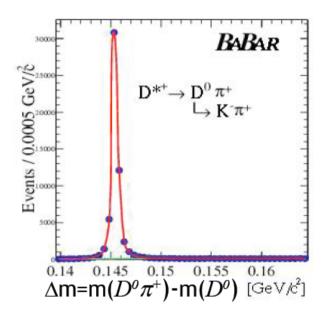
Also have interference effect:

WS (relative to RS) time-dep. rate (small x and small y limit)

$$r(t) = \overline{r}(t) = e^{-t} \left(\underbrace{R_D}_{\text{DCS}} + \underbrace{\sqrt{R_D} \, y' t + \underbrace{\frac{1}{2} R_M \, t^2}}_{\text{Interference}} \right)$$

$$\frac{A_f}{\overline{A}_f} = -\sqrt{R_D} \, e^{-i\delta}$$

 $\boldsymbol{\delta}$ is the strong phase


$$R_{\rm M}pprox rac{1}{2}(x^2+y^2)$$

$$y' = y \cos \delta - x \sin \delta$$

 $x' = y \cos \delta + x \sin \delta$

Event Selection

$$Q = m(D^{*+}) - m(D^{0}) - m(\pi^{+}) \approx 6 \, \mathrm{MeV} / c^{2}$$

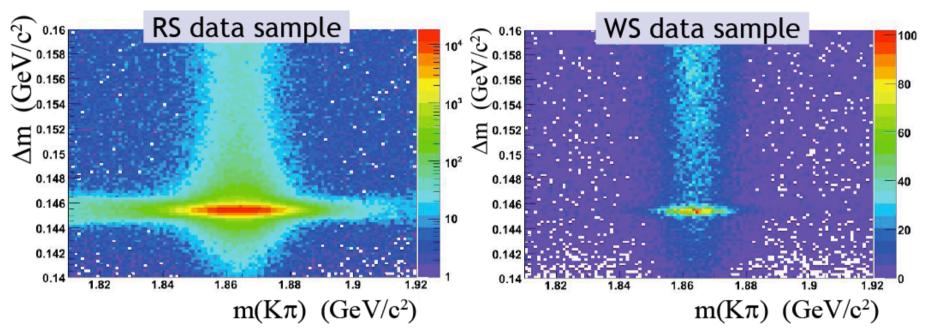
Excellent background suppression

D^{o} selection:

- \clubsuit Identified K and π
- **❖** p*(*D*⁰)> 2.5 GeV/c
- $1.81 < m(K\pi) < 1.92 \text{ GeV/c}^2$

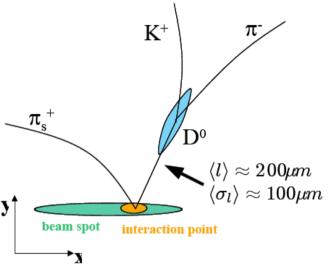
Slow π selection:

- ❖ p*(π_s)< 0.45 GeV/c
- $p_{lab}(\pi_s) > 0.1 \text{ GeV/c}$
- ❖ 0.14<∆m<0.16 GeV/c²
 </p>

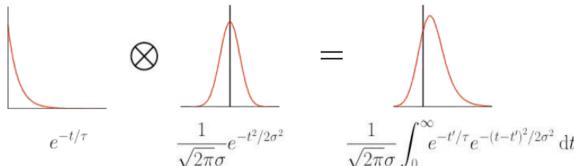

$$\Delta m = m(K\pi\pi_s) - m(K\pi)$$

RS and WS data set

64,000 WS events



Fit to $m(K\pi)$ and Δm distribution:


- RS and WS samples fit simultaneously
- Signal and some background parameters shared
- ❖ All parameters determined in fit to data, not MC

Decay time analysis

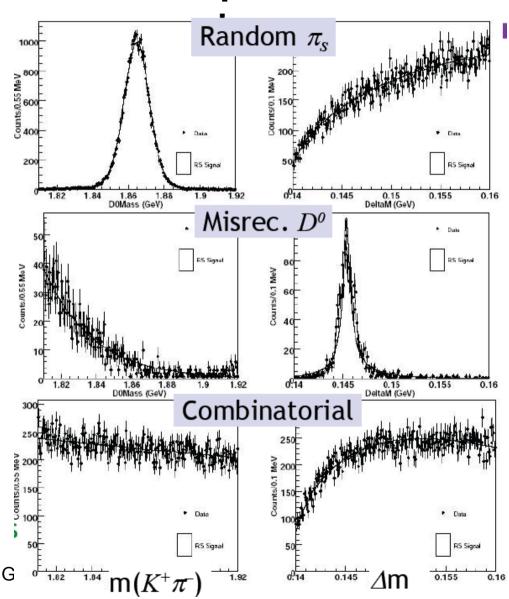
- ΔD^0 and π_s constrained to luminous region
- Fit probability > 0.1%
- **❖** Reconstructed decay time, *t*: -2<*t*<4 ps
- **Estimated decay time error**, δt **< 0.5** ps

Resolution function from RS sample

Background components

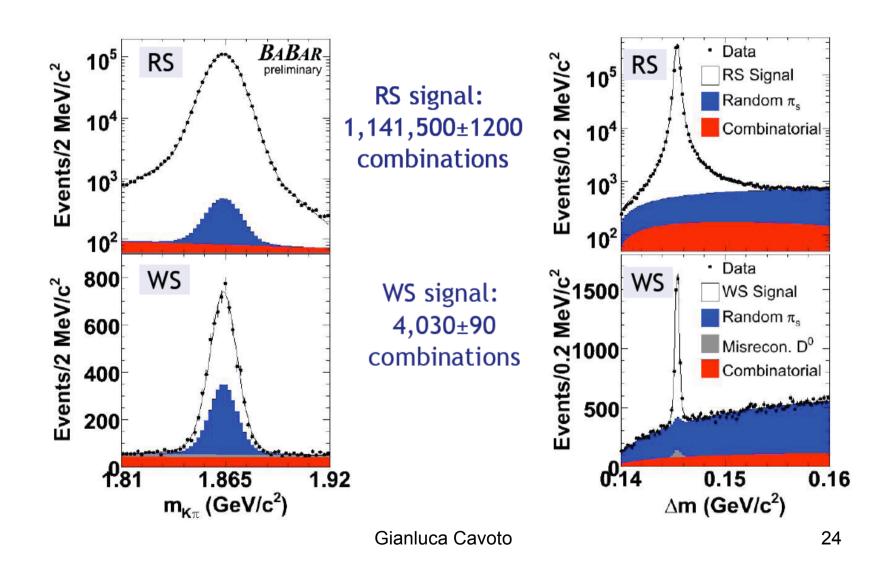
Random π_s :

- **\diamond** Correct D^o , wrong π_s
- Peaks in $m(K\pi)$, not Δm


Misreconstructed D^{0} :

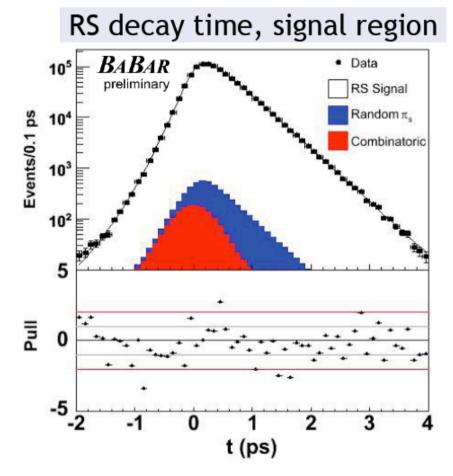
- ***** Partially reco. D^{o} , $D^{o} \rightarrow K^{-} \mu^{+} \nu$
- ❖ Double misid $D^0 \rightarrow K^- \pi^+$ (WS events only)
- Peaks in Δm , not $m(K\pi)$

Combinatoric:

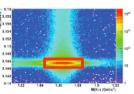

Random tracks

Discrimination power from $m(K\pi)$ and Δm

Signal extraction


RS decay time analysis

D⁰ lifetime and time resolution function from RS sample


 τ =(410.3±0.6(stat.)) fs

Consistent with PDG (410.1±1.5 fs)

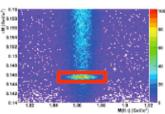
Systematics dominated by resolution function

plot selection: 1.843<*m*<1.883 GeV/c² 0.1445<*∆m*< 0.1465 GeV/c²

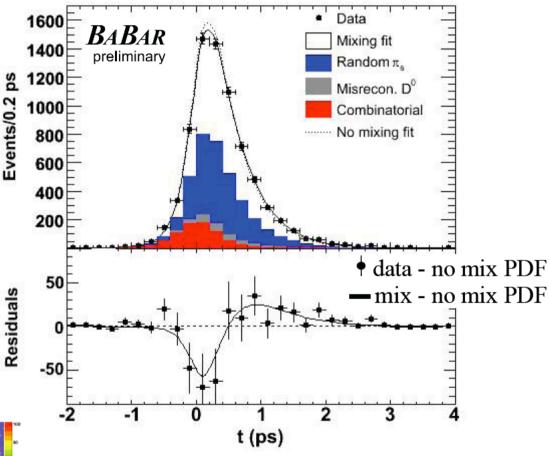
WS decay time with mixing

Fit results allowing mixing:

 R_{D} : $(3.03\pm0.16\pm0.10)\times10^{-3}$


x'2: (-0.22±0.30±0.21)x10-3

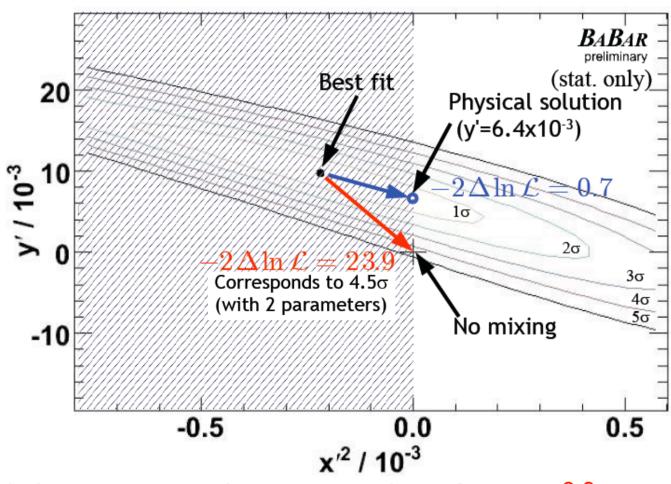
y': $(9.7\pm4.4\pm3.1)$ x 10^{-3}


x'2, y' correlation: -0.94

$$\chi^2 / \dot{bin} = 31/28$$

signal region: 1.843<m<1.883 GeV/c² 0.1445<∆m< 0.1465 GeV/c²

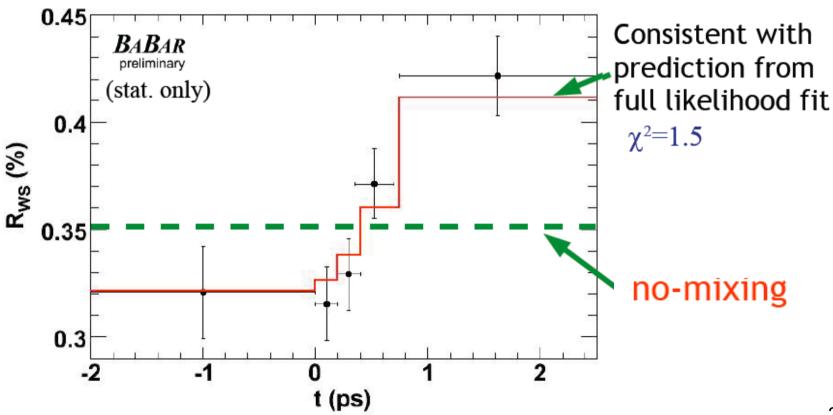
WS decay time, signal region



nluca Cavoto

Evidence for D⁰ mixing!

Best fit solution in unphysical region (x'2<0)



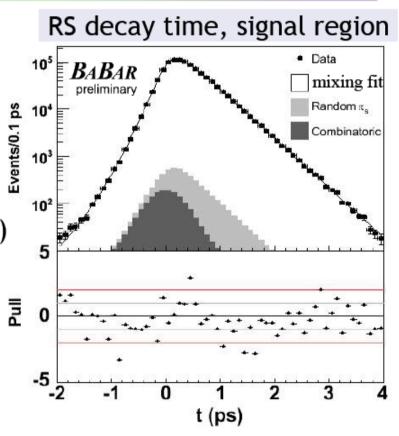
Including systematics decreases signal significance 3.9

Validation: $m(K\pi)$ and Δm fit in t bins

- No assumptions made on timeevolution of background
- Each time bin is fit independently

Relative rate of WS events clearly increases with time

Validation: fit RS for mixing


Fit RS data with PDF allowing mixing

x'2: (-0.01±0.01)x10⁻³

y': $(0.26\pm0.24)x10^{-3}$

 $-2\Delta \ln \mathcal{L} = 1.4$ (w.r.t. no mixing)

 D^{o} decay time distribution is described properly

Systematics uncertainty

Two types of systematic uncertainties considered:

Fit model variations:

Change signal and background models used in fit, to test assumptions made

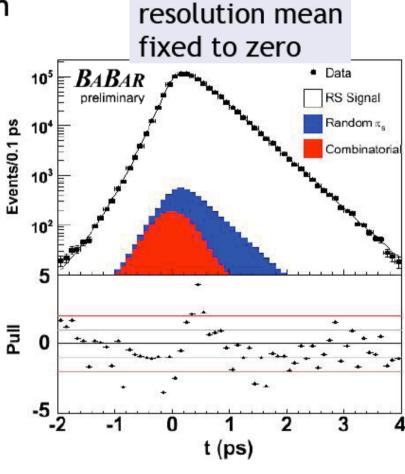
Selection criteria:

Mainly decay time (error) ranges used in fit

Systematic:	$R_{_{\mathrm{D}}}$	X' ²	y'
Fit Model	0.59 σ	0.40σ	0.45σ
Selection Criteria	0.24σ	0.57 σ	0.55 σ
Total	0.63ਰ	0.70σ	0.71σ
Fraction of statistical uncertainty			

Systematics on Decay time

Decay time resolution function in data has non-zero mean


Core Gaussian shifted 3.6±0.6fs

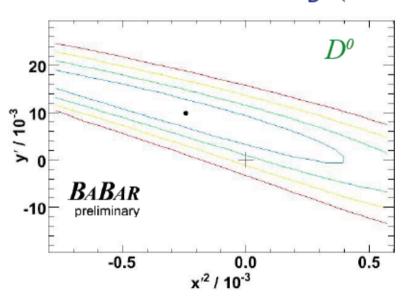
Effect is not seen in MCprobably due to misalignment

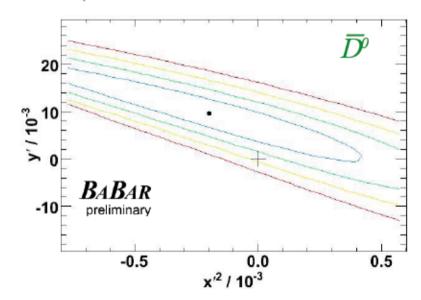
For systematics set mean to 0:

Variation: $y' = 0.3\sigma$ $x'^2 = -0.3\sigma$

No reason why resolution should be different for RS and WS decays

RS decay time,

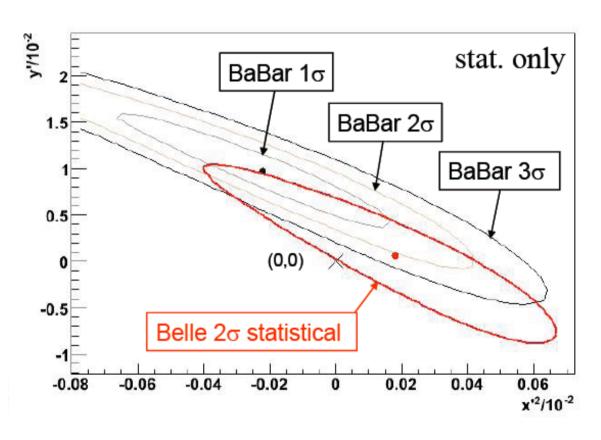

Allowing for CP violation


Results of fitting D^{ϱ} and \overline{D}^{ϱ} separately:

 x'^{+2} : $(-0.24\pm0.43\pm0.30)x10^{-3}$ x'^{-2} : $(-0.20\pm0.41\pm0.29)x10^{-3}$

y'': $(9.8\pm6.4\pm4.5)x10^{-3}$ y'': $(9.6\pm6.1\pm4.3)x10^{-3}$

 $A_D = (-2.1 \pm 5.2 \pm 1.5)\%$ CP violation in DCSD!

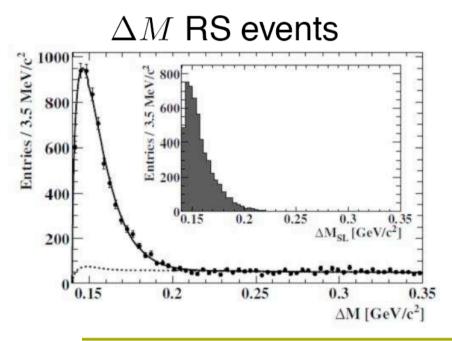


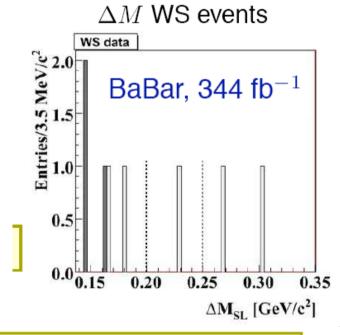
No evidence for CP violation found

Kπ analysis from Belle

Results consistent within 2 σ :

More evidence...!


D-mixing with Semileptonic decay

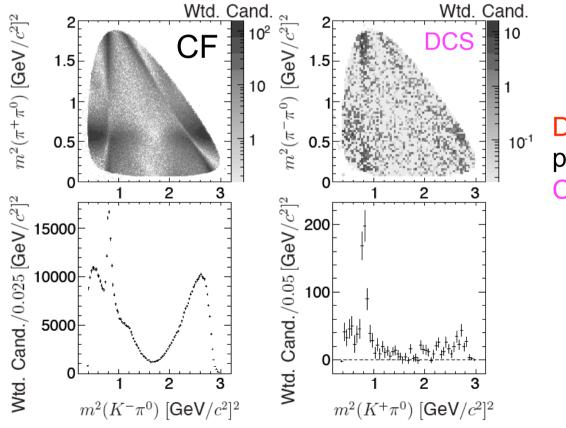

• No DCS sl. !
$$A_f = \bar{A}_{\bar{f}} = 0$$
 $r(t) = \frac{e^{-t}}{4}(x^2 + y^2) t^2 \left| \frac{q}{p} \right|^2$

Double tag

 $D^{*+} \rightarrow D^0 \pi^+$, semil. and hadronic (fully rec.)

Several hadronic tagging modes

$$-1.3 \times 10^{-3} < R_M < 1.2 \times 10^{-3}$$
 @ 90% C.L.



Separating x and y

• $K\pi$ only cannot separate x and y

Need info on strong phases

Multibody decays:Dalitz models

DCS decays proceed primarily through $K^{*+}\pi^{-}$ while CF through $K^{-}\rho^{+}$

$K^-\pi^+\pi^0, K^-\pi^+\pi^+\pi^- {}^{\text{PRL 97, 221803 (2006)}}_{\text{hep-ex/0607090}}$

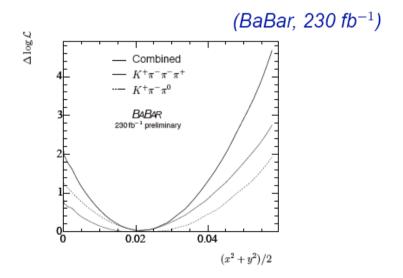
Select special region of Dalitz plot

$$\frac{dN}{dt} \propto \left[\widetilde{R}_D + \alpha \widetilde{y}' \sqrt{\widetilde{R}_D} (\Gamma t) + \frac{\widetilde{x}'^2 + \widetilde{y}'^2}{4} (\Gamma t)^2\right] e^{-\Gamma t} , \quad 0 \le \alpha \le 1$$

Mixing rate

$$\widetilde{x}' = x \cos \widetilde{\delta} + y \sin \widetilde{\delta}$$

$$\widetilde{y}' = y \cos \widetilde{\delta} - x \sin \widetilde{\delta} \quad \blacksquare$$


$$R_M = \frac{\widetilde{x}'^2 + \widetilde{y}'^2}{2} = \frac{x^2 + y^2}{2}$$

Effective phase

Results

- Assuming CP conservation
- Upper limits (95% C.L.)

$$K\pi\pi^0$$
 $R_M < 0.054\%$
 $K3\pi$ $R_M < 0.048\%$

Combined result

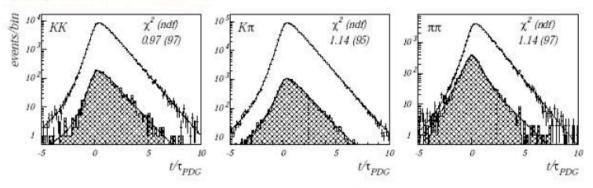
$$R_M < 0.42 \times 10^{-3}$$
 @ 95% C.L.

YCP

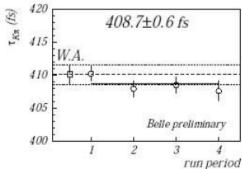
- Measurement of lifetime difference between $D^0 \to K^-\pi^+$ and $K^+K^-, \pi^+\pi^-$

$$y_{CP} = \frac{\tau(K^- \pi^+)}{\tau(K^+ K^-)} - 1$$

 \triangleright in CP conservation limit: $y_{CP} = y = \Delta\Gamma/\Gamma$


$$y_{CP} = y = \Delta \Gamma / \Gamma$$

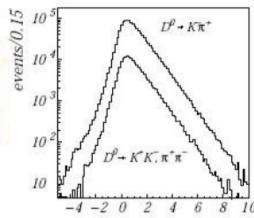
- If CP not conserved, difference in lifetimes of $D^0/\bar{D^0} \to K^+K^-, \pi^+\pi^-$


$$\triangleright \text{ CP violating parameter: } \quad A_{\Gamma} = \frac{\hat{\Gamma}(D^0 \to KK) - \hat{\Gamma}(\bar{D}^0 \to KK)}{\hat{\Gamma}(D^0 \to KK) + \hat{\Gamma}(\bar{D}^0 \to KK)}$$

Simultaneous $KK/\pi\pi/K\pi$ binned likelihood fit

quality of fit: $\tilde{\chi^2} = 1.084$ (289)

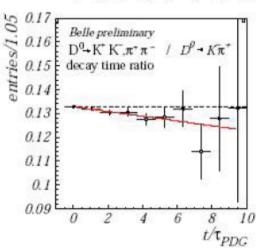
 $D^0 \to K\pi$ lifetime very stable in slightly different running periods



Results on y_{CP}

Results (preliminary)

	y_{CP} (%)	A_{Γ} (%)
KK $\pi\pi$	1.25±0.39±0.28 1.44±0.57±0.42	0.15±0.34±0.16 -0.28±0.52±0.30
		0.01±0.30±0.15


Belle preliminary (540 fb⁻¹)

$$y_{CP} = 1.31 \pm 0.32 \pm 0.25 \%$$

 $>3\sigma$ above zero $(4.1\sigma$ stat. only) first evidence for $D^0-\bar{D^0}$ mixing

$$A_{\Gamma} = 0.01 \pm 0.30 \pm 0.15 \%$$

no evidence for CP violation

$D^0 \rightarrow K_S \pi^+ \pi^-$

$$M(m_-^2, m_+^2, t) = A(m_-^2, m_+^2) \frac{e_1(t) + e_2(t)}{2} + A(m_+^2, m_-^2) \frac{e_1(t) - e_2(t)}{2}$$

where m_{\pm} is defined with the D^* tag

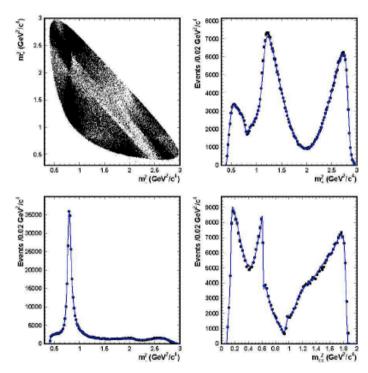
$$m_{\pm} = \begin{cases} m(K_s, \pi^{\pm}) & D^{*+} \to D^0 \pi^+ \\ m(K_s, \pi^{\mp}) & D^{*-} \to \bar{D}^0 \pi^- \end{cases}$$

and time dependent functions with

$$e_{1,2}(t) = e^{-i(m_{1,2} - i\Gamma_{1,2}/2)t}$$

 $|M(m_-^2, m_+^2, t)|^2$ thus includes x and y

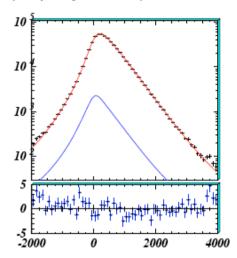
The only measurement sensitive directly to x


Both flavour $(K^*-\pi^+/K^{*+}\pi^-)$ final states in the same Dalitz plot! CP-eigenstate (ρK_S) and flavour states $(K^{*-}\pi^+)$ in the same Dalitz plot!

$D^0 \rightarrow K_S \pi^+ \pi^-$ Dalitz model

Belle, 540 fb⁻¹

Dalitz fit


Resonance	Amplitude	Phase (deg)	Fit fraction
$K^*(892)^-$	1.629 ± 0.005	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
$K^*(1410)^-$	0.65 ± 0.02	111 ± 2	0.0048
$K^*(1680)^-$	0.60 ± 0.05	147 ± 5	0.0002
$K^*(892)^+$	0.152 ± 0.003	-37.5 ± 1.1	0.0054
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013
$K^*(1410)^+$	0.333 ± 0.016	-102 ± 2	0.0013
$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
$\rho(1450)$	0.72 ± 0.02	40.9 ± 1.9	0.0024
σ_1	1.387 ± 0.018	-147 ± 1	0.0914
σ_2	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615

- Dalitz model: 13 different (BW) resonances and a non-resonant contribution
- Results with this refined model consistent with the analysis performed for the Belle ϕ_3 measurement, PRD73, 112009 (2006)
- lacktriangle To test the scalar $\pi\pi$ contributions, K-matrix formalism is also used

$D^0 \rightarrow K_S \pi^+ \pi^- Results$

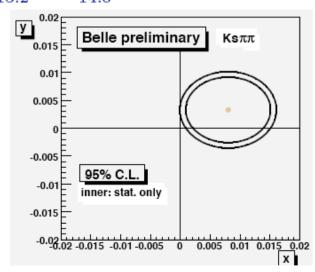
Time fit (in projection)

Results (preliminary)

$$x = 0.80 \pm 0.29 \pm 0.17 \%$$

 $y = 0.33 \pm 0.24 \pm 0.15 \%$

most stringent limits on x up to now Cleo, PRD 72, 012001 (2005):


$$x = 1.8 \pm 3.4 \pm 0.6\%$$

 $y = -1.4 \pm 2.5 \pm 0.9\%$

Systematics

Largest contributions ($\times 10^{-4}$)

x y
$$^{+14.6}_{-13.6}$$
 $^{+7.8}_{-8.8}$ Model dependence $^{+8.5}_{-6.8}$ $^{+6.6}_{-11.6}$ Time fit

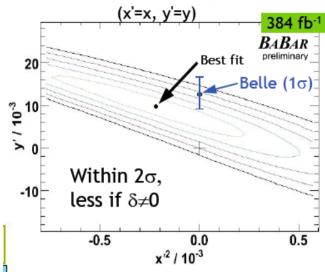
Total (
$$\times 10^{-4}$$
)
x y
 $^{+16.9}_{-15.2}$ $^{+10.2}_{-14.6}$

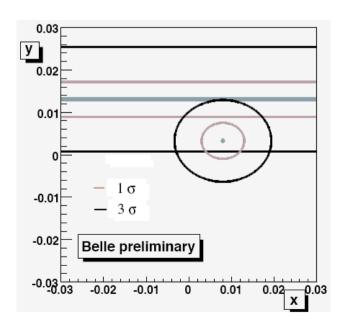
Summary and Outlook

Summary

BaBar studied $D^0 \rightarrow K\pi$ decay

- **❖** Evidence for mixing (3.9 σ)
- ❖ No sign of CP violation
- Consistent with other measurements and SM

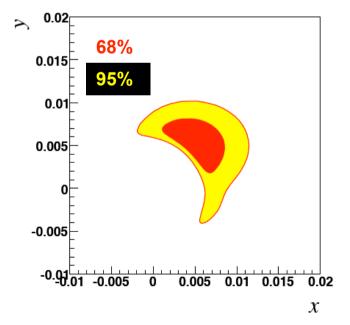

New results from Belle


- **❖**Evidence for mixing (3.2σ)
- \clubsuit Measures x and y directly
- ❖No sign of CP violation

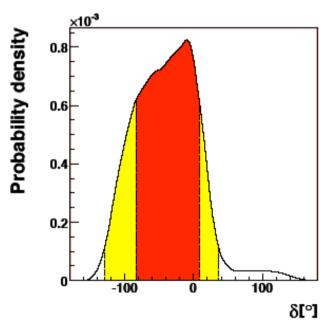
$$x = 0.80 \pm 0.29 \pm 0.17 \% (2.4\sigma)$$

More statistics needed

Compare assuming δ =0:


Interpreting the results

Do and $\bar{\mathsf{D}}^0$ weak phase $2\phi_D$ of the mixing amplitude $y'_{\pm} = (1 \pm A_m)(y'\cos 2\phi_D \mp x'\sin 2\phi_D),$ $x'_{\pm}^2 = (1 \pm 2A_m)(x'\cos 2\phi_D \pm y'\sin 2\phi_D)^2,$ $y_{\mathrm{CP}} = y\cos 2\phi_D - A_m x\sin 2\phi_D,$


 $A_m = 1 - |q/p|$

Ciuchini et al.

hep-ph/0703294

 $A_{\Gamma} = A_m y \cos 2\phi_D - x \sin 2\phi_D$

Measuring δ

To beat down the model systematics measure phases directly

- Correlated D production DD \rightarrow f_1f_2 $|\psi(3770)\rangle \rightarrow |D\overline{D}\rangle_L = \frac{1}{\sqrt{2}} \left[|D^0(k_1)\overline{D^0}(k_2)\rangle + (-1)^L |D(k_2)\overline{D^o}(k_1)\rangle \right]$
- For L=1 DCS contribution to $f_1=f_2=K^-\pi^+$ cancels
- Of course no DCS semileptonic amplitude

$$R_{M} \approx \frac{(K^{-}\pi^{+})^{2}}{(K^{-}\pi^{+})(K^{+}\pi^{-})}$$
 $R_{M} = \frac{(K^{-}\ell^{+}\nu)^{2}}{(K^{-}\ell^{+}\nu)(K^{+}\ell^{-}\nu)}$

- 0.75 fb⁻¹ ~1.6K K⁻ π ⁺, ~6.5K K⁻I⁺v double tags ⇒ $\sqrt{2R_M}$ < 4%@95%*C.L.*
- Note CF vs CF indistinguishable from DCS vs DCS
 - Amplitudes interfere
 - correction factor $\left(1+2\sqrt{R_D}\cos\delta+R_D\right)\sim 1+0.12+0.0036$

Double tag at ψ(3770) [CLEO-c]

D_{CP±}
neutral D
CP
eigenstate

• Reconstruct Double Tags: CP vs $K\pi$

Asymmetry in CP+ vs CP- related to cosδ

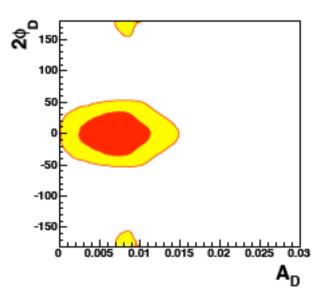
$$A = \frac{B(D_{CP+} \to K^{-}\pi^{+}) - B(D_{CP-} \to K^{-}\pi^{+})}{B(D_{CP+} \to K^{-}\pi^{+}) + B(D_{CP-} \to K^{-}\pi^{+})}$$

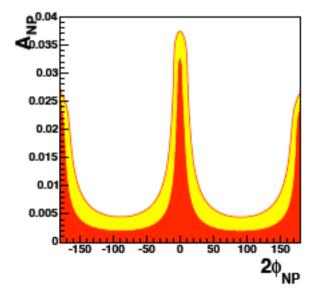
R_D is ratio of DCS to Cabibbo favored rates

$$\cos \delta = \frac{A}{2\sqrt{R_D}}$$

• Input $R_D = (3.60 \pm 0.08)\%$ from PDG2006+CDF ~±2%,

 $\psi(3770)$ decay conserves CP


Need to run
On
threshold

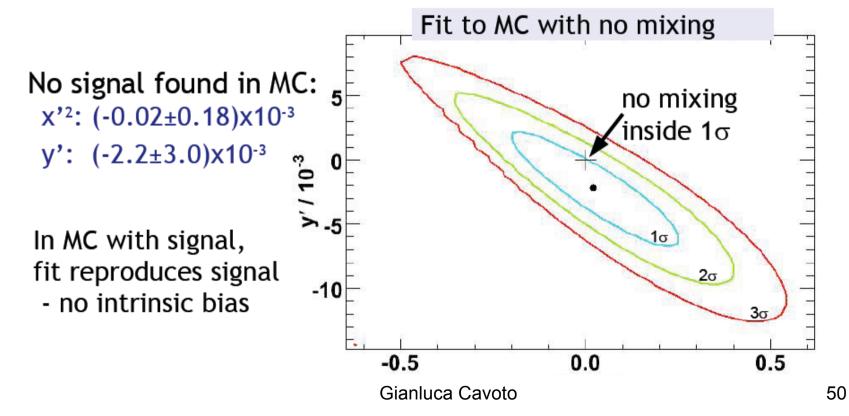

- Updated results with 281 pb⁻¹ at Winter Conferences
 - Expect $\sigma(y) \sim \pm 1.5\%$ and $\sigma(\cos \delta_{K\pi}) \sim \pm 0.3$
 - Including systematic uncertainties
- Full CLEO-c dataset ~750 pb⁻¹
 - Expect $\sigma(y)$ ~ ±1.0% and $\sigma(\cos \delta_{K\pi})$ ~ ±0.1-0.2

And CP violation?

In the standard model, $\phi \sim 2 A^2 \lambda^4 \eta \lesssim 10^{-3}$

Ciuchini et al. hep-ph/0703294

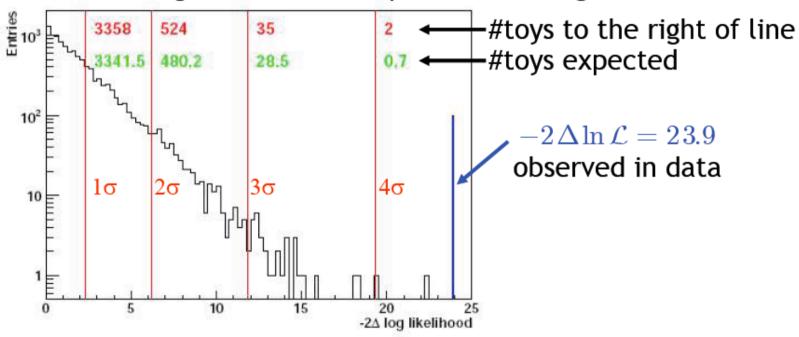
- In general NP weakly constrained if SM not known
- Nevertheless SUSY coupling can be constrained hints on squark and gluino masses!


Back up slides

Fit signal MC events

Performed extensive checks of mixing signal:

- Could something fake signal?
- Is significance estimated correctly?
- Are mixing parameters unbiased?



Coverage test

Significance of signal is calculated as change in log likelihood with respect to no-mixing hypothesis

Generated >10000 toys without mixing to test $-2\Delta \ln \mathcal{L}$ gives correct frequentist coverage

