Violazione diretta di CP e decadimenti rari del mesone B a BaBar BABAR

Gianluca Cavoto Univ.Roma La Sapienza INFN Roma

Seminario fisica dei campi e delle particelle Sezione INFN Roma 8 ottobre 2004 G.Cavoto

Flavour Physics

The CKM Unitarity Triangle

G.Cavoto

Outline

• Selection of charmless hadronic B decays

- First observation of direct CP violation in B physics
 - Charge asymmetry in $\mathbf{B} \rightarrow \mathbf{K}\pi$
- New non-leptonic B decays

• B \rightarrow K_SK_S, K_SK

Understand hadronic physics in weak decays

- Experimental measurement of CKM angle α
- Time-dependent CP asymmetries
 - $B \rightarrow \pi \pi$
 - B $\rightarrow \pi^+\pi^-\pi^0(\rho\pi)$ Dalitz
 - $B \rightarrow \rho \rho$

New powerful constraint on CKM UT (ρ,η)

Many results not covered here, you will hear about them in few weeks

Where we started from

hep-ph/0408079

www.utfit.org.

Inputs from kaon Physics, B physics, Lattice QCD,HQET

 $\overline{\eta} = 0.348 \pm 0.028$ $\overline{\rho} = 0.172 \pm 0.047$

 $\eta \neq 0 \rightarrow CP$ violation in B physics

The challenge is to constrain the triangle with "angle" measurements only

Direct CP violation
$$\left| \frac{A}{B^0} + f \right|^2 \neq \left| \frac{\overline{A}}{\overline{B}^0} + \overline{f} \right|^2$$

Direct CP violation has been observed in Kaon system

We had not yet observed direct *CP* violation in *B* meson system arising from <u>decay amplitude</u>

$$A_{CP} \equiv \frac{\left|\overline{A}_{\overline{f}}\right|^{2} - \left|A_{f}\right|^{2}}{\left|\overline{A}_{\overline{f}}\right|^{2} + \left|A_{f}\right|^{2}} \neq 0 \rightarrow \text{Direct } CPV \qquad \begin{array}{c} \text{It took more than 30 years to} \\ \text{establish DCPV in Kaon} \\ \text{system!} \quad PRL \text{ 83, 22 (1999)} \\ \text{Re}(\varepsilon'/\varepsilon) \sim 28 \times 10^{-4} \end{array}$$

Experimentally: look for <u>charge</u> asymmetries (in rare decays though...)

$$A_{CP} = \frac{Br(\overline{B} \to \overline{f}) - Br(B \to f)}{Br(\overline{B} \to \overline{f}) + Br(B \to f)}$$

BaBar at PEP-11

Rare decays, need a B-factory!

240			
220		PEP-II Records	
200 ~180	PEP-II Delivered 253.16/fb BABAR Recorded 243.70/fb	Peak luminosity	0.921x10 ³⁴ cm ⁻² s ⁻¹
¹ 160	BABAR off-peak 22.68/fb	Best shift (8 hours)	246.3 pb ⁻¹
souiun uun		Best day	710.5 pb ⁻¹
120 L 100 Tated		Best week	4.200 fb ⁻¹
Integ 08		Best 30 days	16.05 fb ⁻¹
60	Delivered Luminosity Recorded Luminosity Off Peak	BABAR logged	243.7 fb ⁻¹
40 20			
0	25232502553250025532500255325002553255		
	1999 2000 2001 2002 2003 2004	4	
0	G.Cav	oto	

2004/07/31 09.21

High reconstruction efficiency

 $\Delta E = E_B^* - E_{beam}^*$

Analysis techniques

. €100

5.22 5.24 5.26 5.28

0 10 20 30 40 50 60 70

 $E_{beam}^{*2} - p_B^{*2}$

 m_{ES} :

- No charge confusion.
- separation π/K at high momentum

 $e^+e^- \rightarrow q\overline{q}$ events topological variables in *Neural Network* or Fisher discriminant

Extracting rare decays

- Small BF (10⁻⁵ 10⁻⁶)
- Need high efficiency analysis
- Detailed parametrization of discriminant variables
 - Global maximum likelihood fit

Count how many K⁺ and how many K⁻...

224M BB pairs

First Observation of Direct CPV in B decay

$$n_{K\pi} = 1606 \pm 51$$

$$n\left(B^{0} \to K^{+}\pi^{-}\right) = 910$$

$$A_{K\pi} = -0.133 \pm 0.030 \pm 0.009$$

$$n\left(\overline{B}^{0} \to K^{-}\pi^{+}\right) = 696$$

$A_{K\pi}$: systematics and cross-checks

✓ CPV due to mixing ruled out

PRL 89, 281802 (2002)

 ✓ Asymmetries consistent in different Kaon momentum ranges
 ✓ Asymmetries consistent when including decay time information
 ✓ Asymmetries consistent in different running period
 ✓ Asymmetries consistent with SM predictions Systematics:

Source	Error
Signal fisher PDF	0.001
$\theta_{\rm c} {\rm PDF}$	0.001
Potential MC bias	0.003
Potential Charge bias	0.008
Total	0.009

Background charge asymmetry free in the fit:

$$A_{K\pi}^b = 0.001 \pm 0.008$$

Running period:

Sample	$N_{B\overline{B}}$	$n_{K\pi}$	$\mathcal{A}_{K\pi}$	$A^{\rm b}_{\rm K\pi}$
1999 - 2001	21.1	142 ± 15	-0.240 ± 0.102	0.006 ± 0.026
2002	66.4	479 ± 27	-0.102 ± 0.055	-0.008 ± 0.015
2003	34.1	241 ± 19	-0.109 ± 0.079	0.007 ± 0.021
2004	104.9	743 ± 33	-0.142 ± 0.044	$0.004 \neq 0.012$

Branching fraction measurements

224M BB pairs

Mode	branching ratio (10^{-6})
$B^+ ightarrow K^+ \pi^0$	$12.0\pm0.7\pm0.6$
$B^0 o K^0 \pi^0$	$11.4\pm0.9\pm0.6$
$B^+ ightarrow K^0 \pi^+$	$26.0 \pm 1.3 \pm 1.0$
$B^0 \to K^+ \pi^-$	$17.9\pm0.9\pm0.7$
Mode	asymmetry (%)
$B^+ \to K^+ \pi^0$	$6\pm 6\pm 1$
$B^+ \rightarrow K^0 \pi^+$	$-8.7 \pm 4.6 \pm 1.0$
2 11 1	

11

How can we translate all this into CKM phases? G.Cavoto

M.Pierini talk at ICHEP04

Hadronic interactions hassles

Charming and GIM penguins(c-u)

Connected Annihilation (a.k.a. W-exchange)

Perturbative calculation of hadronic contributions too naïve. Λ_{QCD} /mb Non-perturbative terms

A working phenomenological model

 $E_{1} \sim 1 \quad \begin{array}{l} E_{valuated with} \\ F_{actorization technique} \\ F_{1} \sim 1 \quad \begin{array}{l} E_{valuated with} \\ F_{actorization technique} \\ F_{1} \sim 1 \quad \begin{array}{l} E_{valuated with} \\ F_{actorization technique} \\ F_{1} \sim 1 \quad \begin{array}{l} F_{1} \sim 1 \quad \begin{array}{l} F_{1} \sim 1 \quad F_{2} \\ F_{1} \sim 1 \quad F_{1} \quad F_{2} \\ F_{1} \sim 1 \quad F_{2} \\ F_{1} \sim 1 \quad F_{1} \quad F_{1} \quad F_{1} \quad F_{1} \quad F_{2} \quad F_{1} \quad$

M.Pierini talk at

- **Parametrize** Λ_{QCD}/m_b terms
- Global fit to BF and ACP, statistical test for **consistency** of theory with experiment
- Two terms with different CKM elements: *interference!* sensitivity to γ G.Cavoto

$B \rightarrow KK system$

$$\begin{aligned} \text{Charming Penguin} &\sim \lambda^3 & V_{ud} V_{ub}^* \sim \lambda^3 \\ \mathcal{A}(B^0 \to \mathrm{K}^+ \mathrm{K}^-) &= & -V_{td} V_{tb}^* \times P_1(c) \\ \mathcal{A}(B^0 \to \overline{\mathrm{K}}^0 \mathrm{K}^0) &= & -V_{td} V_{tb}^* \times P_1(c) \\ -V_{td} V_{tb}^* \times P_1(c) &+ & V_{ud} V_{ub}^* \times \{A_1 - P_1 \mathrm{GIM}(u-c)\} \\ \mathcal{A}(B^0 \to \overline{\mathrm{K}}^0 \mathrm{K}^0) &= & -V_{td} V_{tb}^* \times P_1(c) \\ -V_{ud} V_{ub}^* \times \{P_1 \mathrm{GIM}(u-c)\} \end{aligned}$$

Different CKM matrix element as $K\pi$ Different amplitudes (different quark contents)

Pure penguin, sensitive to new physics effect !!!

Given the small yields, application for a super B-factory?

M.Pierini talk at ICHEP04

still within SM framework

Constraining the big picture

Input from HFAG averages Good agreement data/theory					ent data/theory	
	Channel	$BR^{\rm th} imes 10^6$	$BR^{\exp} \times 10^6$	$\mathcal{A}_{ ext{CP}}^{ ext{th}}$	$\mathcal{A}_{ ext{CP}}^{ ext{exp}}$	$\Lambda(\mathbf{K}^{+}\pi^{-})$ predicted!
	$K^+\pi^-$ $K^+\pi^0$	19.1 ± 0.7 12.5 ± 0.5	18.2 ± 0.8 12.0 ± 0.9	-0.07 ± 0.02 -0.07 ± 0.02	-0.11 ± 0.02 0.06 ± 0.04	$A(\mathbf{K}, \pi)$ predicted:
	$K^{0}\pi^{+}$ $K^{0}\pi^{0}$	$\begin{array}{c} 23.5 \pm 0.9 \\ 9.0 \pm 0.4 \end{array}$	$\begin{array}{c} 12.0 \pm 0.0 \\ 24.6 \pm 1.3 \\ 11.4 \pm 1.0 \end{array}$	$\begin{array}{c} 0.00 \pm 0.02 \\ 0.00 \pm 0.05 \\ -0.01 \pm 0.04 \end{array}$	$\begin{array}{c} -0.02 \pm 0.03 \\ 0.09 \pm 0.16 \end{array}$	Hints of discrepancy??
$A \text{ posteriori PDF}_{\text{Mean } 0.7468E-01}$ $O.4 \text{ Evidence of } \text{ non-perturbative } effects$ $O.2 \text{ effects} \text{ of } $			f bative		A posteriori PDF Mean 44.95 RMS 38.46 (ρ, η) UTfit free input value 50 γ 100 150	
$P_{I}(c)$ (normalized to E_{I})			Ch	armlass 2hody decays		
$P_{I}(c)$ (normalized to E_{I})			Che	armless 2body decays		

Decay-mixing interference

α from mixing-decay inteference

Current predictions

Time-dependent analysis

Asymmetric B-factory $\left< \beta \gamma \right>_{Y(4S)} = 0.55$ **Exclusive B meson** B_{ra}^{0} reconstruction rec flavour or CP eigenstate $\Upsilon(4S)$ e⁻ \overline{B}_{tag}^{0} $\Delta t \approx \frac{\Delta z}{2}$ Bγ Inclusive reconstruction Δt is a signed quantity **B**-flavour tagging $\sigma_{\rm At}$ ~1 ps \Leftrightarrow 170 μ m $\tau_{\rm B} \sim 1.6 \text{ ps} \Leftrightarrow 250 \ \mu \text{m}$ Tagging performance: Q = 30.5%

$B^0 \rightarrow \pi^+ \pi^-$ sample

$B^0 \rightarrow \pi^+ \pi^-$ time- dependent CP asymmetry

224 M BB pairs

$$S_{\pi\pi} = -0.30 \pm 0.17 \pm 0.03$$

 $C_{\pi\pi} = -0.09 \pm 0.15 \pm 0.04$

No evidence of CP violation

Belle versus BaBar

- Belle claims
 3.2σ observation
 of direct CP
 - Based on Feldman-Cousins analysis (ensemble of toyMC experiments)

Belle evidence for Direct CP violation not supported by BABAR measurements

Trapping the penguins

$$S^{+-} = \sin(2\alpha + \kappa^{+-})\sqrt{1 - C^{+-2}}$$

Need to measure $C_{\pi0\pi0}$ too! (and still do not solve ambiguities!)

Isospin analysis $\frac{1}{\sqrt{2}} A(B^0 \to \pi^+ \pi^-) + A(B^0 \to \pi^0 \pi^0) = A(B^+ \to \pi^+ \pi^0)$

Bound the penguins:

• Grossman-Quinn

$$\sin^2(\alpha_{eff} - \alpha) < \frac{BR(B^0 \to \pi^0 \pi^0)}{BR(B^+ \to \pi^+ \pi^0)}$$

But pure SU(2) could not be the end of the story...!

$B^{-} \rightarrow \pi^{-}\pi^{0}/ K^{-}\pi^{0}$

$$\mathcal{B}(B^+ \to \pi^+ \pi^0) = \frac{(5.8 \pm 0.6 \pm 0.4) \times 10^{-6}}{\mathcal{A}_{\pi^+ \pi^0}} = \frac{-0.01 \pm 0.10 \pm 0.02}{-0.01 \pm 0.10 \pm 0.02}$$

Fisher discriminant (topology + flavour tagging)

Our experimental knowledge from $\pi\pi$

Relatively large penguin $\rightarrow BF(\pi^0\pi^0)$ large \rightarrow loose (ρ,η) constraints...

A clean mode? : $\rho^+\rho^-$

What about a small $BF(B^0 \rightarrow \rho^0 \rho^0)$?

28

A tough job

Possible dilutions effect, careful studies reveals few percents effect (accounted for)

- Sensitivity to other wave?
 - Systematic error interference of signal with $a_1\pi$, $\rho\pi\pi$, $\pi\pi\pi\pi$:0.02 for both S and C

$B \rightarrow \rho^+ \rho^-$ time-dependent asymmetry

Bounding α

BaBar $\rho^+\rho^-$

121M BB pairs

α = 97±14 (selecting one solution) Neglect I=1 component of amplitude

Validity of isospin analysis approach under scrutiny though...

Internal crosscheck of SU(2) assumption in UT fit

Constraints from $\pi\pi$ and $\rho\rho$

But there is more...

$B^0 \rightarrow \pi^+ \pi^- \pi^0$ with Dalitz analysis

- Idea: Extract α and strong phases using interference between amplitudes. Dalitz variables: $s_+ = (p_+ + p_0)^2$, $s_- = (p_- + p_0)^2$,

Form factors + *Rel. Breit-Wigner*

$$\mathcal{A}_{3\pi} = (f_+A^+ + f_-A^- + f_0A^0)$$

$$\overline{\mathcal{A}}_{3\pi} = f_+\overline{A^+} + f_-\overline{A^-} + f_0\overline{A^0}$$

Time dependance:

Contain CP violating phase

$$\begin{aligned} |\mathcal{A}_{3\pi}^{\pm}(\Delta t)|^2 &= \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \bigg[|\mathcal{A}_{3\pi}|^2 + |\overline{\mathcal{A}}_{3\pi}|^2 \mp \bigg(|\mathcal{A}_{3\pi}|^2 - |\overline{\mathcal{A}}_{3\pi}|^2 \bigg) \cos(\Delta m_d \Delta t) \\ & \pm 2 \mathrm{Im} \left[\overline{\mathcal{A}}_{3\pi} \mathcal{A}_{3\pi}^* \right] \sin(\Delta m_d \Delta t) \bigg] \,, \end{aligned}$$

Coefficients are function of α (26 parameters)

No quasi-2 body approximation, interference effects in! \mathbf{U}

$\pi^+\pi^-\pi^0$ Dalitz distribution

- **Isobar** model dominated by vectors [$\rho(770)$, $\rho(1450)$, $\rho(1700)$]
 - Scalar contribution assumed to be negligible
- **Small** $\rho^0 \pi^0$ signal, 26 \rightarrow 16 parameters
- Reparametrize Dalitz distribution (better handling of background)

Time dependent fit results

213M BB pairs

Constraint on strong phase difference Between $B^0 \rightarrow \rho^+ \pi^-$ and $B^0 \rightarrow \rho^- \pi^+$

$$\delta_{+-} = \arg\left(A^{+*}A^{-}\right)$$

Direct CP asymmetry

 $C(\rho^+\pi^-)$ and $C(\rho^-\pi^+)$ (including interference effect)

α from $\pi^+\pi^-\pi^0$

Assuming SU(2)

213M BB pairs

Conclusions

- In 224M BB pairs BaBar has observed direct CP violation in $B^0 \rightarrow K^+\pi^ A_{K\pi} = -0.133 \pm 0.030 \pm 0.009$
 - Indications for direct CP in $\pi\pi$
- Non-leptonic charmless 2-body B-decays
 - Well explained by phenomenolgical models within SM
 - New state observed (K^0K^0), good for future?
- α extraction was never straightforward.
 - Need full isospin analysis for $\pi\pi$ (first measurement of $C\pi^0\pi^0$) in $\rho\rho$ smaller penguins
 - First time-dependent Dalitz analysis in $(\rho \pi) \pi^+ \pi^- \pi^0$

BaBar: α known to 10°

No big surprise, SM seems rock solid! G.Cavoto

Many more...!!!

CP Asymmetry in Charmless B Decays

New physics could hide in some of them!!!

PEPII Luminosity Projections

Outlook

- Next future will see experiments at hadron colliders take over B-physics (larger cross sections, B_s physics)
- Nevertheless e⁺e⁻ environment is unique
 - Final states with many neutrals, high flavour tagging efficiency, ultra-pure samples (recoil), coherent state
- Measurement of α at 1° possible only at e⁺e⁻
- And many other accurate B_d physics measurements to spot New Physics

A super B-factory?

10 ab⁻¹/year Detector and machine challenging...

LHC measures NP masses, super B-factory couplings and phases?

Angles only, as promised

 (ρ,η) plane from measurements of $\sin(2\beta)$, $\sin(2\alpha)$, and γ only as of today

Many thanks to M.Bona and M.Pierini for UT fit support

Backup slides

$B^0 \rightarrow \rho^+ \pi^-$ quasi-twobody

$$f_{B^0}^{\rho^{\pm}h^{\mp}}(\Delta t) = (1 \pm A_{CP}(\rho h))e^{-|\Delta t|/\tau}(1 + \left[(S_{\rho h} \pm \Delta S_{\rho h})\sin(\Delta m \Delta t) - (C_{\rho h} \pm \Delta C_{\rho h})\cos(\Delta m \Delta t)\right]$$
$$f_{\overline{B}^0}^{\rho^{\pm}h^{\mp}}(\Delta t) = (1 \pm A_{CP}(\rho h))e^{-|\Delta t|/\tau}(1 - \left[(S_{\rho h} \pm \Delta S_{\rho h})\sin(\Delta m \Delta t) - (C_{\rho h} \pm \Delta C_{\rho h})\cos(\Delta m \Delta t)\right]$$

46 More promising: perform full Dalitz plot analysis;

$\rho\pi$ Dalitz analysis parameters

Parameter	Coefficient of	Fit Result
I_	$ f_{-} ^{2}\sin(\Delta m_{d}\Delta t)$	$-0.19 \pm 0.11 \pm 0.02$
I_+	$ f_+ ^2 \sin(\Delta m_d \Delta t)$	$0.06 \pm 0.11 \pm 0.02$
U_{0}^{+}	$ f_0 ^2$	$0.16 \pm 0.05 \pm 0.05$
U_{-}^{-}	$ f_{-} ^{2}\cos(\Delta m_{d}\Delta t)$	$0.22 \pm 0.16 \pm 0.05$
U^+	$ f_{-} ^{2}$	$1.19 \pm 0.12 \pm 0.03$
U_{\pm}^{-}	$ f_+ ^2 \cos(\Delta m_d \Delta t)$	$0.50 \pm 0.17 \pm 0.06$
$U_{+-}^{-,\Im m}$	$\Im m[f_+f^*]\cos(\Delta m_d\Delta t)$	$0.3 \pm 1.4 \pm 0.3$
$U_{\pm}^{-,\Re e}$	$\Re e[f_+f^*]\cos(\Delta m_d\Delta t)$	$2.0 \pm 1.2 \pm 0.2$
$U_{+}^{+,\Im m}$	$\Im m[f_+f^*]$	$0.16 \pm 0.70 \pm 0.14$
$U_{+,\Re e}^{+,\Re e}$	$\Re e[f_+f^*]$	$-0.26 \pm 0.65 \pm 0.17$
$I_{\pm -}^{\Im m}$	$\Im m[f_+f^*]\sin(\Delta m_d\Delta t)$	$-5.2 \pm 1.9 \pm 0.7$
$I_{+-}^{\Re e}$	$\Re e[f_+f^*]\sin(\Delta m_d\Delta t)$	$-0.3 \pm 2.0 \pm 0.5$
$U_{+0}^{+,\Im m}$	$\Im m[f_+f_0^*]$	$0.25 \pm 0.35 \pm 0.18$
$U_{\pm 0}^{\pm,\Re e}$	$\Re e[f_+f_0^*]$	$-0.34 \pm 0.39 \pm 0.15$
$U_{-0}^{+,\Im m}$	$\Im m[ff_0^*]$	$0.34 \pm 0.43 \pm 0.17$
$U^{+, \Re e}_{-0}$	$\Re e[ff_0^*]$	$-0.98 \pm 0.44 \pm 0.18$

 U^+_κ : branching fraction and charge asymmetry

 U_{κ}^{-} : dilution and time-dependent *CP* asymmetry

 I_{κ} : mixing-induced asymmetry (strong phase shifts)

 $U^{\pm}_{\kappa\kappa'}$ and $I_{\kappa\kappa'}$: interference in Dalitz plot

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.