Processi FCNC nei decadimenti del B a BaBar

Emanuele Di Marco Roma, 12 Novembre 2004

Transizioni b→s

- Le asimmetrie di CP dipendenti dal tempo
 - $B \rightarrow \phi K^{0}, B \rightarrow K^{+}K^{-}K_{s}$
 - Nuovi decadimenti b \rightarrow s: B \rightarrow f₀(980)K_s, B \rightarrow η'K_s, B⁰ \rightarrow K_sπ⁰, B⁰ \rightarrow K^{*}γ, B⁰ \rightarrow K_sK_sK_s
 - Confronto con sin2 β di b \rightarrow c
- Asimmetrie dirette di CP in b \rightarrow s:
 - $B \rightarrow \phi K^{*}, B \rightarrow \phi K^{*0}(892)$
- Analisi angolare, osservazione di FSI:
 - B→φK^{*0}(892)

p. 2

Il triangolo unitario

- V_{CKM} unitaria complessa \Rightarrow 3 angoli e 1 fase
- Tutta la \mathcal{P} in SM determinata da $\delta_{\rm CKM}$

 $V_{CKM} = \begin{pmatrix} Vud & Vus & Vub \\ Vcd & Vcs & Vcb \\ Vtd & Vts & Vtb \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$ parametrizzazione di Wolfenstein fino all'ordine λ^3

p. 3

E. Di Marco Roma, 12 Nov. 2004

UT oggi http://www.utfit.org

• Vincoli da fisica del B e del K, reticolo.

0,4

$A_{CD}(t)$: CP "time dependent"

Asimmetria di CP:

p, 5

Misura di $A_{CD}(t)$

 \mathcal{CP} : $B \rightarrow J/\psi K_a$

- Mixing $\overline{B}_d B_d$: fase $\Phi_m = 2\beta$
- Assenza di FCNC nello SM:
 - assenza di transizione albero

decadimento attraverso il loop

 \Rightarrow una sola ampiezza

 $a_{CP}(t) = C \cos(\Delta m_{d}t) + S \sin(\Delta m_{d}t)$

• Il loop e' sensibile alle masse di eventuali nuove particelle pesanti

p. 8

- BF e soprattutto A_{CP} sensibili a Nuova Fisica
- Ma le incertezze adroniche nello SM non sono completamente sotto controllo...

Nuova Fisica in $b \rightarrow s$?

- SUSY introduce accoppiamenti quark-squark
- M_{squark} in generale:

p**.** 9

- non diagonale \Rightarrow inserzioni di massa $((\Delta_{23}^{d})_{AB})$: $\widetilde{b}_{A} - - - - - \times (\Delta_{23}^{d})_{AB} - - - \widetilde{s}_{B}$

- complessa ⇒ nuove fasi (sorgenti di CP)

- I contibuti di Nuova Fisica sono:
 - soppressi per le alte masse delle particelle nel loop ($\propto 1/M^2)$
 - favoriti rispetto allo SM per l'accoppiamento (di $\sim \alpha_c / \alpha_w$)

Il contributo delle B-factory

+

286 fb⁻¹

 $= 0.530 \text{ ab}^{-1} !$

Luminosita' integrata: 244 fb⁻¹

0, 10

L'universo $b \rightarrow s$

I fondi principali

- e⁺e⁻ è un ambiente pulito, tuttavia:
 - $\sigma(e^+e^- \rightarrow bb) \simeq 1.05 \text{ nb}$
 - $-\sigma(e^+e^- \rightarrow uu + dd + ss + cc) \simeq 3.40 \text{ nb}$
 - Si sfrutta la differente forma degli eventi (sfericita', analisi multivariate...)²
- Fondi da decadimenti simili di BB:
 - selezione cinematica e angolare
 - fondi irriducibili:
 - stima da misure dirette
 - sottrazione
 - inclusione nell'errore sistematico

$B \rightarrow \phi K_{s}$: il "golden mode"

- ϕ =(ss) \Rightarrow puro Pinguino
- $\phi \rightarrow K^+K^-$ e $K_s \rightarrow \pi^+\pi^-$ il canale con purezza maggiore (ma anche altri modi ricostruiti)
- Particle Identification (PID):

- separazione K - π (riv. Čerenkov), p(K) \approx 1-2GeV/c

- Fondo $\overline{B}B$: f_0K_s , ϕK^{*0} , ϕK^{*+}
 - $f_0 K_s (B \rightarrow SS, CP \text{ opposta})$: diversa distribuzione angolare

0, 13

 $-\phi K^*$, $K^* \rightarrow (K_{\varsigma}\pi)$: sel. su $E(\pi)$ persa

 $B \rightarrow \phi K_{S}$: risultati 227×10° coppie

Variabili cinematiche:

Discriminante di Fisher ${\mathscr F}$

$N(\phi K_s) = 114 \pm 12$ C=-0.07±0.27 S=0.29±0.31

- Stesso processo, ma CP opposta a ϕK_s
- K₁ riconosciuto dalle interazioni adroniche:
 - nei cristalli del calorimetro em
 - nel Fe del rivelatore di μ
- p(K_L) non misurato, constraint sulla massa del
 B per chiudere la cinematica
- Fondo da γ :
 - Rete Neurale basata sulla forma dello sciame em vs. adr
- Fondo da μ :

 ϕK : risultati 227×10⁶ coppie B–

• $\mathscr{L}(\Delta E, \mathcal{F}, |\cos\theta_{\mu}|, \Delta \dagger, \sigma(\Delta \dagger))$ per 3 componenti

Combinatione $\phi K_{c} + \phi K_{n}$

- BaBar:
 - su n(coppie BB)=227 · 10⁶
 - $5 = (0.50 \pm 0.25(stat)^{+0.08}(sist))_{-0.05}$
 - $C = 0.00 \pm 0.23(stat) \pm 0.09(sist)$
- Belle:

p, 17

nello SM S(ϕK_{β})=sin(2 β)

- su n(coppie BB)=274 · 10°
- 5 = €0.06€0.33(stat)±0.09(sist)
- C = -0.08±0.22(stat)±0.09(sist)

RELLA

 $B \rightarrow \phi K$: SUSY (I)

Ciuchini et al., hep-ph/0212397

- Gli elementi off-diagonal $(\Delta_{23}^{d})_{AB}$ considerati come interazione
- Gli accoppiamenti degli squark possono essere AB=LL,RL,LR,RR
- Applicando i vincoli sperimentali da:
 - Br(B→ $X_{c}y$)=(3.29±0.34)×10⁻⁴
 - $-A_{CP}(B \rightarrow X_{SY}) = -0.02 \pm 0.04$

- BR(B→
$$X_{c}I^{+}I^{-}$$
)=(6.1±1.4±1.3)×10⁻⁶

 $-\Delta M_{s}$ >14.4ps⁻¹

0, 18

$B \rightarrow \phi K: SUSY (II)$

$B \rightarrow K^+ K^- K_{\varsigma}$

- Pinguino(ss) + $\lambda^4 \times albero$
- BR(K⁺K⁻K_s)=(23.8±2.0±1.6)10⁻⁶ \Rightarrow ~3 BF(ϕ K_s)

- analisi di isospin
- analisi angolare
- Validazione di ϕK_s

p. 20

$B \rightarrow K^{+}K^{-}K_{s}$: contenuto di CP

– Ampiezza espansa in termini dei polinomi di Legendre: $|\mathcal{A}|^2 = \sum_{I} \langle P_l \rangle \cdot P_l(\cos \theta_H)$

- La dinamica è sconosciuta, momenti estratti dagli eventi: $\langle P_l \rangle \approx \sum_j P_l(\cos \theta_{H,j}) \mathcal{W}_j / \varepsilon_j$

0, 21

prob(j=segnale),

estratta con la sottrazione del fondo mediante _sPlot [Le Diberder, hep-ph/0402083]

 $B \rightarrow K^{+}K^{-}K_{c}$: momenti

Eventi totali $\langle P_0 \rangle = \frac{A_s^2 + A_p^2}{\sqrt{2}}$

Onda P $\langle P_2 \rangle = \sqrt{\frac{2}{5}} A_p^2$

$B \rightarrow K^{+}K^{-}K_{s}$: momenti superiori

p. 23

$B \rightarrow K^+ K^- K_s$: asimmetria 227×10° coppie

- Contributo ad albero doppio CKM soppresso \bar{B}^{0} e color soppresso
- Dominato dal Pinguino b→sdd

misura sin 2β , ma con incertezze adroniche:

Ο(λ² / λ̄) ~20%

Scommessa sperimentale: vertice senza primari carichi

p. 26

vertice Beam *Spot Constrained:* il K_s e' riportato al Beam Spot lungo l'asse z

- Vertice con il $K_{\varsigma} \rightarrow \pi^{+}\pi^{-}$
- Il K_s ha una lifetime non trascurabile

E. Di Marco Roma, 12 Nov. 2004

Validazione su $J/\psi K_s$: rimosse le informazioni su $\mu^+\mu^-$

	nominal	mangled
C	-0.009 ± 0.053	-0.024 ± 0.056
S	0.714 ± 0.075	0.702 ± 0.089

 $B^{\cup} \rightarrow K_{c}\pi^{\cup}$: C^{O}

227×10⁶ coppie

- Per la misura di Δ t richiesti 4 SVT hits (ϵ ~60%)
- Gli altri eventi usati per CPV diretta

Quanto bene conosciamo lo SM?

Il "bronze mode": $B \rightarrow f_{0}(980)K_{c}$

• Contenuto di quark del mesone f₍₉₈₀₎:

 $f_0 = \cos(\phi_s) \overline{ss} + \sin(\phi_s) \overline{nn}$, $nn = (\overline{uu} + \overline{dd})/\sqrt{2}$

- $\phi \rightarrow f_0 \gamma \ (f^0 \rightarrow \gamma \gamma) \longrightarrow \phi_s = -48^\circ \pm 6^\circ$ [Anisovich et al. hep-ph/0011191] • L'albero:
 - doppio Cabibbo soppresso $(|V_{\mu}|^2)$
 - color soppresso
 - •Stima del BF in fattorizzazione QCD da $f_{\mbox{\tiny O}}K^{\mbox{\tiny +}}$
 - Senza componente nn

0.29

In f⁰K⁺ c'e' anche l'annichilazione

misura sin2 β , ma con incertezze adroniche ~ 10%

 $I = BF(f^{0}K^{0}) \approx 6 \times 10^{-6}$

 $B \rightarrow f_0(980)K_s: BF&CP$

- Approccio Q2B per $f_0 \rightarrow \pi^+ \pi^-$: 0.86<m($\pi^+\pi^-$)<1.10 GeV/c²
- Stima della diluizione di CP dovuta all'interferenza con altri modi del Dalitz plot: $B^0 \rightarrow \pi^+ \pi^- K_s$

∆t(ps)

209×10⁶ coppie

Eventi: N(f₀K_c)=152±19

B⁰ Tags

B Tags

BABAR

0,30

-2

 $\begin{array}{c} \textbf{C=-0.24\pm0.31\pm0.15}\\ \textbf{S=-0.95}^{+0.32}_{-0.23}\pm\textbf{0.10} \end{array}$

 $sin(2\beta [\ cc])=0.726\pm 0.037@0.6\sigma$

NB: Incompatibilita' a piu' di 2σ con il risultato di Belle: C=+0.39±0.27±0.08 S=+0.47±0.41±0.08

Il "wooden mode": $B \rightarrow \eta' K_{S}^{227 \times 10^{6} \text{ coppie}}$ • Incertezza sulla composizione di $\eta' (\eta_{1}, \eta_{8})$ • albero soppresso \longrightarrow misura sin 2β , ma con incertezze adroniche di $\sim 10\%$ • Molti stati finali: $\eta' \rightarrow \eta \pi^{+} \pi^{-}, \rho \gamma$

 $\eta \rightarrow \gamma \gamma, \pi^+ \pi^- \pi^0$

 $K_{c} \rightarrow \pi^{+}\pi^{-}, \pi^{0}\pi^{0}$

Molti stati finali:

 $N(\eta'K_s)=819\pm38$

 $C = -0.21 \pm 0.10 \pm 0.03$

 $S = +0.27 \pm 0.14 \pm 0.03$

Grande statistica: BF($\eta' K_{c}$)=(60.6±5.6±4.6)×10⁻⁶

- Il minore errore statistico nei pinguini
- $sin(2\beta [\ cc])=0.726\pm0.037@3.0\sigma$

p.31

227×10⁶ coppie

 Tecnica del Vertice Beam Spot Constrained $- N(K_{S}K_{S}K_{S})=71\pm9(stat)$ superiore di 2σ rispetto $\mathsf{BF}(\mathsf{B}^+\to\mathsf{K}^+\mathsf{K}^-\mathsf{K}^+):$ - $BF(B^0 \rightarrow K_c K_c K_c) = (6.5 \pm 0.8 \pm 0.8) 10^{-6}$ stati intermedi risonanti?

- Belle $(275 \times 10^{-6} \text{ coppie})$:
 - $S = -1.26 \pm 0.68 \pm 0.18$
 - $-C=0.54\pm0.34\pm0.08$

p. 32

 $sin(2\beta [cc])=0.726\pm0.037@2.8\sigma$

E. Di Marco Roma, 12 Nov. 2004

0.2

∆E (GeV)

0.3

Pinguini Radiativi: $B \rightarrow K^*(K^* \rightarrow K_{\varsigma}\pi^0)\gamma$

• Transizione elementare $b \rightarrow s\gamma$

 $K^* \gamma_R$

 $\overleftarrow{K}^* \gamma_I$

B₀

 $\overline{\mathbf{B}}^{0}$

p.33

- Stato finale $K_s \pi^0 \gamma$ accessibile sia a B⁰ che a \overline{B}^0

- Nel limite di quark s a massa nulla, i fotoni sono completamente polarizzati con elicita' opposte per B^0 e $\overline{B}{}^0$

• Nello SM: $S_{K*y} \approx (2m_s/m_b) \sin 2\beta \approx 0.05$ e $|C_{K*y}| < 1\%$

$$B \rightarrow K^*(K^* \rightarrow K_s \pi^0) \gamma$$
: risultati (124×10⁶ coppie)

- Selezione del fotoni:
 - cluster energetici isolati nel calorimetro
- forma dello sciame **g** 10 RARAR - sig+bkg B⁰ Events /1 preliminary ···· bka - veto su π^0 e η Tecnica del vertice B⁰ Events /1 ps Beam Spot Constrained S=0.25 ±0.63±0.14 $C = -0.57 \pm 0.32 \pm 0.09$ 0 • In SM $C_{K*_{\gamma}} = -A_{K*_{\gamma}}(K^* \rightarrow K^* \pi^-) \approx 0 \Rightarrow \text{fissato } C=0$: ∆t (ps) Prima misura "time dependent" - S=0.25±0.65±0.14 di b \rightarrow s γ p. 34 E. Di Marco Roma, 12 Nov. 2004

BaBar vs. Belle

- $S_{_{\phi \mathrm{K}}}$ consistenti tra loro e con SM
- $S_{\rm f^{0}K}$ inconsistenti a piu' di 2σ
- $\sigma(K_{s}\pi^{0})_{BaBar} \ll \sigma(K_{s}\pi^{0})_{Belle}$

p. 35

 $S_{\text{charmonio}} = 0.726 \pm 0.037$

Media delle B-factory

0,36

Ma non solo "Time Dependent"...

nella ricerca di fisica oltre SM

$B^+ \rightarrow \phi K^+$: CP diretta

• Nei decadimenti del B⁺ si misura A_{CD} diretta:

$$A_{CP} = \frac{Br(\bar{B} \to \bar{f}) - Br(B \to f)}{Br(\bar{B} \to \bar{f}) + Br(B \to f)} \neq 0 \Rightarrow CPV \text{ diretta}$$

 $\left| \frac{A}{B^0} \int_{B^0} f \right|^2 \neq \left| \frac{\overline{A}}{\overline{R}^0} \int_{B^0} f \right|^2$ In pratica si misura l'asimmetria integrata di carica:

$$A_{CD} = 1-2f^{+}, f^{+}=N^{+}/(N^{+}+N^{-})$$

0,38

• Decadimento $B \rightarrow VV$:

- il contenuto di CP dipende dallo stato angolare

L'ampiezza trasversa e' una combinazione CP+ e CP-:

• A_0 : longitudinale (CP=+1)

• A₁: trasversa (CP=-1)

0.39

$$\Sigma_{\lambda\lambda} = (|A_{\lambda}|^2 - |\overline{A}_{\lambda}|^2)/2$$

$$\Lambda_{\perp i} = -\mathrm{Im}(A_{\perp}A_i^* - \overline{A}_{\perp}\overline{A}_i^*)$$

$$\Sigma_{//0} = \mathrm{Re}(A_{//}A_0^* - \overline{A}_{//}\overline{A}_0^*)$$

$$\Gamma riplo-pro$$

(viol. di 7)

B⁰ *(). sample ØK

p, 40

Osservazione di $B^0 \rightarrow \phi K^{*0}(1430)$

Osservazione di 181 \pm 17 eventi (19 σ)

$$B^0 \rightarrow \phi K^{*0}$$
: polarizzazione

• Si misurano:

0, 42

$$f_L^{\pm} = |A_0^{\pm}|^2 \qquad f_{\perp}^{\pm} = |A_{\perp}^{\pm}|^2$$
$$\phi_{\parallel}^{\pm} = \arg(A_{\parallel}^{\pm}) \qquad \phi_{\perp}^{\pm} = \arg(A_{\perp}^{\pm})$$

- e da queste si costruiscono le asimmetrie
- In fattorizzazione naïve: $f_L \sim 1 \frac{m_V^2}{m_B^2} \sim 0.96$
 - nei canali dominati da albero ($\rho^+\rho^-$, $\rho^+\rho^0$): f_L≈1
 - Fit: $f_L = 0.52 \pm 0.05 \pm 0.02$ $f_{\perp} = 0.22 \pm 0.05 \pm 0.02$

E. Di Marco Roma, 12 Nov. 2004

227×10⁶ coppie

Il "polarization puzzle"

• $f_{(pinguino)} \approx 0.5$ vs. $f_{(albero)} \approx 1 \Rightarrow NP?$

0, 43

PeZ

$\rightarrow \phi K^{*0}$: BaBar vs. Belle

Conclusioni

- Molti decadimenti a pinguino studiati oltre $B{\rightarrow}\phi\,K$
- I risultati delle B-factory BaBar e Belle sono in accordo tra loro
- Gli esperimenti mostrano una discrepanza nei canali b→s qq di ~2.7 σ [BaBar] e ~2.4 σ [Belle] dal charmonio b→ ccs
- Con l'aumento della luminosita' ci si aspetta $\sigma(\sin 2\beta_{eff}(\phi K)) < 0.1 \Rightarrow test fondamentale della$ descrizione CKM della fisica del flavour.

p, 46

L'aumento della statistica delle B-factory nei prossimi anni potrebbe condurre ad un'iniziale evidenza di nuova fisica oltre lo SM:

L'errore proiettato e' solo statistico, ma in tutti i canali l'errore sistematico e' ~1%

0, 47