Ricerca di fisica oltre il Modello Standard alle B-Factory

Emanuele Di Marco Universita' di Roma "La Sapienza" & INFN Roma

Roma, 19 Maggio 2006

Ricerca indiretta di nuova fisica

Il Modello Standard e' una teoria effettiva valida fino alla scala Λ.
 Fisica del flavour: Λ ~ 100-1000 TeV

Particelle non previste dal Modello Standard potrebbero essere
 prodotte ai collider adronici come LHC
 Ricerca "diretta" di nuova fisica ad alte energie

Le B-Factory BABAR & Belle: collider e⁺e⁻ ad energia fissata
 Test della struttura del flavour: scale di energia caratteristiche del flavour accessibili nei loop
 Particelle di nuova fisica virtuali nei loop
 Gli accoppiamenti delle nuove particelle possono produrre ulteriori violazoni di CP
 B B<

Le strade per la nuova fisica

Transizioni $b \rightarrow s$:

b→s gluone: asimmetrie di CP(t): ricerca di accoppiamenti complessi (nuove fasi) per nuove particelle nei loop
b→sγ: variazione del BR per i contributi di nuova fisica, nuove fasi nell'asimmetria diretta di CP
Vincoli in MSSM per gli accoppiamenti

Decadimenti rari del B:

B→l⁺l⁻: Particelle virtuali nei diagrammi a box
B→Tv: Consistenza con le misure indirette del BR, vincoli a modelli con due Higgs

Decadimenti del τ :

- LFV: decadimenti con violazione del numero leptonico
- GUT: se la simmetria di flavour e' rotta a scale > $M_{_{GUT}}$,

 $\Leftrightarrow \mathrm{FV}_{\mathrm{leptoni}} : \mathrm{relazione} \, \mathrm{B} \, \Leftrightarrow \, \tau$

Emanuele Di Marco

TT

Ricerca indiretta di Nuova Fisica nelle transizioni b"→s gluone

Il meccanismo CKM

Mixing dei quark: autostati deboli ≠ autostati di massa

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{ud} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$
(Autostati deboli)
(CKM)
$$\begin{pmatrix} Autostati di massa \end{pmatrix}$$

 \mathcal{GP} generata da un' unica fase δ nell'accoppiamento W^{+} -quark

Parametrizzazione di Wolfenstein:

$$V_{ub} = A \lambda^3 (\rho - i\eta) \quad V_{td} = A \lambda^3 (1 - \overline{\rho} - i\overline{\eta})$$

$$\overline{\rho} = \rho \left(1 - \frac{\lambda^2}{2} \right) \qquad \overline{\eta} = \eta \left(1 - \frac{\lambda^2}{2} \right)$$

4 parametri descrivono il flavour: $A, \lambda, \overline{\rho}, \overline{\eta}$

Emanuele Di Marco

Il triangolo unitario

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Angoli: CP nei decadimenti del B **Lati:** rate di decadimento per b \rightarrow ulv e mescolamento B^oB^o

Violazione di CP nei B

 \mathcal{OP} nell'interferenza tra mescolamento e decadimento: $\mathcal{OP}(t)$

Emanuele Di Marco

ÇÝ con una sola ampiezza CKM

Misura della fase CKM molto pulita nel caso di una sola ampiezza $(A_T \circ A_p)$:

$$\frac{\overline{A}_{f}(\overline{B}^{0} \rightarrow f)}{A_{f}(B^{0} \rightarrow f)} = -\eta_{f} \left[\frac{A_{T}e^{i(\delta_{T} - \phi_{T})} + A_{P}e^{i(\delta_{P} - \phi_{P})}}{A_{T}e^{i(\delta_{T} + \phi_{T})} + A_{P}e^{i(\delta_{P} + \phi_{P})}} \right]$$

 A_{T}, A_{P} =elementi di matrice δ_{T}, δ_{P} = fasi forti ϕ_{T}, ϕ_{P} =fasi deboli (CKM)

(Contributo "Tree") (Contributo "Pinguino")

$$\frac{\overline{A}_{f}(\overline{B}^{0} \to f)}{A_{f}(B^{0} \to f)} = -\eta_{f} e^{-i2\phi_{T}}$$

$$B_{d}^{b} \longrightarrow \int \int \psi K^{0}$$

$$B_{d}^{0} \to J/\psi K^{0}$$
Pura fase, perche'
$$\varphi_{T} = \varphi_{P}$$

$$\frac{\overline{A}_{f}(\overline{B}^{0} \to f)}{A_{f}(B^{0} \to f)} = -\eta_{f} e^{-i2\phi_{p}}$$

$$\overset{\bullet}{\longrightarrow} B_{d}^{0} \to \phi K^{0}$$

$$\overset{\bullet}{\longrightarrow} K_{s} \qquad B_{d}^{0} \to \phi K^{0}$$
Pura fase, perche'
$$A_{T}=0$$

Emanuele Di Marco

CP(t) in una B-Factory

Il boost di Lorentz permette la misura di Δz

$$\Delta t \approx \frac{\Delta z}{\langle \beta \gamma \rangle c} \qquad \langle |\Delta z| \rangle \sim 200 \,\mu m$$

Emanuele Di Marco

BABAR & Belle

Emanuele Di Marco

CP(t) in $\mathbf{B} \rightarrow \mathbf{c} \mathbf{c} \mathbf{K}^{0}$

Emanuele Di Marco

$\mathcal{O}(t)$ nel settore b \rightarrow s

Meccanismo GIM: soppressione delle FCNC nello SM

$$\left\{ \underbrace{\gamma, G, Z^0, H^0}_{j} \leftarrow i_{j} = 0 \right\} \longrightarrow A_{T} = 0, A = A_{P}$$

La transizione procede attraverso un'ampiezza a pinguino (loop)
 Nuova Fisica puo' comparire al LO

Nuove sorgenti di CP:

- In $b \rightarrow d$ fortemente limitate dalle misure
- In b→s meno vincolate: accoppiamenti complessi delle nuove particelle circolanti nei loop

$b \rightarrow s$ oltre lo SM (MSSM)

Es: Minimal Supersymmetric SM

Formalismo delle **inserzioni di massa**:

- struttura del flavour dei quark invariata (base super-CKM)
- Matrice di massa degli s-quark non diagonale

$$(\delta^q_{ij})_{AB} \equiv \frac{\left(M^2_{ij}\right)^q_{AB}}{\tilde{m}^2}$$

Tutti gli effetti Flavour-Changing nei propagatori degli squark

$$(\boldsymbol{\delta}_{ij}^{q})_{AB} = - (\boldsymbol{\tilde{q}}_{j})_{B}$$

$\mathcal{C}\mathcal{P}(t)$ in $\mathbf{B}^{0} \rightarrow (\mathbf{K}^{+}\mathbf{K}^{-})_{\oplus}\mathbf{K}^{0}$

$$A(B_{d}^{0} \rightarrow \phi K_{s}^{0}) = V_{cs} V_{cb}^{*}(P_{c} - P_{t}) + V_{us} V_{ub}^{*}(P_{u} - P_{t})$$

$$\left|\frac{V_{us} V_{ub}^{*}}{V_{cs} V_{cb^{*}}}\right| \leq 0.02 \quad \frac{P_{u} - P_{t}}{P_{c} - P_{t}} = O(1)$$

- Approccio sperimentale simile a $J/\Psi K^0$
- Decadimento raro (BR~10⁻⁵)
 Definato tecnicho di composi
 - Raffinate tecniche di soppressione dei fondi qq
- → Approssimazione "Quasi-2-body" per $\Phi \rightarrow K^{+}K^{-}_{\text{(onda-P)}}$
 - Sistematica per il contributo di onda-S

	BABAR (209M)	<i>Belle</i> (386M)
S	0.50∓0.25 ^{+0.07} -0.04	0.44∓0.27∓0.05
\mathbf{c}	0 00±0 23±0 05	-0 14 ±0 17 ±0 07

Il migliore approccio e' la determinazione dei contributi onda-P/S contemporaneamente a CP(t): tecnica di Dalitz

Contenuto di CP in B^0 \rightarrow K^+K^-K^0

Emanuele Di Marco

CP(t) in $\mathbf{B}^{0} \rightarrow \mathbf{K}^{+}\mathbf{K}^{-}\mathbf{K}^{0}$

 $\sin 2\beta_{eff} = 0.41 \pm 0.18(stat) \pm 0.07(syst) \pm 0.11(CP)$ $C = 0.23 \pm 0.12 \pm 0.07$

> Sistematica dell'approssimazione del contenuto di CP. Necessita' di misurare contemporaneamente $CP(t) - f_{CP-pari}$: tecnica Dalitz...

ÇP(t) nel piano di Dalitz

Misura delle fase debole assoluta. Assumendo $A_{\mu}=0$: β nello SM

Il Dalitz plot K⁺K⁻K⁰

Risultato Dalitz-CP(t) per ICHEP '06

Un diverso approccio sperimentale

$\bullet B^0 \to K_g K_g K_g \in B^0 \to K_g \pi^0$ senza tracce dal vertice primario (del B)

$$\Delta x, \Delta y^{30\mu m}$$

 $\Delta z^{200\mu m}$
 $(x,y)_{verticeKS}$ fissati a $(x,y)_{beamspot}$

 $II K_{s}$ deve decadere nei primi layer del rivelatore di vertice

- Tecnica validata sui dati (B⁰→J/Ψ K_a)

...e i risultati

Sommario sperimentale...

...e interpretazione teorica (SM)

$$A(B_{d}^{0} \to \phi K_{S}^{0}) = V_{cs} V_{cb}^{*}(P_{c} - P_{t}) + V_{us} V_{ub}^{*}(P_{c} - P_{t})$$

$\left \frac{V_{us}V_{ub}^{*}}{V_{cs}V_{cb^{*}}}\right \leq 0.02$	$\frac{P_u - P_t}{P_c - P_t} = O(1)$
--	--------------------------------------

Calcolare l'effetto dei termini soppressi CKM

(S-sin2)

La simmetria SU(3) permette di determinare il grande numero di parametri liberi

Sensibilita' futura delle B-Factory

Emanuele Di Marco

$B \rightarrow \Phi K^*$: polarizzazione in $B \rightarrow VV$

BR & polarizzazione

$$A = \langle f | H_{eff} | i \rangle = A_{00} + A_{++} + A_{-}$$

11 osservabili sperimentali:
6 |A_i|, 5arg(A_i/A_j)

Asimmetrie di CP:

$$\frac{\bar{B} \text{ (matter)}}{\begin{pmatrix} \theta_{1}, \overline{K} & \overline{K}^{*} \\ \theta_{1}, \overline{K}^{*} \\ \theta$$

Emanuele Di Marco

Polarizzazione, Triplo prodotto

Sorpresa: f₁<1

 $f_{_{\rm L}}$ e il triplo prodotto sono sensibili a contributi di nuova fisica alle correnti cariche $J_{_{\rm R}}$

Emanuele Di Marco

Transizioni b^{...→}sγ

BR($b \rightarrow s\gamma$) e A_{CP}

 \oplus Nuova Fisica

 $BF^{exp} \neq BF_{SM}$ $A_{CP} > 0$

La misura inclusiva ha meno incertezze:

- $_{
 m O}\,{
 m BR}_{_{
 m SM}}\,{
 m calcolato}\,{
 m con}\,{
 m HQET}$
- ontributi non perturbativi sotto controllo

 $● b \rightarrow s\gamma$ importante anche per lo studio della dinamica dei decadimenti del B

Emanuele Di Marco

b→sγ: **BR** ...

Emanuele Di Marco

... e A_{CP} inclusiva

Misura inclusiva $b \rightarrow (s+d)\gamma$. Nel MS:

$$\Delta \Gamma_{s} + \Delta \Gamma_{d} = 0$$

$$\Delta \Gamma_{q} = \Gamma(\overline{B} \to X_{s}q) - \Gamma(B \to X_{s}q)$$
Limite di SU(3)
$$A_{CP}(b \to (d+s)\gamma)^{SM} = \frac{\Gamma(\overline{B} \to X_{s+d}\gamma) - \Gamma(B \to X_{s+d}\gamma)}{\Gamma(\overline{B} \to X_{s+d}\gamma) + \Gamma(B \to X_{s+d}\gamma)} \approx 1 \times 10^{-9}$$
Con gli effetti di rottura di SU(3)
$$BABAR (89M):$$

$$A_{CP} = -0.110 \mp 0.115 \text{ (stat)} \mp 0.017 \text{ (sist)}$$
In accordo con SM

Emanuele Di Marco

$B^{0} \rightarrow K^{*}\gamma$: polarizzazione del γ

 $F_{L}^{q} = A(b_{R}(mesone \overline{B}) \rightarrow q_{L} \gamma_{L})$ $F_{R}^{q} = A(b_{L}(mesone B) \rightarrow q_{R} \gamma_{R})$

- o Nello SM solo i fermini esterni f_. si accoppiano al W
- Necessario un flip di elicita' per produrre CP(t) nell'interferenza mixing-decadimento, ma:

Se nel loop circolano fermioni pesanti $f_{_{\rm R}}$ di Nuova Fisica:

PRD 72 (2005) 051103

BABAR: S=-0.21
$$\mp$$
0.40 \mp 0.05
Belle: S=-0.79^{+0.63}_{-0.50} \mp 0.10

Risultato consistente con lo SM

Emanuele Di Marco

Decadimenti b→sl⁺l⁻

$\mathbf{B} \rightarrow \mathbf{K}^{(*)}\mathbf{I}^{+}\mathbf{I}^{-}$: BR e A_{CP}

Emanuele Di Marco

$B^+ \rightarrow K^+ v \overline{v}$

Simmetrie orizzontali

НЕР-рн/0401195

Emanuele Di Marco

Vincoli sulle fasi di nuova fisica: input sperimentali

$$BR(B \to X_{s}\gamma, E_{cut} = 1.8 \,\text{GeV}) = (3.51 \pm 0.43) \times 10^{-4}$$

$$a_{CP}(B \to X_{s}\gamma) = 0.004 \pm 0.036$$

$$BR(B \to X_{s}l^{+}l^{-}, \text{low}) = (1.59 \pm 0.49) \times 10^{-6}$$

$$BR(B \to X_{s}l^{+}l^{-}, \text{high}) = (4.34 \pm 1.15) \times 10^{-7}$$

$$a_{CP}(B \to X_{s}l^{+}l^{-}) = -0.22 \pm 0.26$$

$$BR(B \to X_{s}\gamma, E_{cut} = 1.8 \,\text{GeV}) = (3.73 \pm 0.02) \times 10^{-4}$$

$$a_{CP}(B \to X_{s}\gamma) = 0.000 \pm 0.005$$

$$BR(B \to X_{s}l^{+}l^{-}, \text{low}) = (2.40 \pm 0.04) \times 10^{-6}$$

$$BR(B \to X_{s}l^{+}l^{-}, \text{high}) = (3.91 \pm 0.09) \times 10^{-7}$$

$$a_{CP}(B \to X_{s}l^{+}l^{-}) = 0.000 \pm 0.015$$

M. Ciuchini @ super B-Factory worksop

Vincoli sulle fasi di Nuova Fisica

Emanuele Di Marco

Effetti di nuova fisica nei decadimenti leptonici del B

B→I⁺I⁻

$$BR(B \to \tau^{+} \tau^{+})_{SM} = 1.3 \times 10^{-7} \left(\frac{f_{B}}{200 \, MeV}\right)^{2} \left(\frac{V_{td}}{0.007}\right)^{2}$$

Predizioni SM:

$$BR(B_d^0 \rightarrow \tau^+ \tau^-) \approx 10^{-8}$$

 $BR(B_d^0 \rightarrow \mu^+ \mu^-) \approx 10^{-11}$
 $BR(B_d^0 \rightarrow e^+ e^-) \approx 10^{-15}$

Ulteriore soppressione di elicita'

$$BR(B \rightarrow e \mu)_{SM} = 0$$

(ricerca diretta di LFV)

Attuali UL: $BABAR < 8.30 \times 10^{-8} < 6.1 \times 10^{-8} < 1.84 \times 10^{-7}$ $Belle < 1.60 \times 10^{-7} < 1.90 \times 10^{-7} < 1.70 \times 10^{-7}$ $CDF < 4.00 \times 10^{-8}$ HEP-EX/D5D8D58

Ricerca di B $\rightarrow \tau \nu$

Misura la costante di decadimento f_B dal reticolo QCD: f_B ≈ 200 MeV
Dai vincoli del triangolo Unitario ($|V_{ub}|$): $\frac{1}{100}$ $\frac{1}{1000}$ BR_{SM}=(1.26 ∓ 0.36)10⁻⁴

Effetti di Nuova Fisica: Nel modello con due Higgs, il contributo di H^+ puo' innalzare il BR(B $\rightarrow \tau v$)

Evidenza sperimentale a Belle

Emanuele Di Marco

Vincoli di NF da B $\rightarrow \tau$ ν

Contributo dell' H⁺:

Emanuele Di Marco

Lepton Flavour Violation nei decadimenti del τ

LFV in $\tau^+ \rightarrow l^+ \gamma$

SM: decadimenti permessi dal mescolamento leptonico, ma estremamente soppressi:

$$BR(\tau^{-} \rightarrow l^{-} \gamma)_{SM} \approx 10^{-40}$$
$$BR(\tau^{-} \rightarrow l^{-} l^{+} l^{-})_{SM} \approx 10^{-14}$$

BR<<sensibilita' sperimentale \Rightarrow segnale = Nuova Fisica

 μ^+

$^{ m L,R}$		$\tau^- \rightarrow l^- \nu$	$\tau^- \rightarrow l^- l^+ l^-$
	mSUGRA+seesaw	<10-7	<10 ⁻⁹ [hep-ph/0206110]
	SUSY SU(5)	< 10 ⁻⁴	[hep-ph/0303071]
	MSSM+rottura soffice di SUSY	< 10 ⁻¹⁰	<10 ⁻⁶ [hep-ph/0305290]

Emanuele Di Marco

19 Maggio 2006

SM

11

 W^+

La tecnica sperimentale...

...e i risultati

Emanuele Di Marco

mSUGRA con elementi "off-diagonal"

Parte rilevante della Lagrangiana:

A. Brignole, A. Rossi [hep-ph/0404211]

Meno forte su Δ

m_o (GeV)

1 7 IVIAYYİO 2006

 $L = Y_{l}L\tilde{H}_{1}E - M_{\tilde{L}}^{2}\tilde{L}^{*}\tilde{L} - M_{\tilde{E}}^{2}\tilde{E}^{*}\tilde{E} - A_{l}\tilde{L}H_{1}\tilde{E}^{*} - \mu H_{1}H_{2} - B\mu H_{1}H_{2} + h.c.$

Iviarco וע Emanueie

0.05

m_o (GeV)

Conclusioni

- La fisica del flavour e' sensibile alla struttura dei modelli di Nuova Fisica negli accoppiamenti di particelle pesanti virtuali nei loop
- Con gli ultimi risultati delle B-Factory non c'e' evidenza di grandi deviazioni dal Modello Standard
- Le attuali misure lasciano ancora spazio per la presenza di Nuova Fisica nel settore b→s:
 - Occorrono piu' dati per trarre conclusioni
- La ricerca di decadimenti LFV pone dei vincoli stringenti a vari modelli di nuova fisica
 - In particolare, in SUSY-GUT c'e' una corrispondenza tra la violazione del flavour nel settore dei quark e dei leptoni

Le B-Factory studiano un settore complementare ai collider adronici nella ricerca indiretta di Nuova Fisica... 🔆