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What are Neutrinos?

 Three of the 12 fundamental building blocks of
nature:

  Quarks        Leptons

  d       u                e       νe

         s        c               µ                νµ

         b        t                τ                ντ
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Why are Neutrinos
Particularly Interesting?

 Masses are anomalously low

 From CMB data mν < 0.2 eV/c2 ≅ 0.0000004 me

 A Window on the the GUT Scale? (seesaw mechanism)

 Only fundamental fermion which can be its own

antiparticle (Majorana particle)

 Could be responsible for the matter/antimatter

asymmetry of the universe (leptogenesis)
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Seesaw Mechanism

 Right-handed neutrinos have no weak interactions and thus
are not confined to the weak mass scale.  Postulate both a
GUT-scale right-handed Marjorana neutrino NR and both
Majorana and Dirac mass terms in the Lagrangian:

 

Dropping the flavor index, this results in a mass matrix

 a “normal” fermionic mass.

      
L = 1

2
MijN Ri

NRj
+ λij
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Seesaw Mechanism

Diagonalizing the mass matrix to obtain the
physical masses yields,

This is the seesaw mechanism.

      
mN ≈ M and mν =

ml
2

M
.
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Leptogenesis

 To explain how our matter-dominated universe
arose from a matter-antimatter symmetric big
bang, we need (Sakharov conditions)

 Lepton and baryon number violation

 CP violation (Standard Model quark CP violation
not sufficient)

 Thermal non-equilibrium

 Majorana neutrinos can provide these conditions.
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Leptogenesis

 CP-violating decays of N’s in the big bang era
provides a source of lepton-number violation.
 Example:

 GUT-level (B - L)-conserving interactions convert
the lepton-number asymmetry to a baryon
asymmetry.

  N → hν ≠ N → hν 
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Neutrino Oscillations

 Neutrino oscillations occur because the weak
eigenstates and not identical to the mass
eigenstates.

 Neutrinos are always produced and detected in
weak eigenstates, but they propagate in mass
eigenstates.

 To the extent that the masses of the mass
eigenstates are different, the phase relations
generated by the propagation (e-iEt/) change,
producing the oscillation.
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Mixing Matrix

 The relationship between the weak eigenstates
and the mass eigenstates is given by a unitary
rotation matrix:
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Mixing Matrix

 The mixing matrix can be specified by 3 angles
and one complex phase:

      νl = U νn , where

    

=
c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e
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    (cij ≡ cosθij , sij ≡ sinθij )
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Vacuum Oscillations

 When a 2 x 2 oscillation is sufficient,  in vacuum,

    
P(νe → νx ) = sin2 2θsin2 1.27Δm2L

E
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Δmij
2 ≡ (mi

2 − mj
2) is in (eV / c2)2,

L is in km, and E is in GeV
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Matter Oscillations

 Matter effects:  In matter νe’s interact differently
than νx’s.

    
sin2 2θm =

sin2 2θ
(cos2θ − 2GFρeE / Δm2)2 + sin2 2θ
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What Have We Learned?

 We have learned a great deal over the past decade.

 From observing neutrinos from the sun and
reactors, we have learned that νe → νµ and νe → ντ
with L/E ≈ 15 000 km/GeV, with a large but not
maximal mixing angle.

 From observing neutrinos produced in the
atmosphere by cosmic rays, we have learned that
νµ → ντ with L/E ≈ 500 km/GeV and θ consistent
with being maximal.
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What We Know and
What We Don’t Know

Don’t know

Know to some
extent

O. Mena and S. Parke, hep-ph/0312131
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One Anomaly

 A Los Alamos experiment with stopped pions
(LSND) has reported evidence for oscillations of
                                               .

 Such an oscillation requires a sterile neutrino
since three active neutrinos admit only two
independent Δm2s.

 Such a neutrino would be only very marginally
consistent with solar and atmospheric data.

 This effect is being checked currently by
MiniBooNE, a Fermilab experiment.

 A confirmation would be exciting and require
rethinking some of our plans.

    ν µ → ν e with Δm2 > 0.1 (eV)2
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1st Generation
Long Baseline Experiments

 We are now starting the first generation of long
baseline accelerator experiments
 K2K: Low statistics experiment in Japan now completed.
 CNGS: Gran Sasso program will start this year.
 MINOS: Fermilab experiment started last year.  Will report

first results in a few months.

 First generation goals:
 Verify dominant νµ → ντ oscillations

 Precise measurement of dominant Δm23
2 and sin22θ23

 Search for subdominant νµ → νe (sin22θ13) and

 νµ → νs oscillations
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MINOS Layout
(Main Injector Neutrino Oscillation Search)
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MINOS Far Detector

 8m octagonal tracking
calorimeter

 484 layers of 2.54 cm Fe plates

 4.1 cm-wide scintillator
strips with WLS fiber
readout, read out from
both ends

 8 fibers summed on each
PMT pixel; 16 pixels/PMT

 25,800 m2 of active
detector planes

 Toroidal magnetic field
<B> = 1.3 T

 Total mass 5.4 kT
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MINOS Far Detector
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MINOS Near Detector

 280 “squashed octagon” plates

 Same plate thickness,
scintillator thickness and
width as far detector

 Target/calorimeter
section: 120 planes
 4/5 partial area

instrumented

 1/5 full area instrumented

 Muon spectrometer
section: 160 planes
 4/5 uninstrumented

 1/5 full area instrumented

980 tons
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MINOS Near Detector
(Under Construction)
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MINOS Sensitivity
5 year run
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MINOS Sensitivity to
νµ → νe at 90% CL
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2nd Generation Experiments

 The 2nd generation experiments will concentrate
on νµ → νe oscillations, which are needed for the
measurements of
 sin2(2θ13)

 sign(Δm32
2)

 δ

 T2K: 295 km baseline, Tokai to SuperKamiokande

 NOνA: 810 km baseline, Fermilab to Ash River, MN
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The T2K Experiment
(Tokai to Kamiokande)

Phase 1
   0.77 MW into
   50 kT SuperK
   (full intensity
    in 2012)

Phase 2
   4 MW into
   1 MT HyperK
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The NOνA Experiment
(NuMI Off-Axis νe Appearance Experiment)

 NOνA is an approved Fermilab experiment
optimized for measuring νe appearance with the
goal of improving MINOS’s νµ → νe measurement
by approximately an order of magnitude.

 The NOνA far detector will be
 a 30 kT “totally active” liquid scintillator detector

 located 15 mrad (12 km) off the NuMI beamline axis near
Ash River, MN, 810 km from Fermilab

 The uniqueness of NOνA is the long baseline,
which is necessary for determining the mass
ordering of the neutrino states.
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Off-Axis Rationale

 Both Phase 2 experiments, NOνA and T2K are sited off the
neutrino beam axis.  This yields a narrow band beam:
 More flux and less background (νe’s from K decay and higher-

energy NC events)

    

� 

Eν = 0.43γ mπ

1+ γ 2θ 2
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NOνA Site

Ash River

Beam

Soudan
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NOνA Far Detector

“Totally Active”
30 kT: 
   24 kT liquid scintillator 
   6 kT PVC
32 cells/extrusion
12 extrusions/plane
1984 planes 
Cell dimensions:
   3.9 cm x 6 cm x 15.7m
   (0.15 X0 thickness)
Extrusion walls:
   3 mm outer
   2 mm inner
U-shaped 0.8 mm WLS 
fiber into APD

132 m

15.7m

15.7m

32-plane
block

Admirer
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1.65 GeV νeN → epπ0
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NOνA Near Detector

5 m

3.5 m

9.6 m

Veto region
Target region

Shower containment region

Muon catcher
1 m iron

262 T
145 T totally active
20.4 T fiducial
(central 2.5 x 3.25 m)

8-plane block
  10.6 T full
  1.6 T empty
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Near Detector in the
Access Tunnel

νµ CC events νe CC events

Far Detector x 800

Site 1.5

Site 2
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Proton Intensity (1)

 NOνA will run after the Tevatron terminates
operation.  Thus, parts of the accelerator complex
now devoted to antiproton production and storage
will be available for the neutrino program.

 Presently, we must load Booster batches at 15/sec
into the Main Injector and then ramp the Main
Injector.

 Idea for increased proton intensity is to get
Booster batches while the Main Injector is
ramping.
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Proton Intensity (2)

 Assumption of our proposal: Slip-stack 11 Booster
batches into the Recycler and inject them into the
Main Injector.  This gives 0.7 MW, of which we
assumed 0.625 MW for the NOνA program.  Graphs
(without Proton Driver) will be based on this.

 New idea: (Dave McGinnis)  Momentum stack 4
Booster batches into the Accumulator, and then
boxcar stack 6 Accumulator batches into the
Recycler (24 Booster batches in all).  Somewhat
reduced Booster intensity gives 1.1 MW.

 Could be ready in FY 2011 at a cost of about $15M.



Gary Feldman                     Università di Roma                     24 January 2006                     35

Proton Intensity (3)

 Fermilab strategy:
 If ILC looks affordable, move to host the ILC and do

“cheap” upgrades to the proton intensity.

 If ILC will be delayed, move toward a Proton Driver (i.e., a
new Booster).

 We assume that the Proton Driver will allow 2.4
MW.

 If no Proton Driver, then upgrade to 1.1 MW, add
mass (perhaps liquid argon detector), and run
longer to achieve the equivalent of the Proton
Driver intensity.



Gary Feldman                     Università di Roma                     24 January 2006                     36

Improvement over MINOS

 How does NOνA get an order of magnitude
improvement over MINOS for νµ → νe oscillations?
 Off-axis advantages (more flux, less background)

 5.5 times the mass

 Twice the beam intensity initially, more later

 Greater sensitivity to νe events: 0.15 X0 longitudinal
segmentation compared to 1.5 X0 in MINOS
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P(νµ→νe)
(in Vacuum)

 P(νµ→νe) = P1 + P2 + P3 + P4

 P1 = sin2(θ23) sin2(2θ13) sin2(1.27 Δm13
2 L/E)        “Atmospheric”

 P2 = cos2(θ23) sin2(2θ12) sin2(1.27 Δm12
2 L/E)       “Solar”

 P3 =    J sin(δ) sin(1.27 Δm13
2 L/E)

 P4 = J cos(δ) cos(1.27 Δm13
2 L/E)

where J = cos(θ13) sin (2θ12) sin (2θ13) sin (2θ23) x

 sin (1.27 Δm13
2 L/E) sin (1.27 Δm12

2 L/E) 

  } Atmospheric-
solar interference
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P(νµ→νe)
(in Matter)

 In matter at oscillation maximum, P1 will be approximately
multiplied by   (1 ± 2E/ER) and P3 and P4 will be approximately
multiplied by (1 ± E/ER), where the top sign is for neutrinos
with normal mass hierarchy and antineutrinos with inverted
mass hierarchy.

About a ±30% effect for NuMI, but only a ±11% effect for T2K.

However, the effect is reduced for energies above the
oscillation maximum and increased for energies below.

  

E
R
=

Δm
13
2

2 2G
F
ρ

e

≈ 11GeV for the earth’s crust.
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3 σ Sensitivity to θ13 ≠ 0
 Comparison with Proton Driver

 

2.5 yr each

ν and ν run
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3 σ Sensitivity to θ13 ≠ 0

 

2.5 yr each

ν and ν run
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3 σ Sensitivity to θ13 ≠ 0
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Importance of the Mass Ordering

 Window on very high energy scales: grand unified
theories favor the normal mass ordering, but other
approaches favor the inverted ordering.

 If we establish the inverted ordering, then the next
generation of neutrinoless double beta decay
experiment can decide whether the neutrino is its
own antiparticle.  However, if the normal ordering
is established, a negative result from these
experiments will be inconclusive.
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Importance of the Mass Ordering

 To measure CP violation, we need to resolve the
mass ordering, since it contributes an apparent CP
violation that we must correct  for.
 CP violation in neutrinos may be connected to the

mystery of why the universe is composed of matter.
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Matter Effect

 The mass ordering can only be determined by
observing the matter effect, which is caused by a
quantum mechanically coherent interaction of νes
interacting with the electrons in matter.

 For a given oscillation phase (the oscillation
maximum, for example), the effect is proportional
to the distance the neutrino has traveled times the
electron density of the matter.

 Therefore, it can only be observed by long
baseline experiments.
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Ambiguity between Mass
Ordering and CP Phase
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95% CL Resolution of the
Mass Ordering: Summary



Gary Feldman                     Università di Roma                     24 January 2006                     47

3 σ Determination of
CP Violation
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Measurement of
Δm32

2 and sin2(2θ23)

5-year ν run 

5-year ν run
with Proton Driver 
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Schedule

 Aiming for a FY2008 project start.

 Can get FY2007 Preliminary Engineering Design
and Long Lead Item funding ($12M?)

 Now completing the Conceptual Design Report for
review in February.

 Technical Design Report due for review in July.

 Start of data taking October 2010

 Completion of the Far Detector July 2011
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Conclusions

 The Fermilab/NuMI/NOνA program provides a
flexible, step-by-step approach to studying all of
the parameters of neutrino oscillations
 A long baseline approach is crucial in the context of the

world program.

 NOνA is the first stage of a flexible program where each
stage can be planned according to what has been learned
in previous stages.

 The NOνA physics reach is comparable to or greater than
other experiments being contemplated for the next few
years.

 Even without a Proton Driver, the NOνA/NOνA II program
should be able to attain equivalent sensitivity.


