

Roma 16/1/04

# Daøne



## Daone 1999-2002



# of bunch





## Fondo macchina



## Daone: obiettivi

| N <sub>bunch</sub>                                                  | 110+ 110           |
|---------------------------------------------------------------------|--------------------|
| $\mathbf{I}_{\text{TOT}} \mathbf{e}^{+}/\mathbf{e}^{-}(\mathbf{A})$ | 2/2                |
| Peak Luminosity (cm <sup>-2</sup> s <sup>-1</sup> )                 | 2×10 <sup>32</sup> |
| Luminosity per day (pb <sup>-1</sup> )                              | 10                 |
| L <sub>TOT</sub> (fb <sup>-1</sup> )                                | 2                  |
| Luminosity Lifetime (h)                                             | 1.2                |

## Il rivelatore KLOE







### Camera



- 90% He 10% iC<sub>4</sub>H<sub>10</sub>
- •~ 12600 celle (2×2 e 3×3 cm<sup>2</sup>)
- geometria stereo ( $\sigma_z \sim 2 \text{ mm}$ )



 $K_S \rightarrow \pi^* \pi^-$ 

## Calorimetro

- Emc: piombo fibre scintillanti
  lettura con PM: (4.4×4.4 cm<sup>2</sup>)
- spessore 15 x<sub>0</sub> (x<sub>0</sub> ~ 1.5 cm)









## K a KLOE

- I decadimenti a riposo della φ permettono di selezionare fasci puri di K monocromatici (p ~ 110 MeV/c):
- 1. Decadimenti rari dei K.
- 2. Branching ratios assoluti:

$$BR = \frac{N^{found}}{N^{tag}} \times \frac{1}{\varepsilon}$$

3. Vite medie dei K: meta' dei K<sup>0</sup> decadono prima del EmC. K<sup>±</sup> decadono tutti prima.

$$\frac{\lambda_{\rm L}}{\rm L_{eff}} \approx 2 \qquad \frac{\lambda_{\pm}}{\rm L_{eff}} << 1 \qquad \beta \approx 0.2$$



 $\lambda_{\rm L} \sim 340 \ {\rm cm}$   $\lambda_{\rm S} \sim 0.6 \ {\rm cm}$ 

$$\lambda_{\pm} \sim 95 \text{ cm}$$

 $\begin{array}{rll} K^{+}K^{-} & 1.5 \times 10^{6}/pb^{-1} \\ K_{L}K_{S} & 10^{6}/pb^{-1} \end{array}$ 

## Fisica dei K a KLOE: misure in corso



# $K_L$ crash

- **K**<sub>L</sub> crash (30%):
- Un cluster sul barrel
- E<sub>clu</sub>>100 MeV
- $0.17 < \beta^* < 0.28$  (velocità del K<sub>L</sub> nel CMS della  $\phi$  misurata dal tempo e posizione del cluster)





$$\sigma(P_S) \sim 2 \text{ MeV}$$

Il tempo iniziale dell'evento non e' noto. La distribuzione della velocità  $\beta^*$ dipende dalla stima del T0  $\Rightarrow$  tag bias.





da G. Colangelo et al.

 $\delta_0 - \delta_2 \Rightarrow \delta_0 - \delta_2 - \delta_{em}$ 

In presenza di rottura di simmetria

 $\delta_{\rm em} \approx 3.2^{\circ}$  (Cirigliano et al.)

 $EM \Longrightarrow (A_I + \partial A_I) \cdot e^{i(\delta_I + \gamma_I)}$ 

 $A_{+0} = \sqrt{\frac{3}{2}} A_2 e^{i\delta_2}$ 

di isospin (EM):

Nel limite di esatta simmetria di isospin, i phase shifts possono essere estratti dai decadimenti K $\rightarrow \pi\pi$ .



 $(\chi_0 - \chi_2)^a$  $\delta_0 - \delta_2 - \delta_{em}$ 5 10 15 20  $\omega$  (MeV) E<sub>CUTOFF</sub>(MeV)

I dati devono essere analizzati includendo le correzioni EM.

 $K_S \rightarrow \pi^0 \pi^0$ 

Almeno 3 clusters neutri. Misura quasi inclusiva, poco sensibile ad accidentali ed inefficienze

$$E_{cl} \ge 20 \, MeV$$
$$\left|\cos \theta_{cl}\right| \le 0.9$$
$$\varepsilon \sim 90\%$$

| N. clusters | %    |
|-------------|------|
| <2          | 1.3  |
| 2           | 8.6  |
| 3           | 33.2 |
| 4           | 56.6 |
| >4          | 0.3  |

Poco BKG 2 TRK's dall' IP estrapolate all'EmC: 120 MeV < p<sub>TRK</sub> < 300 MeV

 $\varepsilon \sim 60\%$ 



 $K_{S} \rightarrow \pi^{+}\pi^{-}(\gamma)$ 

L'efficienza e' corretta per la presenza del fotone irraggiato. La correzione totale e' del 0.3%.

*Y2000:* ~17 *pb*<sup>-1</sup>



$$\frac{BR(K_{s} \to \pi^{+}\pi^{-}(\gamma))}{BR(K_{s} \to \pi^{0}\pi^{0})} = (2.236 \pm 0.003_{stat} \pm 0.015_{syst})$$
Phys Lett B538 (2002)
$$\delta_{0} - \delta_{2} - \delta_{em} = (47.8 \pm 2.8)^{\circ}$$

Errore stat. gia' 0.1%. Sist. (0.7%) dominato da tag bias: nuova finestra  $\beta^*$ , nuova definizione di Kl-crash ... , con 20 volte la statistica e' possibile selezionare campioni sempre piu' 'puliti'.

$$K_S \rightarrow \pi e \nu$$

### *Asimmetria di carica* Mai misurata prima nel K<sub>S</sub>

$$A = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

$$A_{s} = 2 \operatorname{Re} \varepsilon_{k} + 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y + 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} y - 2 \operatorname{Re} x_{-}$$

$$A_{L} = 2 \operatorname{Re} \varepsilon_{k} - 2 \operatorname{Re} \delta_{k} - 2 \operatorname{Re} \delta_$$



2 tracce dall'IP estrapolate all' EmC: 1 VTX :  $|Z| < 10 \text{ cm } \rho < 4 \text{ cm}$ 300 MeV  $< M_{\pi\pi} < 490 \text{ MeV}$ 

$$\delta_t(m) = t_{cl} - \frac{L}{c\beta(m)}$$

$$d \delta_{t,\pi e} = \delta_t (m_\pi)_1 - \delta_t (m_e)_2$$
  
$$d \delta_{t,e\pi} = \delta_t (m_e)_1 - \delta_t (m_\pi)_2$$







#### Preliminare 2001

$$\delta_{K} = \frac{A_{S} - A_{L}}{4} \qquad \mathbf{CPT}$$

CPLEAR:  $\sigma(\delta)=3\times 10^{-4}$ 

KLOE con 2fb<sup>-1</sup>  $\sigma(\delta) \sim 8 \times 10^{-4}$ 



 $\Delta S = \Delta Q$ 

Confrontabile con CPLEAR. Possibile dimezzare l'errore con 400 pb<sup>-1</sup>. Poi errore dominato dal  $K_L$  .....

#### Preliminare 2001+2002



- inclusi eventi  $K \to \pi \: e \nu \: \gamma \: MC$
- parametrizzata la risposta temporale nel EmC
- $\delta BR/BR < 1\%$   $\delta A/A < 1\%$

 $K_s \rightarrow 3\pi^0$ 

$$BR(K_{S} \to 3\pi^{0})_{th} = BR(K_{L} \to 3\pi^{0}) \frac{\tau_{S}}{\tau_{L}} |\varepsilon|^{2} \approx 2 \times 10^{-9} \quad \mathbb{CR}$$

- 450 pb<sup>-1</sup> analizzati
- $N_{ev} = 5$ •  $N_{BKG} = 3 \pm 2$

NA48: da interferenza  $K_L K_S$  (CPT) BR( $K_S \rightarrow 3\pi^0$ ) < 3.0×10<sup>-7</sup> 90% CL Preliminare KLOE

 $BR(K_S \rightarrow 3\pi^0) < 2.2 \times 10^{-7} 90\% CL$ 



Con  $L_{int} \sim 2 \text{ fb}^{-1} \Rightarrow 1$  evento aspettato

# K<sub>L</sub> tag

•Identificazione di un decadimento  $K_S \rightarrow \pi^+ \pi^-$ •  $\sigma(P_L) \sim 2~MeV$ 

#### **Vertice neutro**





$$\begin{cases} \vec{L} = \vec{L}_{K} + \vec{L}_{\gamma} \\ L_{K} / \beta_{K} + L_{\gamma} = ct_{clu} \end{cases}$$

 $\sigma_L \approx 2 \, cm$ 



# $K_L \rightarrow \gamma \gamma : \tau_L$



Si puo' raggiungere  $\delta \tau \sim 0.1$  ns

# $K_L \rightarrow carichi$

- Fit alla distribuzione
   E<sub>miss</sub>-p<sub>miss</sub> (ipotesi πμ)
   con spettri MC.
- Misura simultanea di tutti i BR's assoluti ( $\pi^+\pi^$ fissato).
- Con ~ 80 pb<sup>-1</sup>
   δBR/BR<1%</li>
- Sistematiche: TRK, tag bias (trigger) ... (1%)
- Inclusi generatori MC  $\pi\mu\nu\gamma\pi e\nu\gamma$ .





- Misura di BR's assoluti al 0.2%. Con ~400 pb<sup>-1</sup>, tenendo conto delle efficienze, si hanno ~1-3 ×10<sup>6</sup> decadimenti semileptonici di ogni tipo (neutri e carichi). (vedi  $K_L \rightarrow$ carichi e  $K_S \rightarrow \pi ev$ )
- Misura di  $\tau_L$  al 0.1%. (vedi  $K_L \rightarrow 3\pi^0$ )
- $\lambda^+ \lambda^0$

## Interferenza

 $\phi \to \mathbf{K}_{\mathbf{S}} \mathbf{K}_{\mathbf{L}} \to \pi^{+} \pi^{-} \pi^{+} \pi^{-}$  $I(|\Delta t|) \propto e^{-\Gamma_{L}|\Delta t|} + e^{-\Gamma_{S}|\Delta t|} - 2e^{-(\Gamma_{S} + \Gamma_{L})|\Delta t|/2} \cos(\Delta m |\Delta t|)$ 

 $\sigma(\Delta t) \sim 1\tau_{\rm S}$ 

**Preliminare KLOE:** Con 340 pb<sup>-1</sup>, fit tenendo fissi  $\Gamma_{\rm S}$  e  $\Gamma_{\rm L}$  (PDG):

 $\Delta m = (5.64 \pm 0.37) \times 10^{-11} \hbar \, s^{-1}$ 

PDG (5.301±0.016)×10<sup>-11</sup> h s<sup>-1</sup>





 $\Delta t/\tau_S$ 

## Conclusioni

Con i primi ~450 pb<sup>-1</sup> :

•  $R(Ks \rightarrow +-/00)$  al 0.7% tenendo conto del fotone irradiato.

Risolto  $(\delta_0 - \delta_2)$  ? Cirigliano et al. (2003) trovano nuove correzioni ...

- K<sub>s</sub>e3: BR al 2% ( $\rightarrow$ 1%) e prima misura della asimmetria di carica. V<sub>US</sub>!
- alcuni canali rari: (S)  $3\pi^0$ ,  $\pi^+\pi^-\pi^0$ , (L)  $\gamma\gamma$ .
- la massa del  $K_{S}$  (errore ~ 20 KeV)
- Un controllo sui decadimenti  $K_L \rightarrow 3\pi^0$  mostra potenzialita' per  $\tau$ .
- Infine tutti BR's assoluti del  $K_L$  in carichi ...
- $(\tau + BR(semilept.)) \Rightarrow V_{US}$ .

Kloe ripartira' nei prossimi mesi (marzo) per raccogliere ~2 fb^1 corrispondenti a  $2{\times}10^9~K_SK_L$  .

#### **CP:stato**

$$1 - 6 \operatorname{Re}\left(\frac{\varepsilon}{\varepsilon}\right) = \frac{BR(K_{s} \to \pi^{+}\pi^{-})}{BR(K_{s} \to \pi^{0}\pi^{0})} \cdot \frac{BR(K_{L} \to \pi^{0}\pi^{0})}{BR(K_{L} \to \pi^{+}\pi^{-})}$$

#### Dati 2001+2002

 $BR(K_L \rightarrow \pi^+\pi^-) = N_{\pi\pi} / \epsilon N_S$ 

- ~ 90 ev/pb<sup>-1</sup> circa 40000 ev
- $\delta BR/BR \sim 2\%$  (in accordo con PDG)

 $BR(K_L \rightarrow \pi^0 \pi^0) / BR(K_L \rightarrow \pi^0 \pi^0 \pi^0)$ 

- ~ 70 ev/pb<sup>-1</sup> circa 30000 ev
- $\delta R/R \sim 2\%$

Necessaria una statistica  $\times$  10 per avere un errore minore di 10<sup>-3</sup> su Re( $\epsilon'/\epsilon$ ).



Importanza ad esempio per  $V_{US}$ 

$$\Gamma(K_{e3}) \to \Gamma(K_{e3}) \cdot (1 + \delta) \qquad \delta = \pm 1\%$$
$$|V_{us}|^2 |f_+(0)|^2 \propto \Gamma(K_{e3})$$