Risultati recenti in K2K

Layout dell'esperimento Contributo di Roma Nuovi^(*) risultati di oscillazione

L. Ludovici/INFN Roma

Università La Sapienza

Roma 5.11.2004

KEK neutrino beam

Super-Kamiokande

3900

Inner detector 11146 20° PMTs Outer detector 1885 B' PMTs
 Diad:
 1
 Inter Fab 26 2000 01:42:21.58994

 Vent
 1
 8.865

 Vent
 8.865
 8.970

 Firster Turger Turger Service
 0.97 - SLE HE LE
 1.12304.7

 Trister Turger Constraint
 1.3304.7
 1.83.4

 Turne Diff - TOF:
 0.00 usec
 -0.44 nse

K2K Collaboration

K2K-I Japan, Korea, Poland and USA.
K2K-II in 2002 joined by Canada, France, Italy, Russia, Spain and Switzerland.

Also the core of the T2K proto-collaboration.

Roma in K2K-II

- Partecipazione a K2K-II sin dall'inizio (novembre 2002).
- Corresponsabilità nel nuovo rivelatore SciBar.
- Responsabilità dell'Electron Catcher (EC).
- Una membership nel Convener Board.
- Contributo all'analisi dei dati.
- Futuro (T2K).

Composizione del gruppo

F.Cidronelli⁽²⁾, U.Dore, C.Gargiulo⁽¹⁾, A.Iacoangeli⁽²⁾, P.F.Loverre, L.Ludovici, A.Maslennikov⁽²⁾, C.Mariani, F.Pulcinella⁽²⁾, M.Zullo⁽¹⁾

⁽¹⁾ Servizio di Progettazione Meccanica ⁽²⁾ Supporto tecnico

K2K-II upgrade (SciBar+EC)

SciBar motivation

Study low energy v interactions with high granularity Event classification (proton visible) High statistic (16t mass, intense beam)

Physics output

Quasi-elastic vs non-quasi elastic cross section π° cross section Improve K2K systematic T2K training EC motivation

Physics capabilities Longitudinal containment (85% at 3GeV) Energy reconstruction (14%/ \sqrt{E}) electron vs (muon or pion) ID π° reconstruction

Physics output

 v_{e} energy spectrum π^{o} statistic Enhance PID and event classification

EC structure

- Two orthogonal planes just downstream of SciBar (4 Xo), providing energy reconstruction and cluster positions in both transverse projections (11 Xo and 0.38 λint).
- 30 horizontal modules (60 readout cells) and 32 vertical modules (64 readout cells).
- The fibers in each readout cell (4x4x265cm) are bundled both side to 248 PMTs.
- Readout by VME ADC (CAEN V792).

v_e measurement (Rome)

PRELIMINARY

- Select interactions in main SciBar and use EC for electron ID
- 27 veQE candidates found, out of which 10 have a visible recoil proton
- Analysis of efficiency and background in progress
- 10-15% statistical error on ν_e/ν_μ including the coming data sample.

K2K Conceptual Setup

Signal of v oscillation in K2K Reduction of v_{μ} events Distortion of v_{μ} energy spectrum

Far/Near Ratio

Proton on Target (PoT)

Analysis Strategy

Neutrino Interaction MC (NEUT)

- CC quasi elastic (CCQE)
 - Smith and Moniz with M_A =1.1GeV
- CC (resonance) single π (CC-1 π)
 - Rein and Sehgal's with M_A =1.1GeV

DIS

 GRV94 + JETSET with Bodek and Yang correction.

- CC coherent π

- Rein&Sehgal with the cross section rescale by J. Marteau
- NC
- Nuclear effects: oxygen, carbon

Low Energy v Interactions

Lepton Kinematics
Nucleons: QE dominates but resonance and DIS has to be added and combined at low W
Nucleus: Fermi motion, Pauli blocking, binding, EMC, shadowing, spectral functions

Hadronic system.

- Nucleons: validity of resonance models (Rein-Seghal), low invariant mass DIS hadronisation.
- Nucleus: intranuclear scattering and reinteractions

NUINT workshops. (NUINT04 at LNGS).

Near Detector Layout

- IKT Water Cherenkov (1KT)
- Scintillating-fiber/Water sandwich (SciFi)
- Lead Glass calorimeter (LG) before 2002
- Scintillator Bar Detector (SciBar) after 2003
- Muon Range Detector (MRD)

- Measure neutrino flux
- Far/Near: detector systematics, C vs O
- Study v properties
- Monitor v beam stability

1KT: Neutrino Flux Extrapolation

- Water Cherenkov replica of Super-K (scale 1/50, ~1/1000 fiducial)
- Most of detector systematics cancel in the extrapolation

$$N_{SK}^{\exp} = N_{KT}^{obs} \bullet \begin{bmatrix} \int \Phi_{SK}(E_v)\sigma(E_v)dE_v \\ \int \Phi_{KT}(E_v)\sigma(E_v)dE_v \end{bmatrix} \bullet \begin{bmatrix} M_{SK} & E_{SK} \\ M_{KT} & E_{KT} \end{bmatrix}$$
$$= Far/Near Ratio ~1 \times 10^{-6} (from MC)$$

 M: Fiducial mass
 M_{sk} =22,500ton,
 M_{kT} =25ton

 ϵ : efficiency
 $\epsilon_{sK-I(II)}$ =77.0(78.2)%,
 ϵ_{kT} =74.5%

$$N_{SK}^{exp} = 150.9^{+11.6}_{-10.0}$$
 $N_{SK}^{obs} = 107$

SciBar: QE vs nonQE study

- Fully active fine-grained detector
- Low energy proton visible
- Study (enriched) QE and nonQE samples

Neutrino Energy Reconstruction

$$E_{v}^{rec} = \frac{(m_{N} - V)E_{\mu} - m_{\mu}^{2}/2 + m_{N}V - V^{2}/2}{(m_{N} - V) - E_{\mu} + p_{\mu}\cos\theta_{\mu}}$$

Hint of Forward Muon Deficit from K2K data

- Small angle, small q² deficit.
- Observed by all near detectors
- Most clear in 2 tracks, nonQE samples
- Two phenomenological models fit this deficit:
 - 1. CC-1 π suppression of q^2/A for events with $q^2 < A$. SciBar nonQE sample: $A=0.10\pm0.03(GeV/c)^2$
 - **2**. NO coherent π
- The oscillation analysis is insensitive to the choice.

Near Detector Spectrum Measurement

- 1KT Water Cherenkov detector (H,O target)
 1. Fully contained one-ring muon-like sample
- SciFi fiber tracker (H,O target)
 2. Single-muon track sample
 - 3. Two-track QE sample ($\Delta \theta_p < 25^\circ$)

4. Two-tracks nonQE sample ($\Delta \theta_p > 30^\circ$)

- SciBar fine-grained scintillator (HC target)
 - 5. Single-muon track sample
 - 6. Two-track QE sample ($\Delta \theta_p < 25^\circ$)
 - 7. Two-tracks nonQE sample ($\Delta \theta_{p}$ >25°)

For each event we measure P_{μ}, Θ_{μ}

After the low q2 correction, all data samples agree with MC

Example: $P\mu$ and $\Theta\mu$ from 1KT

1-ring μ -like after the CC1 π low q² correction

Neutrino Spectrum from $P\mu$, $\Theta\mu$

Free parameters of the fit flux in 8 energy bins Φ(Ev) nonQE/QE detector uncertainties (energy scale, efficiencies,...) nuclear effect uncertainties (proton and pion rescattering)

Strategy fit $\Phi(Ev)$ flux without low angle data apply either low $q^2 CC1\pi$ or coherent pion suppression fit nonQE/QE for the entire angular range Use $\Phi(Ev)$, nonQE/QE to calculate the spectrum at Super-K

Example of Spectrum fit

Spectrum Fit Results

 χ^2 =638.1 for 609 *d.o.f*

The nonQE/QE error of is determined from the variation with different fit criteria: nonQE/QE = 0.95 ± 0.04 with standard angular cut. nonQE/QE = 1.02 ± 0.03 with single pion suppression nonQE/QE = 1.06 ± 0.03 with no coherent pion

Example: SciBar Data with Measured Spectrum

Oscillation Analysis

$$L(\Delta m^{2}, \sin 2\theta, f^{x})$$

= $L_{norm}(\Delta m^{2}, \sin 2\theta, f^{x}) \cdot L_{shape}(\Delta m^{2}, \sin 2\theta, f^{x}) \cdot L_{syst}(f^{x})$

- Total Number of neutrino events
- Reconstructed E_v^{rec} spectrum shape for 1-ring μ -like events
- Systematic error terms, f^x

Systematic error terms include: normalisation, flux, nonQE/QE ratio, pion monitor and beam MC constraints, Super-K systematic uncertainties.

K2K/Super-K Data Sample

preliminary

K2K-all	DATA	MC
(K2K-I, K2K-II)	(K2K-I, K2K-II)	(K2K-I, K2K-II)
FC 22.5kt	107	150.9
	(55, 52)	(79.1*, 71.8)
1-ring	67	93.7
	(33, 34)	(48.6, 45.1)
1-ring µ-like	57	84.8
	(30, 27)	(44.3, 40.5)
1-ring e-like	10	8.8
Č	(3, 7)	(4.3, 4.5)
Multi Ring	40	57.2
	(22, 18)	(30.5, 26.7)

K2K-I47.91018K2K-II41.21018PoT

*Updated with respect to previous analysis

Compare with Null Oscillation

Best Fit of Oscillation Parameters

A value $sin^2(2\theta)>1.51$ can occur, due to a statistical fluctuations, with a probability of 13%.

Fit and Data are Consistent

From LogL differences w.r.t. the best fit: Prob{No Oscill} = 0.0050% (4.0σ) (shape+norm.) = 0.74% (2.6σ) (shape only) = 0.26% (3.0σ) (norm. only)

Likelihood Distribution

Allowed Region

 $\Delta m^2 @ \sin^2 2\theta = 1:$

 $2.1 \le \Delta m^2 \le 3.4 [eV] \times 10^3 @68\%$

 $1.9 < \Delta m^2 < 3.6 [eV] \times 10^3 @90\%$

Single vs coherent pion suppression

Mono: single pion suppression Color: coherent pion suppression

Almost no difference. Single pion suppression more conservative

Disappearance vs Spectrum Distortion

Disappearance of v_{μ} and the distortion of E_{ν} spectrum give consisten allowed regions.

K2K-I and K2K-II Comparison

Analyses in Progress/Perspective

- Forward muons (low q²) deficit. Resonant pion vs coherent pion suppression.
- Neutral pion production cross-section. (Roma)
- Electron neutrino flux. (Roma)
- $\nu_{\mu} \rightarrow \nu_{e}$ oscillation.
- CCQE form factor (M_A)measurement.
- "<u>Observation</u> of neutrino oscillation" (increased statistic, improved systematic).

Summary

With 8.9 10¹⁹ proton on target

A neutrino flux deficit is observed

An energy spectrum distortion is seen

K2K confirms neutrino oscillation at 4σ level

