

- UT angles α , γ , β
- Measurements sensitive to New Physics
- |V_{cb}|
- New particles and rare decays

PEP II

	L _{int} fb ⁻¹		
2004	12.5	260	
2005	18.2	395	
2006	23	580	
2007	30	880	

BaBar

Coherent Time Evolution at the Y(4S)

B meson reconstruction at the Y(4S)

$$\Delta E = E_B^* - \sqrt{s/2}$$

 $m_{ES} = \sqrt{(s/4 - p_B^*)^2}$

$$\sigma(m_{ES}) \approx 2.5 \text{ MeV}$$

 $\sigma(\Delta E) \approx 15 - 30 \text{ MeV}$

Angles of the Unitarity Triangle

 $B^0 \rightarrow \pi^+ \pi^- (\rho^+ \rho^-)$

Penguin contributions introduce additional phases extra weak and strong phases + |P/T| modify α :

 $sin2\alpha \rightarrow sin2\alpha_{eff}$ $2\alpha = 2\alpha_{eff} + k_{\pi\pi}$

Penguin contributions for $B^0 \rightarrow \pi^+\pi^-$ are large

To relate α to α_{eff}

Assuming SU(2)

• Grossmann-Quinn bound:

$$\sin^{2} (\alpha_{\text{eff}} - \alpha) \leq \frac{Br (B^{0} \rightarrow \pi^{0} \pi^{0})}{Br (B^{\pm} \rightarrow \pi^{\pm} \pi^{0})}$$

 $Br(B^0 \rightarrow \pi^0 \pi^0) = (2.1 \pm 0.6 \pm 0.3) \times 10^{-6}$

- $Br (B^0 \rightarrow \pi^0 \pi^0) / Br (B^{\pm} \rightarrow \pi^{\pm} \pi^0)$, GC bound: $|\alpha_{eff} \alpha| < 47^{\circ}$
- Statistics too low to perform isospin analysis

$B^0 \rightarrow \rho^+ \rho^-$

- Same scenario, tree diagram + penguin contributions
- \rightarrow asymmetry sensitive to sin $2\alpha_{eff}$

 P → VV decay: 3 helicity states. From angular analysis: longitudinal polarization is dominant
 f_L = 0.99 ± 0.03 ^{+0.04} -0.02
 → CP-even final state

- Branching fraction relatively high $Br(B^0 \rightarrow \rho^+ \rho^-) = (30 \pm 4 \pm 5) \times 10^{-6} [Br(B^0 \rightarrow \pi\pi) \sim 5 \times 10^{-6}]$ submitted to PRL
- Penguin contamination expected to be small (can be bound experimentally)

Maximum Likelihood fit on m_{ES} , ΔE , NN(evt. shape), Δt , M(ρ), ρ helicity angles

Assuming SU(2)

Limit on the penguins via the Grossmann-Quinn bound:

 $B^0 \rightarrow \rho^+ \rho^-$

$$Br(B^{+} \rightarrow \rho^{+}\rho^{0}) = (22.5^{+5.7}_{-5.4} \pm 4.9) \times 10^{-6}$$

$$Br(B^{0} \rightarrow \rho^{0}\rho^{0}) = 0.6^{+0.7}_{-0.6} \pm 0.1) \times 10^{-6}$$

$$\sin^{2} (\alpha_{eff} - \alpha) \leq \frac{f_{L}(B^{0} \rightarrow \rho^{0}\rho^{0}) Br (B^{0} \rightarrow \rho^{0}\rho^{0})}{f_{L}(B^{\pm} \rightarrow \rho^{\pm}\rho^{0}) Br (B^{\pm} \rightarrow \rho^{\pm}\rho^{0})}$$

$$|\alpha_{eff} - \alpha| < 13^{\circ} (68 \% \text{ C.L.})$$

Isospin analysis

$$\alpha = 95^{\circ} \pm 10^{\circ +4^{\circ}}_{-3^{\circ}} \pm 13^{\circ} (\text{penguin})$$

 $B^0 \rightarrow \pi^+\pi^-, \rho^+\rho^-$

 $\boldsymbol{\alpha}$ starts to constraint the UT vertex

 γ is the phase between the amplitudes of b \rightarrow u and b \rightarrow c

Exploits the interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$ when D^0 / \overline{D}^0 decay to a common final state f

Theoretically clean extraction of γ but generally with discrete ambiguities The number of ambiguities depends on the D final state **f**

$B^- \rightarrow [K^+\pi^-]_D K^-$

 r_d

Atwood-Duniets-Sony (ADS): equalize the interference amplitudes

favoured	suppressed		
$B^- \rightarrow D^0 K^-$	$D^0 \rightarrow K^+ \pi^-$		

$$\begin{split} R_{ADS} &= \frac{Br([K^{+}\pi^{-}]K^{-}) + Br([K^{-}\pi^{+}]K^{+})}{Br([K^{-}\pi^{+}]K^{-}) + Br([K^{+}\pi^{-}]K^{+})} = r_{d}^{2} + r_{b}^{2} + 2r_{b}r_{d}\cos\delta\cos\gamma \\ A_{ADS} &= \frac{Br([K^{+}\pi^{-}]K^{-}) - Br([K^{+}\pi^{-}]K^{+})}{Br([K^{+}\pi^{-}]K^{-}) + Br([K^{-}\pi^{+}]K^{+})} = 2r_{b}r_{d}\sin\delta\sin\gamma/R_{ADS} \\ &= \frac{|A(D^{0} \to K^{+}\pi^{-})|}{|A(D^{0} \to K^{-}\pi^{+})|} = 0.060 \pm 0.003 \qquad r_{b} = \frac{|A(B^{-} \to \overline{D}^{0}K^{-})|}{|A(B^{-} \to \overline{D}^{0}K^{-})|} \qquad \delta = \text{strong phase diff.} \\ A(B^{-} \to \overline{D}^{0}K^{-}) = 0.060 \pm 0.003 \qquad r_{b} = \frac{|A(B^{-} \to \overline{D}^{0}K^{-})|}{|A(B^{-} \to D^{0}K^{-})|} \qquad \delta = \text{strong phase diff.} \\ A(B^{-} \to \overline{D}^{0}K^{-}) = 0.060 \pm 0.003 \qquad r_{b} = \frac{|A(B^{-} \to \overline{D}^{0}K^{-})|}{|A(B^{-} \to D^{0}K^{-})|} \qquad \delta = \text{strong phase diff.} \\ A(B^{-} \to \overline{D}^{0}K^{-}) = 0.060 \pm 0.003 \qquad r_{b} = \frac{|A(B^{-} \to \overline{D}^{0}K^{-})|}{|A(B^{-} \to D^{0}K^{-})|} \qquad \delta = \text{strong phase diff.} \\ A(B^{-} \to \overline{D}^{0}K^{-}) = 0.060 \pm 0.003 \qquad r_{b} = \frac{|A(B^{-} \to \overline{D}^{0}K^{-})|}{|A(B^{-} \to D^{0}K^{-})|} \qquad \delta = \text{strong phase diff.} \\ A(B^{-} \to \overline{D}^{0}K^{-}) = 0.060 \pm 0.003 \qquad r_{b} = \frac{|A(B^{-} \to D^{0}K^{-})|}{|A(B^{-} \to D^{0}K^{-})|} \qquad \delta = \frac{|A(B$$

 $B^- \rightarrow [K^+\pi^-]_D K^-$

Perspectives for γ

Many decay modes give information on γ :

- B $\rightarrow D^{(*)}K^{(*)}$, D⁰ \rightarrow CP eigenstate
- B $\rightarrow D^{(*)}K^{(*)}$, D⁰ \rightarrow Double Cabibbo Suppressed (previous slides)

Provide a theoretically clean measurement of γ , but require very large B samples

• $B^0 \rightarrow D^*\pi$ (time dependent analysis, measures sin(2 β + γ))

Also requires large statistics, theoretical interpretation not as clean

• B $\rightarrow D^{(*)}K^{(*)}, D^0 \rightarrow 3\text{-body}$

Dalitz analysis to evaluate strong interaction contribution, requires less statistics. Next summer, with ~ 200 fb-1, could provide γ with an error of $15^{\circ} \div 20^{\circ}$

Status for β

CP violation in B decays has been observed, sin2 β is

 $sin 2\beta = 0.741 \pm 0.067 \pm 0.034$ (89M BB)

theory error on $\sin 2\beta$ with J/ Ψ K⁰s <1% still room for improvement with larger data samples

New time-dependent asymmetry measurement with B^o $\rightarrow J/\psi K^{*o}(K_s \pi^0)$ P \rightarrow VV: angular analysis required

cos 2β < 0 (89% C.L.)

Other B decays are sensitive to $\sin 2\beta$: $K_{s}^{0}\phi$, $K_{s}^{0}\pi^{0}$, ... mostly useful to search for NP

preliminary

0.2

UTfit

-0.5

Sensitive to NP in sin2 β_{eff}

- $\bullet ~B^0 \! \rightarrow ~ \phi ~K_{_S}$
- $B^0 \rightarrow K^+K^-K_s$

•
$$B^0 \rightarrow f_0 K_s$$

•
$$B^0 \rightarrow K_s \pi^0$$

•
$$B^0 \rightarrow K^{\star 0} (\rightarrow K_s \pi) \gamma$$

radiative decays

 $\bullet ~B \rightarrow \gamma \, X_s^{}$

•
$$B \rightarrow \gamma K^*$$

•
$$B^0 \rightarrow I^+I^-X_s$$

$B^0 \rightarrow \phi K_s$

search for NP \Rightarrow comparison of CP-violating observables with SM expectation

$$B^0 \rightarrow \phi K_s$$

Combined $B^0 \rightarrow \phi K_s B^0 \rightarrow \phi K_l$ result:

 $S = 0.47 \pm 0.34 +0.08$ -0.06 $C = 0.01 \pm 0.33 \pm 0.10$

In the SM: $S = sin(2\beta) = 0.74$, C=0 results compatible at the 1σ level

N.B. Belle finds $S = -0.96 \pm 0.50 + 0.09$ $_{-0.11}$ $C = 0.15 \pm 0.29 \pm 0.07$ 3.5 σ from the SM 2.5 σ from BaBar

$B^0 \rightarrow K^+ K^- K_s$

Decay dominated by pure b $\rightarrow s\bar{ss}$ gluonic penguins

veto on ϕ

```
determine CP-even fraction from:
```

helicity angle of K⁺K⁻ + isospin relations $f_{CP-EVEN} = 0.98 \pm 0.15 \pm 0.04$

$$S = -0.56 \pm 0.25 \pm 0.04 + 0 - 0.17$$
$$C = 0.10 \pm 0.19 \pm 0.09$$

consistent with SM:

$$S = -\sin(2\beta)$$

$$\mathbf{C} = \mathbf{0}$$

$B^0 \rightarrow f_0(980) K_s$

Decay dominated by pure b \rightarrow ss gluonic penguins (b \rightarrow uus suppressed)

B° Tags total bkg reconstruct $f_0 \rightarrow \pi \pi$ ontinuum bkg Fit m_{FS}, ΔE , NN(evt. shape), M($\pi\pi$) ∆t(ps) B[°] Tags $S = -1.62 + 0.56 = -0.51 \pm 0.10$ $C = 0.27 \pm 0.36 \pm 0.12$ 0 ∆t(ps) Asymmetry 0.5 f_0 is scalar, f_0K_s is CP-even ∆t(ps) -4 -2 2 SM expectation : S \simeq - sin(2 β) 94 \pm 14 \pm 6 signal events

Moriond EW 04

$$B^0 \rightarrow K_s \pi^0$$

$$C = 0.40^{+0.27}_{-0.28} \pm 0.09$$

25

-2

Moriond EW 04

2

∆t (ps)

 $-\eta_f \times S_f$

In the SM flavour changing neutral currents are forbidden at the tree level

Additional contributions may come from exotic (super- symmetric) particles and modify the SM predictions

X_s reconstructed in 12 exclusive self-tagging channels : K + n π (n<4, at most 2 π⁰)
 0.6 GeV < m (X_s) < 2.3 GeV (48% of the total rate)

89M BB

Hep-ex/0403035

 ${\sf A}_{\sf CP} = (2.5\pm5.0\pm1.5)~\%$

 $B \rightarrow K^* \gamma$

$$B^0 \rightarrow K^{*0} \gamma (K^{*0} \rightarrow K_s \pi^0)$$

• Final state accessible to both B^0 and \overline{B}^0

Vertexing like in $K_s \pi^0$ – Measurament of CP asymmetry in the interference between decay and mixing: $A_{CP}(t) = S \sin(\Delta m t) - C \cos(\Delta m t)$

• In the limit of massless s quark, the final state γ is completely polarized with opposite helicities for B and B. Helicity suppression can change if NP.

$$B^0 \rightarrow I^+I^- X_s$$

SM:

Process allowed via EW penguins and W-box diagrams

NP in these loops would contribute at the SM order

Measured:

$$Br (B \rightarrow I^+I^-X_s) = (5.6 \pm 1.5 \pm 0.6 \pm 1.1) \times 10^{-6}$$

submitted to PRL

 $|V_{_{cb}}|$ from inclusive b \rightarrow c I ν decays

• $B \rightarrow X_c I v$

See also seminar by Bob Kowalewski, 30 April 2004 http://particle.phys.uvic.ca/kowalews/babar/Rome-Frascati-seminar.pdf

Semileptonic B decays provide best method for determination of $|V_{cb}|$ and $|V_{ub}|$

Transition matrix element factorizes:

- Leptonic current (W \rightarrow I v) (easy)
- Hadronic current (b \rightarrow W c) (QCD, hadronic uncertainties)

Theoretical framework: Heavy Quark Expansions relate Br($B \rightarrow X_c | v$) to $|V_{cb}|$ Relation contains heavy quark masses $m_b(\mu)$, $m_c(\mu)$ and 4 non-perturbative parameters – large uncertainties

Br, $|V_{cb}|$ and the 6 parameters determined from a fit to the moments of the hadronic-mass and electron-energy distributions

$\bullet B \rightarrow X_c e \nu \text{ decays } \longrightarrow \text{ electron-energy moments}$

- High energy electron p* > 1.4 GeV/c
- Oppositely charged signal electron
- Veto back-to-back electrons and J/ψ

take into account backgrounds, electron efficiency, mixing, Bremsstrahlung ... contribution from $B \rightarrow X_u e v$; correction for QED radiative effects ... corrections due to finite histogram binning and boost

Extract 0th - 3th moments vs E_{e,cut}

• B \rightarrow X I v decays \rightarrow

hadronic-mass moments

- Fully recostructed hadronic B decay
- Semileptonic decay of other B
- M_{χ} from kinematic fit: $p_{\chi}^2 = 0$, 4-momentum conservation, mB

Extract $< M_x^k >$, k=1..4

Main uncertainties are non b \rightarrow c lv background, simulation of track and neutral reconstruction, modeling of QED radiation, B-reco sideband subtraction

Combined Fit to E, and M_X Moments

 $\chi^2 = 15.0$ (N_{dof} = 20)

Overall power of E_1 and M_X is comparable M_X higher sensitivity but higher exp. uncertainty E_1 less sensitivity but higher precision

Separate fits applying constraints derived from m_{B^*} - m_B and QCD sum rules

$|V_{cb}|$ – OPE preliminary fit results

Different OPE schemes used

HFAG average from D* I v $|V_{cb}| = (40.1 \pm 0.9_{exp} \pm 1.8_{th}) \times 10^{-3}$

BaBar preliminary D* I v

$$|V_{cb}| = (37.1 \pm 1.5_{exp} \pm 1.6_{th}) \times 10^{-3}$$

BaBar preliminary HQE fit to semileptonic moments $|V_{cb}| = (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{th}) \times 10^{-3}$

- $B \rightarrow J/\psi K \pi \pi$
- $B \rightarrow X(3872) \text{ K}^-$
- $B \rightarrow D_{sJ}D^*$
- $B \rightarrow$ charmless isoscalar pairs
- B $\rightarrow~\eta~K$, $\eta~\rho,\eta~\pi^0,\,\omega~\pi^0$
- $B \rightarrow a_0^{}$ (K⁰,K, π)

Br(B⁻→ J/ψ K⁻π⁺π⁻)= (11.6 ± 0.7 ± 0.9) × 10⁻⁴

Confirmed the observation of X(3872) \rightarrow J/ $\psi \pi^+\pi^-$ by Belle and CDF

 m_{χ} = 3873.4 ± 1.4 MeV/c²

 $\begin{array}{l} \textit{Br}(B \rightarrow X(3872)\text{K}^{-}) \times \textit{Br}(X \rightarrow J/\psi \ \pi^{+}\pi^{-}) = \\ (1.28 \pm 0.41) \ \times 10^{-5} \end{array}$

$$Br(B \to h_c \text{ K}^-) \times Br(h_c \to J/\psi \pi^+\pi^-) < 3.4 \times 10^{-6}$$
$$Br(B^- \to J/\psi D^0\pi^-) < 5.2 \times 10^{-5}$$

In 2003 BaBar discovered a new narrow $D_s^+\pi^0$ resonance near 2.32 GeV/c² and observed a second new $D_s^{*+}\pi^0$ resonance near 2.46 GeV/c².

 $B \to D_{sJ} D^{(\star)}$

hep-ex/0403046	sub.	to	PRL
----------------	------	----	-----

Mode	$S(\sigma)$	$\mathcal{B}(10^{-6})$	UL (10^{-6})	UL (10^{-6}) CLEO
ηη	0.0	$-0.9^{+1.6}_{-1.4}\pm0.7$	< 2.8	< 18
$\eta\eta'$	0.3	$0.6^{+2.1}_{-1.7}\pm 1.1$	< 4.6	< 27
$\eta'\eta'$	0.4	$1.7^{+4.8}_{-3.7}\pm 0.6$	< 10	< 47
$\eta\omega$	4.3	$4.0^{+1.3}_{-1.2}\pm0.4$	< 6.2	< 12
$\eta'\omega$	0.0	$-0.2^{+1.3}_{-0.9}\pm0.4$	< 2.8	< 60
$\eta\phi$	0.0	$-1.4^{+0.7}_{-0.4}\pm0.2$	< 1.0	< 9
$\eta'\phi$	0.8	$1.5^{+1.8}_{-1.5}\pm 0.4$	< 4.5	< 31
$\phi\phi$	0.3	$0.3^{+0.7}_{-0.4}\pm 0.1$	< 1.5	< 12

	Mode	$\mathcal{S}(\sigma)$	$\mathcal{B}(10^{-6})$	UL (10^{-6})	\mathcal{A}_{ch}	
	$B^+ ightarrow \eta' K^+$	> 10	76.9 ± 3.5		0.037 ± 0.045	PRL 91, 161801 2003
	$B^{\circ} \rightarrow \eta^{\prime} K^{\circ}$	> 10	60.6 ± 5.6			101001 2003
	$B^+ o \eta \pi^+$	7.9	$5.3\pm1.0\pm0.3$		$-0.44 \pm 0.18 \pm 0.01$	
	$B^+ o \eta K^+$	6.1	$\textbf{3.4} \pm \textbf{0.8} \pm \textbf{0.2}$		$-0.52 \pm 0.24 \pm 0.01$	PRL 92.
	$B^0 o \eta K^0$	3.3	$2.9\pm1.0\pm0.2$	< 5.2		061801 2004
	$B^+ o \eta' \pi^+$	3.4	$\textbf{2.7} \pm \textbf{1.2} \pm \textbf{0.3}$	< 4.5		
-	$B^+_{ m a} ightarrow \eta K^{*+}_{ m a}$	9	$\textbf{25.6} \pm \textbf{4.0} \pm \textbf{2.4}$		$+0.13 \pm 0.14 \pm 0.02$	i
	$B^0 o \eta K^{*0}$	11	$18.6\pm2.3\pm1.2$		$+0.02\pm0.11\pm0.02$	
	$B^+ o \eta ho^+$	3.5	$\textbf{9.2} \pm \textbf{3.4} \pm \textbf{1.0}$	< 14		
	$B^0 o \eta ho^0$	_	$-1.1^{+0.7}_{-0.9}\pm0.4$	< 1.5		
	$B^0 o \eta \pi^0$	0.8	$0.7^{+1.1}_{-0.9}\pm0.3$	< 2.5		
	$B^+ o \eta' K^{*+}$	1.9	$6.3^{+4.6}_{-3.6}\pm1.8$	< 14		New
	$B^0 o \eta' K^{st 0}$	2.1	$4.1^{+2.1}_{-1.8}\pm1.2$	< 7.6		
	$B^+ o \eta' ho^+$	2.6	$12.9^{+6.2}_{-5.5}\pm2.0$	< 22		
	$B^0 o \eta' ho^0$	0.5	$0.8^{+1.7}_{-1.2}\pm0.9$	< 4.3		
	$B^0 o \eta' \pi^0$	0.7	$1.0^{+1.4}_{-1.0}\pm0.8$	< 3.7		
	$B^0 o \omega \pi^0$		$-0.6^{+0.7}_{-0.5}\pm0.2$	< 1.2		
	$B^0 o \phi \pi^0$	0.7	$0.2^{+0.4}_{-0.3}\pm0.1$	< 1.0		

$B \rightarrow scalar a_0$ mesons

UML fits; $a_0 \rightarrow \eta \pi, \eta \rightarrow \gamma \gamma, 3\pi$

No evidence of signal

No confirmation of previous $3.7\sigma \ B^0 \rightarrow a_0(980)^-\pi^+$

		Pr	Preliminary	
Mode	$\mathcal{S}(\sigma)$	$\mathcal{B}(10^{-6})$	UL (10^{-6})	
$B^0 ightarrow a_0^- \pi^+$	2.0	$2.8^{+1.5}_{-1.3}\pm 0.7$	< 5.1	
$B^0 ightarrow a_0^- K^+$	0.4	$0.4^{+1.0}_{-0.8}\pm0.2$	< 2.1	
$B^- ightarrow a_0^- K^0$	0.6	$-1.5^{+2.4}_{-1.8}\pm0.8$	< 3.9	
$B^+ ightarrow a_0^0 \pi^+$	1.9	$3.6^{+2.1}_{-1.9}\pm 0.8$	< 6.7	
$B^+ ightarrow a_0^0 K^+$	0.0	$-3.7^{+1.6}_{-1.3}\pm0.5$	< 1.8	
$B^0 ightarrow a_0^0 K^0$	1.0	$2.8^{+3.1}_{-2.4}\pm1.1$	< 7.8	

In conclusion

No hint for NP yet - nothing beyond the SM observed in BaBar

Belle finds $B^0 \rightarrow \phi K_s$ at 3.5 σ from the SM but also at 2.5 σ from BaBar And Belle – BaBar discrepancy in $B^0 \rightarrow \pi^+\pi^-$ is now down to 2.2 σ ϕK_s like $\pi^+\pi^-$?

Summer 2004: with > 200 fb⁻¹ BaBar will update

• $B \rightarrow \pi^+ \pi^-$ • $B \rightarrow \phi K_{\alpha}$		L _{peak} (10 ³³)	L _{int} fb ⁻¹
• $B \rightarrow K_{z}\pi^{0}$	2004	12.5	260
5	2005	18.2	395
	2006	23	580
	2007	30	880

