Recent Results of BaBar

- UT angles α, γ, β
- Measurements sensitive to New Physics
- $\left|\mathrm{V}_{\mathrm{cb}}\right|$
- New particles and rare decays

PEP II

$9 \mathrm{GeV} e^{-} \times 3.1 \mathrm{GeV} e^{+}$
$\mathrm{Y}(4 \mathrm{~S})$ boost $\beta \gamma=0.55$

$L_{\text {peak }}{ }^{\left(10^{33}\right)} \quad L_{\text {int }}{ }^{f b^{-1}}$

2004
2005 2006 2007

12.5	260
18.2	395
23	580
30	880

BaBar

Coherent Time Evolution at the $\mathrm{Y}(4 \mathrm{~S})$

$$
\begin{gathered}
\text { CPV in mixing-decay interference direct CPV } \\
\mathrm{dN} \propto \exp \left(-|\Delta \mathrm{t}| / \tau_{\mathrm{B}}\right)(1 \pm \mathrm{D}(\mathrm{~S} \sin (\Delta \mathrm{~m} \Delta \mathrm{t})-\mathrm{C} \cos (\Delta \mathrm{~m} \Delta \mathrm{t}))) \otimes \mathrm{R} \\
\mathrm{~S}=\frac{2 \Im \lambda}{1+|\lambda|^{2}} \quad \mathrm{C}=\frac{1-|\lambda|^{2}}{1+|\lambda|^{2}} \\
\mathbf{D}=\text { mistag dilution } \quad \mathbf{R}=\text { time resolution }
\end{gathered}
$$

B meson reconstruction at the $\mathrm{Y}(4 \mathrm{~S})$

$$
\begin{aligned}
& \Delta E=E_{B}^{*}-\sqrt{\mathrm{s} / 2} \\
& \mathrm{~m}_{\mathrm{ES}}=\sqrt{\left.\left(\mathrm{s} / 4-\mathrm{p}_{\mathrm{B}}^{*}\right)^{2}\right)} \\
& \sigma\left(\mathrm{m}_{\mathrm{ES}}\right) \approx 2.5 \mathrm{MeV} \\
& \sigma(\Delta \mathrm{E}) \approx 15-30 \mathrm{MeV}
\end{aligned}
$$

Angles of the Unitarity Triangle

$$
\mathrm{V}_{\mathrm{CKM}}=\left[\begin{array}{ccc}
\mathrm{V}_{\mathrm{ud}} & \mathrm{~V}_{\mathrm{us}} & \mathrm{~V}_{\mathrm{ub}} \\
\mathrm{~V}_{\mathrm{cd}} & \mathrm{~V}_{\mathrm{cs}} & \mathrm{~V}_{\mathrm{cb}} \\
\mathrm{~V}_{\mathrm{td}} & \mathrm{~V}_{\mathrm{ts}} & \mathrm{~V}_{\mathrm{tb}}
\end{array}\right] \quad \mathrm{V}_{\mathrm{ub}} \cdot \mathrm{~V}_{\mathrm{ud}+}+\mathrm{V}_{\mathrm{cb}} \cdot \mathrm{~V}_{\mathrm{cd}+} \mathrm{V}_{\mathrm{tb}} \cdot \mathrm{~V}_{\mathrm{td}}=0
$$

$B^{0} \rightarrow \rho^{+} \rho^{-}$	$\cdots \cdots$	α
$B^{-} \rightarrow D^{0}\left[K^{+} \pi^{-}\right] K^{-}$	\cdots	$\boldsymbol{\mapsto}$
$B^{-} \rightarrow J / \psi K^{* 0}$	$\cdots \cdots$	β

$B^{0} \rightarrow \pi^{+} \pi^{-}\left(\rho^{+} \rho{ }^{-}\right)$

Penguin contributions introduce additional phases extra weak and strong phases $+|\mathrm{P} / \mathrm{T}|$ modify α :

$$
\begin{aligned}
& \sin 2 \alpha \rightarrow \sin 2 \alpha_{\text {eff }} \\
& 2 \alpha=2 \alpha_{\text {eff }}+k_{\pi \pi}
\end{aligned}
$$

Penguin contributions for $B^{0} \rightarrow \pi^{+} \pi^{-}$are large
$B^{0} \rightarrow \pi^{+} \pi^{-}$

To relate α to $\alpha_{\text {eff }}$

Assuming $\operatorname{SU}(2)$

- Isospin analysis

$$
2 \alpha=2 \alpha_{\mathrm{eff}}+k_{\pi \pi}
$$

Need flavour tagged rates for

$\pi^{+} \pi, \pi^{ \pm} \pi^{0}, \pi^{0} \pi^{0}$

- Grossmann-Quinn bound: $\quad \sin ^{2}\left(\alpha_{\text {eff }}-\alpha\right) \leq \frac{\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{Br}\left(\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)}$

$$
\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)=(2.1 \pm 0.6 \pm 0.3) \times 10^{-6}
$$

BaBar PRL 91, 241801 (2003)

- $\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}\right) / \operatorname{Br}\left(\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right), \mathrm{GC}$ bound: $\left|\alpha_{\text {eff }}-\alpha\right|<47^{\circ}$
- Statistics too low to perform isospin analysis
$B^{0} \rightarrow \rho^{+} \rho^{-}$
- Same scenario, tree diagram + penguin contributions
\rightarrow asymmetry sensitive to $\sin 2 \alpha_{\text {eff }}$

- $\mathrm{P} \rightarrow \mathrm{VV}$ decay: 3 helicity states.

From angular analysis: longitudinal polarization is dominant
$\mathrm{f}_{\mathrm{L}}=0.99 \pm 0.03^{+0.04}$
-0.02
\rightarrow CP-even final state

- Branching fraction relatively high
$\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \rho^{+} \rho^{-}\right)=(30 \pm 4 \pm 5) \times 10^{-6} \quad\left[\operatorname{Br}\left(\mathrm{~B}^{0} \rightarrow \pi \pi\right) \sim 5 \times 10^{-6}\right] \quad$ submitted to PRL
- Penguin contamination expected to be small (can be bound experimentally)

Maximum Likelihood fit on $m_{\text {ES }}, \Delta E, N N($ evt. shape $), \Delta t$, $M(\rho), \rho$ helicity angles
with 114×10^{6} BB pairs:

- $S_{\text {long }}=-0.19 \pm 0.33 \pm 0.11$
- $C_{\text {long }}=-0.23 \pm 0.24 \pm 0.14$ preliminary

$B^{0} \rightarrow \rho^{+} \rho^{-}$

Assuming $S U(2)$
Limit on the penguins via the Grossmann-Quinn bound:

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{B}^{+} \rightarrow \rho^{+} \rho^{0}\right)=\left(22.5^{+5.7}-5.4 \pm 4.9\right) \times 10^{-6} \\
& \left.\operatorname{Br}\left(\mathrm{~B}^{0} \rightarrow \rho^{0} \rho^{0}\right)=0.6^{+0.7}{ }_{-0.6} \pm 0.1\right) \times 10^{-6} \\
& \sin ^{2}\left(\alpha_{\text {eff }}-\alpha\right) \leq \frac{\mathrm{f}_{\mathrm{L}}\left(\mathrm{~B}^{0} \rightarrow \rho^{0} \rho^{0}\right) \mathrm{Br}\left(\mathrm{~B}^{0} \rightarrow \rho^{0} \rho^{0}\right)}{\mathrm{f}_{\mathrm{L}}\left(\mathrm{~B}^{ \pm} \rightarrow \rho^{ \pm} \rho^{0}\right) \operatorname{Br}\left(\mathrm{B}^{ \pm} \rightarrow \rho^{ \pm} \rho^{0}\right)} \\
& \left|\alpha_{\text {eff }}-\alpha\right|<13^{\circ}(68 \% \mathrm{C} . \mathrm{L} .)
\end{aligned}
$$

$B^{0} \rightarrow \pi^{+} \pi^{-}, \rho^{+} \rho^{-}$

BaBar only
14
γ is the phase between the amplitudes of $b \rightarrow u$ and $b \rightarrow c$

colour suppressed

Exploits the interference between $\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}$and $\mathrm{B}^{-} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{-}$when D^{0} / \bar{D}^{0} decay to a common final state f

Theoretically clean extraction of γ but generally with discrete ambiguities The number of ambiguities depends on the D final state \mathbf{f}

Atwood-Duniets-Sony (ADS): equalize the interference amplitudes

favoured	suppressed
$B^{-} \rightarrow D^{0} K^{-}$	$D^{0} \rightarrow K^{+} \pi^{-}$
suppressed	favoured
$B^{-} \rightarrow \mathrm{D}^{0} K^{-}$	$D^{0} \rightarrow K^{+} \pi^{-}$

$$
\begin{gathered}
\left.R_{A D S}=\frac{B r\left(\left[K^{+} \pi^{-}\right] K^{-}\right)+\operatorname{Br}\left(\left[K^{-} \pi^{+}\right] K^{+}\right)}{\operatorname{Br}\left(\left[K^{-} \pi^{+}\right] K^{-}\right)+\operatorname{Br}\left(\left[K^{+} \pi^{-}\right] K^{+}\right)}=r_{d}^{2}+r_{b}^{2}+2 r_{b} r_{d} \cos \delta \mathrm{cds} \gamma\right) \\
\left.A_{A D S}=\frac{B r\left(\left[K^{+} \pi^{-}\right] K^{-}\right)-B r\left(\left[K^{-} \pi^{+}\right] K^{+}\right)}{B r\left(\left[K^{+} \pi^{-}\right] K^{-}\right)+B r\left(\left[K^{-} \pi^{+}\right] K^{+}\right)}=2 r_{b} r_{d} \sin \delta \sin \gamma\right] R_{A D S}
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(\left[K^{+} \pi^{-}\right] K^{-}\right)+\operatorname{Br}\left(\left[K^{-} \pi^{+}\right] K^{+}\right) \\
& r_{d}= \frac{\left|A\left(D^{0} \rightarrow K^{+} \pi^{-}\right)\right|}{\left|A\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right|}=0.060 \pm 0.003 \quad r_{b}=\frac{\left|A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)\right|}{\left|A\left(B^{-} \rightarrow D^{0} K^{-}\right)\right|} \quad \begin{array}{c}
\delta\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right) \text {and } A\left(B^{-} \rightarrow D^{0} K^{-}\right) \quad \gamma
\end{array}
\end{aligned}
$$

$N\left(\left[K^{ \pm} \pi^{\mp}\right] K^{\mp}\right)=1 \pm 3$
$\mathrm{A}_{\text {ADS }}$ not measured
Limit on $\mathrm{R}_{\text {ADS }}$:

$$
R_{\text {ADS }}<0.026 \text { (90\% C.L.) }
$$

First experimental limit on r_{b} : $r_{b}<0.22$ (90% C.L.)

$$
\mathrm{R}_{\mathrm{ADS}}=0.026
$$

hep-ex/0402024 Sub. to PRL

$$
-2 .
$$

-

Perspectives for γ

Many decay modes give information on γ :

- $B \rightarrow D^{(*)} K^{(*)}, D^{0} \rightarrow C P$ eigenstate
- $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{(*)}, \mathrm{D}^{0} \rightarrow$ Double Cabibbo Suppressed (previous slides)

Provide a theoretically clean measurement of γ, but require very large B samples

- $\mathrm{B}^{0} \rightarrow \mathrm{D}^{\star} \pi$ (time dependent analysis, measures $\sin (2 \beta+\gamma)$)

Also requires large statistics, theoretical interpretation not as clean

- $B \rightarrow D^{(*)} K^{(*)}, D^{0} \rightarrow 3$-body

Dalitz analysis to evaluate strong interaction contribution, requires less statistics. Next summer, with $\sim 200 \mathrm{fb}-1$, could provide γ with an error of $15^{\circ} \div 20^{\circ}$

Status for β

CP violation in B decays has been observed, sin 2β is
$\sin 2 \beta=0.741 \pm 0.067 \pm 0.034(89 \mathrm{M} \mathrm{BB})$
theory error on $\sin 2 \beta$ with $\mathrm{J} / \Psi^{0} \mathrm{~K}^{0} \mathrm{~s}<1 \%$ still room for improvement with larger data samples

New time-dependent asymmetry measurement with $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{* 0}\left(\mathrm{~K}_{\mathrm{s}} \pi^{0}\right)$ $\mathrm{P} \rightarrow \mathrm{VV}$: angular analysis required
$\cos 2 \beta<0$ (89\% C.L.)

```
preliminary
```

IF

Other B decays are sensitive to $\sin 2 \beta: \mathrm{K}_{\mathrm{s}}^{0} \phi, \mathrm{~K}_{\mathrm{s}}^{0} \pi^{0}, \ldots$ mostly useful to search for NP

EW

Sensitive to NP in $\sin 2 \beta_{\text {eff }}$

- $\mathrm{B}^{0} \rightarrow \phi \mathrm{~K}_{\mathrm{s}}$
- $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \mathrm{K}_{\mathrm{s}}$
- $\mathrm{B}^{0} \rightarrow \mathrm{f}_{0} \mathrm{~K}_{\mathrm{s}}$
- $\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{0}$
- $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0}\left(\rightarrow \mathrm{~K}_{\mathrm{s}} \pi\right) \gamma$
radiative decays
- $B \rightarrow \gamma X_{s}$
- $B \rightarrow \gamma \mathrm{~K}^{*}$
- $\mathrm{B}^{0} \rightarrow \mathrm{I}^{+} \mathrm{I}^{-} \mathrm{X}_{\mathrm{s}}$
$B^{0} \rightarrow \phi K_{s}$

Decay dominated by pure $b \rightarrow$ sss gluonic penguins
$A_{C P}(t)=S \sin (\Delta m \Delta t)-C \cos (\Delta m \Delta t)$
In the $S M: \quad C=0, S=-\eta_{f} \sin (2 \beta)$

$$
\eta_{f}=-1(+1) \text { for } \phi K_{S}\left(\phi \mathrm{~K}_{\mathrm{L}}\right)
$$

search for NP \Rightarrow comparison of CP-violating observables with SM expectation

$$
\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}
$$

$B^{0} \rightarrow \phi K_{s}$

Combined $\mathrm{B}^{0} \rightarrow \phi \mathrm{~K}_{\mathrm{S}} \mathrm{B}^{0} \rightarrow \phi \mathrm{~K}_{\mathrm{L}}$ result:

$$
\begin{aligned}
& S=0.47 \pm 0.34^{+0.08}-0.06 \\
& C=0.01 \pm 0.33 \pm 0.10
\end{aligned}
$$

In the $S M$: $S=\sin (2 \beta)=0.74, C=0$ results compatible at the 1σ level
N.B. Belle finds

$$
\begin{aligned}
& S=-0.96 \pm 0.50^{+0.09} \\
& C=0.15 \pm 0.29 \pm 0.07
\end{aligned}
$$

3.5σ from the SM
2.5σ from BaBar
hep-ex/0403026

Decay dominated by pure $\mathrm{b} \rightarrow \mathrm{s} \bar{s} s$ gluonic penguins veto on ϕ determine CP-even fraction from: helicity angle of $\mathrm{K}^{+} \mathrm{K}^{-}+$isospin relations

$$
f_{\text {CP-EVEN }}=0.98 \pm 0.15 \pm 0.04
$$

$$
\begin{aligned}
& S=-0.56 \pm 0.25 \pm 0.04+0-0.17 \\
& C=0.10 \pm 0.19 \pm 0.09
\end{aligned}
$$

consistent with SM:

$$
\begin{aligned}
& S=-\sin (2 \beta) \\
& C=0
\end{aligned}
$$

$\mathrm{B}^{0} \rightarrow \mathrm{f}_{0}(980) \mathrm{K}_{\mathrm{s}}$

Decay dominated by pure $\mathrm{b} \rightarrow$ ss̄s gluonic penguins ($\mathrm{b} \rightarrow$ uūs suppressed)
reconstruct $\mathrm{f}_{0} \rightarrow \pi \pi$
Fit $m_{E S}, \Delta E, N N($ evt. shape $), M(\pi \pi)$

$$
\begin{aligned}
& S=-1.62^{+0.56}{ }_{-0.51} \pm 0.10 \\
& C=0.27 \pm 0.36 \pm 0.12 \\
& \hline
\end{aligned}
$$

f_{0} is scalar, $\mathrm{f}_{0} \mathrm{~K}_{\mathrm{s}}$ is CP-even
SM expectation : $S \simeq-\sin (2 \beta)$

$\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{0}$

B decay position determined with beam constrained vertexing

Method validated with $\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$

$$
\Upsilon(4 S) \rightarrow B \bar{B}
$$

Decay dominated by $b \rightarrow$ sqव penguins SM expectation : $S \simeq \sin (2 \beta)$

Moriond EW 04
25

Radiative decays

In the SM flavour changing neutral currents are forbidden at the tree level

Additional contributions may come from exotic (super- symmetric) particles and modify the SM predictions

- X_{s} reconstructed in 12 exclusive self-tagging channels: $K+n \pi\left(n<4\right.$, at most $\left.2 \pi^{0}\right)$
- $0.6 \mathrm{GeV}<\mathrm{m}\left(\mathrm{X}_{\mathrm{s}}\right)<2.3 \mathrm{GeV}$ (48% of the total rate)

Signal and background are extracted with a fit to $m_{\text {Es }}$

89M BB

787 ± 54 signal events

769 ± 54 signal events

Hep-ex/0403035
$A_{C P}=(2.5 \pm 5.0 \pm 1.5) \%$
SM: $A_{C P}=\left(0.44+0.24{ }_{-0.14}\right) \%$

$$
\mathrm{B} \rightarrow \mathrm{~K}^{*} \gamma
$$

- $\mathrm{B}^{0} \rightarrow \gamma \mathrm{~K}^{* 0}\left(\mathrm{~K}^{* 0} \rightarrow \mathrm{~K}^{+} \pi^{-}, \mathrm{K}_{\mathrm{s}} \pi^{0}\right)$
- $\mathrm{B}^{+} \rightarrow \gamma \mathrm{K}^{*+}\left(\mathrm{K}^{* 0} \rightarrow \mathrm{~K}^{+} \pi^{0}, \mathrm{~K}_{\mathrm{s}} \pi^{+}\right)$
- Fit $m_{E S}, \Delta E$

Measure CP and isospin asymmetries

SM:

$$
\begin{aligned}
& A_{C P}=<1 \% \\
& \Delta_{0-}=+5 \div 10 \%
\end{aligned}
$$

Measured:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{CP}}=(-1.5 \pm 3.6 \pm 1.0) \% \\
& \Delta_{0-}=\left(+5.1 \pm 4.4 \pm 2.3 \pm 2.4\left(\mathrm{R}^{+/-}\right)\right) \%
\end{aligned}
$$

$$
\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \gamma\left(\mathrm{~K}^{* 0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{0}\right)
$$

- Final state accessible to both B^{0} and $\overline{\mathrm{B}}^{0}$

Vertexing like in $\mathrm{K}_{s} \pi^{0}$ - Measurament of CP asymmetry in the interference between decay and mixing: $\mathrm{A}_{\mathrm{CP}}(\mathrm{t})=\mathrm{S} \sin (\Delta \mathrm{mt})-\mathrm{C} \cos (\Delta \mathrm{mt})$

- In the limit of massless s quark, the final state γ is completely polarized with opposite helicities for B and $\overline{\mathrm{B}}$. Helicity suppression can change if NP.

Measured: $S=0.25 \pm 0.63 \pm 0.14$

$$
C=-0.56 \pm 0.32 \pm 0.09
$$

Process allowed via EW penguins and W-box diagrams

NP in these loops would contribute at the SM order

$\mathrm{SM}: \quad B r\left(\mathrm{~B} \rightarrow \mathrm{I}^{+I^{-}} \mathrm{X}_{\mathrm{s}}\right)=(4.2 \pm 0.7) \times 10^{-6} \longleftarrow \mathrm{~m}\left(I^{+} I^{-}\right)>0.2 \mathrm{GeV} / \mathrm{c}^{2}$

$\mathrm{X}_{\mathrm{s}}=\mathrm{K}+\mathrm{n} \pi\left(\mathrm{n}<2\right.$, at most $\left.1 \pi^{0}\right)$

Measured:

$\operatorname{Br}\left(\mathrm{B} \rightarrow I^{+} I^{-} X_{\mathrm{s}}\right)=(5.6 \pm 1.5 \pm 0.6 \pm 1.1) \times 10^{-6}$
submitted to PRL
$\left|\mathrm{V}_{\mathrm{cb}}\right|$ from inclusive $\mathrm{b} \rightarrow \mathrm{cI} \mathrm{v}$ decays

- $B \rightarrow X_{c} \mid v$

\%

See also seminar by Bob Kowalewski, 30 April 2004 http://particle.phys.uvic.ca/kowalews/babar/Rome-Frascati-seminar.pdf

The big picture

Semileptonic B decay

Semileptonic B decays provide best method for determination of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$

Transition matrix element factorizes:

- Leptonic current ($\mathrm{W} \rightarrow \mathrm{I} v$) (easy)
- Hadronic current (b \rightarrow W c) (QCD, hadronic uncertainties)

Theoretical framework: Heavy Quark Expansions relate $\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{c}} \mid\right.$ v) to $\left|\mathrm{V}_{\mathrm{cb}}\right|$ Relation contains heavy quark masses $m_{b}(\mu), m_{c}(\mu)$ and 4 non-perturbative parameters - large uncertainties
$B r,\left|V_{c b}\right|$ and the 6 parameters determined from a fit to the moments of the hadronic-mass and electron-energy distributions
$\rightarrow B \rightarrow X_{c} \mathrm{e} v$ decays \longrightarrow electron-energy moments
\rightarrow High energy electron $p^{*}>1.4 \mathrm{GeV} / \mathrm{c}$

- Oppositely charged signal electron
- Veto back-to-back electrons and J/ ψ
take into account backgrounds, electron efficiency, mixing, Bremsstrahlung ... contribution from $B \rightarrow X_{u}$ e v; correction for QED radiative effects ...
corrections due to finite histogram binning and boost

Extract 0th $-3^{\text {th }}$ moments vs $\mathrm{E}_{\mathrm{e}, \text { cut }}$
$\rightarrow \mathrm{B} \rightarrow$ XIvdecays \rightarrow hadronic-mass moments

* Fully recostructed hadronic B decay
- Semileptonic decay of other B
- M_{x} from kinematic fit: $p_{v}{ }^{2}=0,4$-momentum conservation, $m B$

$$
\text { Extract }<M_{x}^{k}>, k=1 . .4
$$

Main uncertainties are non $b \rightarrow c$ lv background, simulation of track and neutral reconstruction, modeling of QED radiation, B-reco sideband subtraction

Combined Fit to E_{1} and M_{x} Moments

E_{1} moments calculated up to $\alpha_{s}{ }^{2} \beta_{0}$
M_{x} moments up to α_{s} (higher order small wrt experimental error)

Separate fit to E_{1} and M_{x} agree well

Overall power of E_{\mid}and M_{x} is comparable
M_{X} higher sensitivity but higher exp. uncertainty
E_{l} less sensitivity but higher precision
Separate fits applying constraints derived from $m_{B^{*}}-m_{B}$ and QCD sum rules

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ - OPE preliminary fit results

Different OPE schemes used
$\left|\mathrm{V}_{\mathrm{cb}}\right|$ - Comparison of inclusive and exclusive determinations

HFAG average from D* $\mid v$

$$
\left|\mathrm{V}_{\mathrm{cb}}\right|=\left(40.1 \pm 0.9_{\exp } \pm 1.8_{\mathrm{th}}\right) \times 10^{-3}
$$

BaBar preliminary $\mathrm{D}^{*} \mid \mathrm{v}$

$$
\left|\mathrm{V}_{\mathrm{cb}}\right|=\left(37.1 \pm 1.5_{\exp } \pm 1.6_{\mathrm{th}}\right) \times 10^{-3}
$$

BaBar preliminary HQE fit to semileptonic moments
$\left|\mathrm{V}_{\mathrm{cb}}\right|=\left(41.4 \pm 0.4_{\exp } \pm 0.4_{\mathrm{HQE}} \pm 0.6_{\mathrm{th}}\right) \times 10^{-3}$

New particles and rare decays

- $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K} \pi \pi$
- $\mathrm{B} \rightarrow \mathrm{X}(3872) \mathrm{K}^{-}$
- $B \rightarrow D_{s J} D^{*}$
- $B \rightarrow$ charmless isoscalar pairs
- $B \rightarrow \eta K, \eta \rho, \eta \pi^{0}, \omega \pi^{0}$
- $B \rightarrow a_{0}\left(K^{0}, K, \pi\right)$
$\operatorname{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{J} / \psi \mathrm{K}^{-} \pi^{+} \pi^{-}\right)=$

$$
(11.6 \pm 0.7 \pm 0.9) \times 10^{-4}
$$

Confirmed the observation of $\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \pi^{+} \pi$ by Belle and CDF

$$
m_{x}=3873.4 \pm 1.4 \mathrm{MeV} / \mathrm{c}^{2}
$$

$\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{X}(3872) \mathrm{K}^{-}\right) \times \operatorname{Br}\left(\mathrm{X} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}\right)=$ $(1.28 \pm 0.41) \times 10^{-5}$

$\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{h}_{\mathrm{c}} \mathrm{K}^{-}\right) \times \operatorname{Br}\left(\mathrm{h}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi \pi^{+} \pi\right)<3.4 \times 10^{-6}$
$\operatorname{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{J} / \psi \mathrm{D}^{0} \pi^{-}\right)<5.2 \times 10^{-5}$
 observed a second new $\mathrm{D}_{\mathrm{s}}^{*+} \pi^{0}$ resonance near $2.46 \mathrm{GeV} / \mathrm{c}^{2}$.
$\mathrm{D}^{*}{ }_{\mathrm{s}}(2317)^{+} \quad$ observed in $\rightarrow \mathrm{D}_{\mathrm{s}}^{+} \pi^{0} \quad \mathrm{~m}=2317.3 \pm 0.4 \pm 0.8 \mathrm{MeV} / \mathrm{c}^{2}$
$\mathrm{D}_{\mathrm{sJ}}(2458)^{+} \quad$ observed in $\rightarrow \mathrm{D}_{\mathrm{s}}{ }^{+} \pi^{0}$

$$
\rightarrow \mathrm{D}_{\mathrm{s}}^{+} \pi^{+} \pi^{-}
$$

$\mathrm{D}_{\mathrm{s}}{ }^{+} \gamma \quad \mathrm{m}=2458.0 \pm 1.0 \pm 1.0 \mathrm{MeV} / \mathrm{c}^{2}$

most likely spin-parity assignement are:

$$
\begin{aligned}
& J^{P}\left(D_{s J}^{*}(2317)^{+}\right)=0^{+} \\
& J^{P}\left(D_{s J}(2458)^{+}\right)=1^{+}
\end{aligned}
$$

$$
B \rightarrow D_{s J} D^{(*)}
$$

Production analyzed both in neutral and in charged B decays, with

$$
\begin{array}{ll}
\mathrm{D}_{\mathrm{sJ}}^{*}(2317)^{+} & \rightarrow \mathrm{D}_{\mathrm{s}}^{+} \pi^{0} \\
\mathrm{D}_{\mathrm{sJ}}(2458)^{+} & \rightarrow D_{\mathrm{s}}^{*}+\pi^{0} \\
& \rightarrow D_{\mathrm{s}}^{+} \gamma
\end{array}
$$

Preliminary

$\theta_{h}=$ angle between D_{s} and B momentum in $\mathrm{D}_{\text {su }}$ rest frame

Angular analysis of $\mathrm{D}_{\mathrm{sJ}}(2458) \rightarrow \mathrm{D}_{\mathrm{s}} \gamma$
χ^{2} fit of $\cos \theta_{h}$ favours $\mathrm{J}=1$ wrt $\mathrm{J}=2$
($\mathrm{J}=0$ ruled out by P and angular momentum conservation)
hep-ex/0403046 sub. to PRL

Mode	$\mathrm{S}(\sigma)$	$\mathcal{B}\left(10^{-6}\right)$	UL (10^{-6})	UL (10^{-6})	CLEO
$\eta \eta$	0.0	$-0.9_{-1.4}^{+1.6} \pm 0.7$	<2.8	<18	
$\eta \eta^{\prime}$	0.3	$0.6{ }_{-1.7}^{+2.1} \pm 1.1$	< 4.6	<27	
$\eta^{\prime} \eta^{\prime}$	0.4	$1.7_{-3.7}^{+4.8} \pm 0.6$	<10	<47	
$\eta \omega$	4.3	$4.0_{-1.2}^{+1.3} \pm 0.4$	< 6.2	<12	
$\eta^{\prime} \omega$	0.0	$-0.2-0.950 .4$	< 2.8	<60	
$\eta \phi$	0.0	$-1.4_{-0.4}^{+0.7} \pm 0.2$	< 1.0	<9	
$\eta^{\prime} \phi$	0.8	$1.5_{-1.5}^{+1.8} \pm 0.4$	< 4.5	<31	
$\phi \phi$	0.3	$0.3_{-0.4}^{+0.7} \pm 0.1$	< 1.5	<12	

$$
B \rightarrow \eta K, \eta \rho, \eta \pi^{0}, \omega \pi^{0}
$$

hep-ex/0403025 sub to PRD					$\begin{aligned} & \text { PRL 91, } \\ & 1618012003 \end{aligned}$
Mode	$\mathcal{S}(\sigma)$	$\mathcal{B}\left(10^{-6}\right)$	UL (10^{-6})	$\mathcal{A}_{\text {ch }}$	
$\boldsymbol{B}^{+} \rightarrow \eta^{\prime} \mathbf{K}^{+}$	>10	76.9 ± 3.5		0.037 ± 0.045	
$B^{0} \rightarrow \eta^{\prime} K^{0}$	>10	60.6 ± 5.6			
$\mathrm{B}^{+} \rightarrow \eta \pi^{+}$	7.9	$5.3 \pm 1.0 \pm 0.3$		$-0.44 \pm 0.18 \pm 0.01$	
$B^{+} \rightarrow \eta K^{+}$	6.1	$3.4 \pm 0.8 \pm 0.2$		$-0.52 \pm 0.24 \pm 0.01$	
$B^{0} \rightarrow \eta K^{0}$	3.3	$2.9 \pm 1.0 \pm 0.2$	<5.2		0618012004
$\boldsymbol{B}^{+} \rightarrow \boldsymbol{\eta}^{\prime} \boldsymbol{\pi}^{+}$	3.4	$2.7 \pm 1.2 \pm 0.3$	<4.5		
$B^{+} \rightarrow \eta K^{*+}$	9	$25.6 \pm 4.0 \pm 2.4$		$+0.13 \pm 0.14 \pm 0.02$	
$B^{0} \rightarrow \eta K^{* 0}$	11	$18.6 \pm 2.3 \pm 1.2$		$+0.02 \pm 0.11 \pm 0.02$	
$\mathrm{B}^{+} \rightarrow \eta \rho^{+}$	3.5	$9.2 \pm 3.4 \pm 1.0$	<14		
$B^{0} \rightarrow \eta \rho^{0}$	-	$-1.1{ }_{-0.9}^{+0.7} \pm 0.4$	<1.5		
$B^{0} \rightarrow \eta \pi^{0}$	0.8	$0.7_{-0.9}^{+1.9} \pm 0.3$	<2.5		
$\boldsymbol{B}^{+} \rightarrow \eta^{\prime} \boldsymbol{K}^{*+}$	1.9	$6.3{ }_{-3.6}^{+4.6} \pm 1.8$	<14		New
$B^{0} \rightarrow \eta^{\prime} K^{* 0}$	2.1	$4.1_{-1.8}^{+2.1} \pm 1.2$	<7.6		
$B^{+} \rightarrow \eta^{\prime} \rho^{+}$	2.6	$12.9{ }_{-5.5}^{+6.2} \pm 2.0$	<22		
$B^{0} \rightarrow \eta^{\prime} \rho^{0}$	0.5	$0.8{ }_{-1.2}^{+5.7} \pm 0.9$	<4.3		
$B^{0} \rightarrow \eta^{\prime} \boldsymbol{\pi}^{0}$	0.7	$1.0_{-1.0}^{+1.4} \pm 0.8$	< 3.7		
$B^{0} \rightarrow \omega \pi^{0}$	-	$-0.6{ }_{-0.5}^{+0.7} \pm 0.2$	<1.2		
$B^{0} \rightarrow \phi \pi^{0}$	0.7	$0.2{ }_{-0.3}^{+0.4} \pm 0.1$	< 1.0		

$\mathrm{B} \rightarrow$ scalar a_{0} mesons

UML fits; $a_{0} \rightarrow \eta \pi, \eta \rightarrow \gamma \gamma, 3 \pi$

No evidence of signal

No confirmation of previous $3.7 \sigma \mathrm{~B}^{0} \rightarrow \mathrm{a}_{0}(980)^{-} \pi^{+}$

	Preliminary		
Mode	$\mathcal{S}(\sigma)$	$\mathcal{B}\left(10^{-6}\right)$	UL (10^{-6})
$B^{0} \rightarrow a_{0}^{-} \pi^{+}$	2.0	$2.8{ }_{-1.3}^{+1.5} \pm 0.7$	< 5.1
$B^{0} \rightarrow a_{0}^{-} K^{+}$	0.4	$0.4_{-0.8}^{+1.0} \pm 0.2$	<2.1
$B^{-} \rightarrow a_{0}^{-} K^{0}$	0.6	$-1.5{ }_{-1.8}^{+2.4} \pm 0.8$	< 3.9
$B^{+} \rightarrow a_{0}^{0} \pi^{+}$	1.9	$3.6{ }_{-1.9}^{+2.1} \pm 0.8$	<6.7
$\mathrm{B}^{+} \rightarrow \mathrm{a}_{0}^{0} \mathrm{~K}^{+}$	0.0	$-3.7_{-1.3}^{+1.6} \pm 0.5$	<1.8
$B^{0} \rightarrow a_{0}^{0} \mathrm{~K}^{0}$	1.0	$2.8{ }_{-2.4}^{+3.1} \pm 1.1$	< 7.8

No hint for NP yet - nothing beyond the SM observed in BaBar

Belle finds $B^{0} \rightarrow \phi K_{S}$ at 3.5σ from the SM but also at 2.5σ from BaBar And Belle - BaBar discrepancy in $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$is now down to 2.2σ $\phi \mathrm{K}_{\mathrm{S}}$ like $\pi^{+} \pi^{-}$?

Summer 2004: with $>200 \mathrm{fb}^{-1}$ BaBar will update

- $\mathrm{B} \rightarrow \pi^{+} \pi^{-}$
- $B \rightarrow \phi K_{S}$
- $\mathrm{B} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{0}$

		$\mathbf{L}_{\text {peak }}{ }^{\left(10^{33}\right)}$
2004	$\mathbf{L}_{\text {int }}{ }^{\mathrm{fb}^{\mathbf{- 1}}}$	
2005	12.5	260
2006	18.2	395
2007	33	580
	30	880

