### SM physics and beyond in top and W+jet events: latest results from CDF



# The top quark the discovery: 1995



# Why top quark is so interesting



- $\checkmark$  SM radiative correction dominated by top mass
- ✓ Special role in dynamic of EWSB  $y_{t}=\sqrt{2m_{t}}/\sqrt{2}$
- ✓ together with W mass places a constraint on Higgs mass



 $\Delta M_W \propto M_T^2 - \Delta M_W \propto \ln M_H$ 





### How top quark is produced

One top pair each  $10^{10}$  inelastic collisions at  $\sqrt{s} = 1.96$  TeV



### How does top quark dacay?

Top quark lifetime is short: decays before hadronizing  $\tau_{top} \sim 4 * 10^{-25} \text{s}$ ,  $\Gamma \approx 1.5 \text{ GeV} >> \Lambda_{\text{QCD}} \sim 200 \text{ MeV}$ > No spectroscopy like other heavy flavor > Top momentum and spin transferred to decay products Standard Model: t→Wb ~ 100% tt decay modes 000000 cs epton + jets + jets all hadronic W . tau a  $w^{-}$ ūd τε/τμ ττ tau + jets Main "usable" top event topologies:  $\tau^{-}$  $\mu$ • tt  $\rightarrow$  lvlvbb di-lepton 5% (e+ $\mu$ ) dilepton lepton + jets e<sup>--</sup> **30% (e+**µ) tt → lvqqbb lepton+jets e<sup>+</sup> μ<sup>+</sup> τ<sup>+</sup> ud •  $tt \rightarrow qqqqbb$  all hadronic 45%  $\mathbf{W}^+$ 

Andrea Messina Infn Rome-CDF

cs



### 1. The experimental environment:

- The Tevatron
- The Collider Detector at Fermilab
- 2. Experimental challenges in top physics:
  - tracking, vertices and b-jet identification
  - jet reconstruction and energy measurement
  - understanding W+jet background
- 3. Top physics in the lepton+jet channel with 700 pb-1:
  - the top pair production cross section
  - the top mass
- 4. Single top and top resonant production searches

### 5. Summy: plan for top physics with $\approx 2 \text{fb}^{-1}$

# The TeVatron Collider

- p-pbar collisions
   √s=1.96 TeV (RunI 1.8)
- 36 bunches, 396 ns
- record peak Lum. 1.8x10<sup>32</sup>[cm<sup>-2</sup>s<sup>-1</sup>]
  - ✓ Recycler
- 1.7 <interaction>/bunch crossing
- $\approx$  25 pb<sup>-1</sup>/week





4 fb<sup>-1</sup> expected by 2009. Electron cooling on track could get 8 fb<sup>-2</sup> 2009

### Luminosity Summary



# Central Detector at Fermilab

 Silicon detector (SVX):
 COT: drift chamber Coverage: |η|<1 σ<sub>Pt</sub> / P<sub>T</sub> ~ 0.15% P<sub>T</sub>
 Calorimeters: Central, wall, plug Coverage: |η|<3.6 EM: σ<sub>E</sub> / E ~ 14% /√E HAD: σ<sub>E</sub> / E ~ 14% /√E
 Muon: scintillator+chamber muon ID up-to |η|=1.5 Multi-purpose detector: precision measurements & search for new physics



# SM physics & beyond in top quark



# Top experimental signature

Final State (jepton+jet): lepton, neutrino plus 4jets

- High-pt central electron/muon triggers
- High pt electron or muon with Pt > 20 GeV
  - Isolated

Electron: EM cluster in calorimeter

with matched track

Muon: track matched to hits in muon chambers,

MIP ionizing energy in calorimeter

- ✓ Large missing Et >20 GeV
- ✓ Leading 4 jets
  - Reconstructed with cone algorithm (0.4) using calorimeter towers
  - ♦ |η|<2.0</p>









3

2



Andrea Messina Infn Rome-CDF

20-0-

0

р<sub>т</sub> (GeV

# B-tagging

#### SecVtx b-tagging:

✓ Identify displaced vtx inside a jet

Jet probability b-tagging:

✓ Probability that jet tracks come from primary vertex

Soft lepton b-tagging:

✓ Identify leptons(eµ) from HF decay



SecVtx is the algorithm used for the results presented here.

# B-tagging: advanced algorithm

In progress: use jet properties, secondary vtx mass, .... along with SecVtx & jet probability to disentangle HF from light F



Keeping the same misstag rate the efficiency increases by ≈10%
more efficient selection of double tagged top events (purest sample)
NN out could be used as a b-jet pdf in a likelihood

# Jet corrections

Jets are collimated sprays of hadrons originating from the hard scattering



- Calorimeter jets: complex detector behavior
  - must correct for detector cracks, efficiency
  - must correct for pile-up interactions
     (3.6 average interaction @ 10<sup>-32</sup>cm<sup>-2</sup>s<sup>-1</sup> (<1.7>)

### Hadron jets:

- Correction to particle jets using dijet MC tuned for single particle E/P, material, and fragmentations:
- underlying event subtraction

### Parton jets: model dependent correction

- Gluon radiation, energy loss
  - Monte Carlo model based



### Measuring top quark pair cross section

One of the first things to measure is the top pair production rate.

$$\sigma(tt) = \frac{N_{events} - N_{background}}{\mathcal{L}uminosity * \epsilon}$$



### Lepton+jets cross section – kinematic fit



### top cross sections in l+jets

### Kinematic fit

σ (>3jet) = 6.0 ± 0.6(stat.) ± 0.9(sys.) pb

σ (≥4jet) = 5.8 ± 0.8(stat.) ± 1.3(sys.) pb

| Source               | ANN (%) |                                            |
|----------------------|---------|--------------------------------------------|
| Jet Energy Scale     | 8.3     |                                            |
| W+jets Background    | 10.2    | Why the W+jet background                   |
| QCD Background       | 1.3     | gives such a large systematic:             |
| $t\bar{t}$ generator | 2.6     |                                            |
| $t\bar{t}$ PDF       | 4.4     | • what is the status of MC                 |
| $t\bar{t}$ ISR/FSR   | 2.2     | • what is the status of the                |
| Lepton ID            | 2.4     | <ul> <li>which are the plan for</li> </ul> |
| Luminosity           | 5.8     | improvement                                |
| Total                | 15.7    |                                            |



# New merging tools

#### Separate multijet phase-space

- Matrix element domain
- Parton shower domain

#### CKKW prescription

LO ME calculation interfaced with parton shower MonteCarlo

MLM's matching

Michelangelo Mangana



### Have to be validated & tuned on data!!!



This cross sections will allow to make an effective tuning of new leading order Monte Carlo generators -> reducing the MC uncertainties on top & searches

# Lepton+jets with b-tagging



# top cross sections in l+jets

| Kinematic fit                               | SecVtx b-tagging                            |  |
|---------------------------------------------|---------------------------------------------|--|
| σ (>3jet) = 6.0 ± 0.6(stat.) ± 0.9(sys.) pb | σ (≥1tag) = 8.2 ± 0.6(stat.) ± 1.0(sys.) pb |  |
| σ (≥4jet) = 5.8 ± 0.8(stat.) ± 1.3(sys.) pb | σ (≥2tag) = 8.8 ± 1.2(stat.) ± 1.3(sys.) pb |  |

| Source               | ANN (%) |
|----------------------|---------|
| Jet Energy Scale     | 8.3     |
| W+jets Background    | 10.2    |
| QCD Background       | 1.3     |
| $t\bar{t}$ generator | 2.6     |
| $t\bar{t}$ PDF       | 4.4     |
| $t\bar{t}$ ISR/FSR   | 2.2     |
| Lepton ID            | 2.4     |
| Luminosity           | 5.8     |
| Total                | 15.7    |

| Source                | Systematic (%) |  |
|-----------------------|----------------|--|
| b-tagging             | 6.5            |  |
| Luminosity            | 6.0            |  |
| PDF                   | 5.8            |  |
| Jet Energy Scale      | 3.0            |  |
| ISR/FSR               | 2.6            |  |
| Lepton Identification | 2.0            |  |
| Total                 | 11.5           |  |

Largest systematic is the b-tagging scale factor data-MC efficiency (6.5%).

### Top quark pair production



### How to measure the mass

### How do we know how much mass a particle had?



### we can't just put the pieces back together again!

#### Lost information:

- neutrinos have escaped the detector
- Quarks have radiated, showered and hadronized
- jet to parton association

#### misinformation:

Background processes mimic top

#### Detector effects:

- Lepton identification is good but not perfect
- Jet energy scale and jet mass resolution
- B-tagging and jet to parton association



Lepton + jets:

- 4 jet resolutions
- parton-jet associations:
  - 24 (no-btag)
  - 12 (1-btag)
  - 4 (2-btag)
- one missing neutrino

#### Dilepton:

- 2 jet resolutions
- parton-jet associations (2)
- two missing neutrinos

### All Hadronic:

- 6 jet resolutions
- parton-jet associations:
  - 90 (no-btag)
  - 30 (1-btag)
  - 6 (2-btag)



### Mass Fitter (event by event)



Andrea Messina Infn Rome-CDF

Seminario – Roma La Sapienza

### Construction the template for sign. & bkgd



- > Otag: W+jets
- Tagged: W+HF, Mistag, fake-W, Single-top
- Shape: mostly by ALPGEN MC, cross-check with data



# Simultaneous fit to JES and M<sub>top</sub>

Reconstructed W mass is correlated to the jet energy scale in units of  $\sigma$  ( $p_{T}$ , $\eta$ ) for the in situ jet calibration.  $M_{jj}$  largely independend on  $M_{top}$ 





Andrea Messina Infn Rome-CDF

# Lepton + jets: results



#### Total

1.3





# Projection for the M<sub>top</sub> uncertainty



### The Higgs boson searches



Andrea Messina Infn Rome-CDF

Seminario – Roma La Sapienza

### How else top quark is produced



Direct measurement of  $V_{tb}$ 



# Search for single top quark production



### **Search for Single Top Quark Production** Single Top Posterior Probability Density



### Top-antitop resonant production



### What does CDF observe in the tt mass?





### Tevatron delivered More than 1.6 fb<sup>-1</sup>; 4fb<sup>-1</sup> by 2009



 $\sigma_{top}$ =7.3±0.5±0.6±0.4 pb  $M_{top}$ =172.7±1.7±2.4 GeV/c<sup>2</sup> CDF II world best measurement  $\Delta M_{top}$ < 2 GeV/c<sup>2</sup> with 2fb<sup>-1</sup>

- Our syst. due to JES and bkgd shape are expected to be improved soon
- B-tagging will be soon better performing
- Single top production  $\sigma$ <5.9 pb expected first hint of signal with 2fb<sup>-1</sup>
- no evidence of resonance  $M_{tt}$ <750GeV
- We have few hundreds of top event and we will double the statistic soon, we are ready to have an impact on characterizing top properties



# **Backup slides & additional material**



# Other Top Properties Measurements

| Measurement                                                    | Result                                               | $\int L dt$ (pb $^{-1}$ ) |
|----------------------------------------------------------------|------------------------------------------------------|---------------------------|
| W helicity $F_0$                                               | $0.74_{-0.34}^{+0.22}$                               | 200                       |
| W helicity F <sub>+</sub>                                      | $F_+ < 0.27$ @ 95% CL                                | 200                       |
| Search for anomalous kinematics                                | Consistent with SM                                   | 193                       |
| Search for $H^+$ in t decays                                   | $BR(t \to Hb) < 0.91 @ 95\% CL$                      | 193                       |
| $\sigma_{dilepton}/\sigma_{l+jets}$                            | 1.45 <sup>+0.83</sup> <sub>-0.55</sub> (stat + syst) | 126                       |
| $BR(t \to Wb)/BR(t \to Wq)$                                    | > 0.61 @ 95% CL                                      | 162                       |
| $BR(t \to \tau \nu_{\tau} q)/BR_{SM}(t \to \tau \nu_{\tau} q)$ | < 5.2 @ 95% CL                                       | 193                       |
| Search for $4^{th}$ generation $t'$ quark                      | $m_{t'} < 196, m_{t'} > 207 @$ 95% CL                | 347                       |
| Top quark lifetime                                             | $c 	au_{top} < 52.5 \ \mu m @$ 95% CL                | 350                       |

### B jet corrections: Z->bb



400 pb<sup>-1</sup> (but most part taken with DPS...).

- Two tagged jets w/  $E_t(L5)>22$  GeV,  $|\eta|<1.5$ .
- Reduce QCD background and ISR/FSR by requesting back-to-back events with low extra jet radiation.
- Data driven background computation.

With new data: aim to extract a cleaner signal and perform a *first* b JES measurement. To reach a measurement at the 2% level:

- 1 fb<sup>-1</sup> of usable data
- develop tools that improve b-jet energy resolution (Hyperball, NN).

### b-jets require specific corrections

Separate corrections are applied to b-quark jets and light-quark jets (from W), because of different response of b-parton and light parton.



### Does top always decay to b quark?

Fit R= R=BR( $t \rightarrow Wb$ ) / BR( $t \rightarrow Wq$ ) times b-tag efficiency from observed number and estimated composition of 0,1,2-tag dilepton and lepton+jets events



Andrea Messina Infn Rome-CDF

### W helicity from t->Wb decays

 Examines the nature of the tWb vertex, probing the structure of weak interactions at energy scales near EWSB



#### ✓ Stringent test of SM and its V-A type of interaction.



# Run II W helicity in top events



SM: Only longitudinal and left-handed W's can be produced in the top rest frame.

Use lepton  $p_T$  spectra to determine the fraction  $F_0$  of longitudinally polarized W's.

 $F_0 = 0.7$  in the Standard Model

Result: F<sub>0</sub> = 0.27+ 0.35 - 0.21 Or F<sub>0</sub> < 0.88 @ 95% CL





# Can we find something heavier with top properties

Heavy quarks ( $4^{th}$  generation) t'  $\rightarrow$  Wq exist in various extensions of the SM.

CDF Run 2 347 pb<sup>-1</sup>

ť→Wq, ≥4 jets

m(t) = 225 GeV

500

ť→Wq, ≥4 jets

m(t) = 225 GeV

300

H<sub>T</sub> vs M<sub>reco</sub>

600

400

H<sub>T</sub> vs M<sub>reco</sub>

400

Preliminary

 $N_{ipt} \ge 4$ 

W+jets

100

200

CDF Run 2 347 pb-1

N<sub>jet</sub> ≥ 4

W+jets 🔲 QĊD

100

300

H<sub>T</sub> (GeV)

200

M<sub>reco</sub> (GeV)

40

- search for t'  $\rightarrow$  Wq in lepton + jets + missing E<sub>r</sub> events ( CDF, 347pb<sup>-1</sup>)
- try to remain model independent
- reconstruct t' candidate mass
- fit templates in (H<sub>1</sub>, M<sub>1</sub>)







translate cross section limit into a t' prime mass limit of 196 – 207 GeV/c<sup>2</sup> @ 95 CL for a true top mass of 175 GeV/c<sup>2</sup>.

expect m(t') > 300 GeV/ $c^2$  with 2fb<sup>-1</sup> unless ...

# B-tagging

SecVtx b-tagging:

- $\checkmark$  Identify displaced vtx inside a jet
- Jet probability b-tagging:
- Probability that jet tracks come from primary vertex
- Soft lepton b-tagging:
- $\checkmark$  Identify leptons(eµ) from HF decay

CDF Run II Preliminary \s = 1.96 TeV Monte Carlo: uds jets Monte Carlo: b jets 10<sup>4</sup> P flat for light peaked at 10<sup>4</sup> 10<sup>4</sup>10<sup>4</sup> 10<sup>4</sup> 10



SecVtx is the algorithm used for the results presented here.

### Top mass with the decay length technique



Andrea Messina Infn Rome-CDF

## Analysis outline

### High $P_T$ electron trigger 320pb<sup>-1</sup> $\Rightarrow$ Identify W event, reconstruct jets

### Backgrounds:

- QCD from data: by reversing lepton-ID selection
- W-like from MC
- Promotion from Minimum Bias
- $\bullet$  relative normalization from template fit to  $\mathsf{ME}_{\mathsf{T}}$  to data



### Acceptance:

- Defining σ wrt W detector acceptance:
  - correct only for detector resolution effects - independent of th model
- $\checkmark$  Use W+np MC for acceptance & ID
- ✓ Validation: ID on Z data, acceptance by studying different MC.





### Winematic data Monte Carlo comparison







### Optimized lepton+jet top analysis

### <u>Improve Signal, S/sqrt(S+B), ∆B:</u>

- Signal: more statistic (700 pb<sup>-1</sup>), tagger improved
- $S/\sqrt{(S+B)}$ : Re-optimize cut on  $H_T$  as in previous analysis
- Background Error: Reduce error on poorly-modeled QCD fakes by cutting out a lot of these backgrounds: M<sub>T</sub>(W) cut



# **(iii)** $e_{T_h}$ and $\mu_{T_h}$ missing energy+jets

### $A \times BR(t\bar{t} \rightarrow e\tau_h, \mu\tau_h) \approx 0.08\%$

#### 1 isolated electron/muon $p_T$ >20 GeV/c

- $\checkmark$  1 isolated  $\tau \rightarrow v_{\tau} + hadrons p_{T} > 15 GeV/c$
- ✓ MET>20 GeV
- ✓ At least 2 jets p<sub>T</sub>>20 GeV/c
   Reduce backgrounds
- ✓ Total transverse energy >205 GeV
- $\checkmark$  Not compatible with Z  $\!\!\!\!\rightarrow\!\!\!\tau\tau$

| Events (195 pb <sup>-1</sup> ) | $e\tau_h$ | $\mu \tau_{h}$ |
|--------------------------------|-----------|----------------|
| Bkg                            | 0.8±0.1   | 0.5±0.1        |
| Data                           | 2         | 0              |

### CDF set limit on anomalous decay rate

$$\frac{\Gamma(t \to \tau v_{\tau} q)}{\Gamma_{SM}(t \to \tau v_{\hat{o}} q)} < 5.2 @ 95\% \text{ C.L.}$$

### $A \times BR(t\bar{t} \rightarrow v + jets) \approx 4\%$

Zero isolated electrons/muons!

- $\checkmark$  At least 4 jets p<sub>T</sub>>15 GeV/c
- ✓ MET significance > 4 GeV
- $\checkmark$  MET not collinear with jets
- ✓ At least 1 b-tag

In future: explicit tau identification!



Missing E<sub>+</sub> [GeV]

# Jet correction

### Correction for detector effects:

- Energy scale in the central with test beam, tracking
- $\bullet$  transfer energy scale in the forward with jet  $\mathsf{P}_{\mathsf{T}}$  balance
- Use tuned simulation to correct for underlying event, out of cone radiation ......

<u>m</u> 1.3

1.2

1.1

0.9

0.8

0.7

0.6

0.5

-3

1



WHA

n=1.0

n=2.0

n=3.0

probe jet

-1

Data

MC (PYTHIA

D

1

2

 $\beta = \mathbf{Pt}^{\mathbf{probe}}/\mathbf{Pt}^{\mathbf{trig}} = (2 + \langle \Delta \mathbf{PtF} \rangle) / (2 - \langle \Delta \mathbf{PtF} \rangle)$ 

or 7 7 1

-2

### Systematic uncertainty on transverse mass fit

| Uncertainty              | Electrons | Muons | Common |
|--------------------------|-----------|-------|--------|
| Lepton Scale             | 50        | 21    | 21     |
| Lepton Resolution        | 7         | 12    | 0      |
| Recoil Scale             | 20        | 20    | 20     |
| <b>Recoil Resolution</b> | 24        | 24    | 24     |
| Lepton Removal           | 15        | 10    | 10     |
| ull Efficiency           | 7         | 7     | 0      |
| Backgrounds              | 17        | 18    | 0      |
| pT(W)                    | 13        | 13    | 13     |
| PDF                      | 15        | 15    | 15     |
| QED                      | 15        | 20    | 12     |
| W width                  | 12        | 12    | 12     |
| Total Systematic         | 70        | 55    | 48     |
| Statistical              | 43        | 49    | 0      |
| Total                    | 82        | 74    | 48     |