Towards B_s oscillations at CDF

Rudolf Oldeman

University of Liverpool

Rolf Oldeman (University of Liverpool) "Toward Bs oscillations at CDF" Rome

2/25/2005

The B_s particle

2/25/2005 2

B_d and B_s oscillations

B_d mixing ∝ V_{td}² ⇒slow: $\Delta m_d = 0.502 \pm 0.007 \text{ ps}^{-1}$ ⇒large mixing phase: $\sin 2\beta = 0.736 \pm 0.049$

B_s mixing ∝ V_{ts}² ⇒fast: Δm_s≈18ps⁻¹? ⇒small mixing phase: sin2β_s≈0.02?

Rolf Oldeman (University of Liverpool) 'Toward Bs oscillations at CDF'' Rome

2/25/2005 3

Δm_s in the Standard Model

Δm_s in the Standard Model

easier to express as a ratio with Δm_d

$$\frac{\Delta m_s}{\Delta m_d} = \xi \frac{m_{B_s}}{m_{B_d}} \frac{|V_{ts}|^2}{|V_{td}|^2} \quad \text{with} \quad \xi = \frac{f_{B_s} \sqrt{\hat{B}_{B_s}}}{f_{B_d} \sqrt{\hat{B}_{B_d}}} = 1.24 \pm 0.07$$

we find $\Delta m_s = 18.0 \pm 3.7 \text{ ps}^{-1}$ (or $x_s = \Delta m_s / \Gamma_s = 26.3 \pm 5.5$)

New physics in B_s oscillations

• Heavy Z' with FCNC. S н Z' $\sin 2\phi_s = 0.5$ x_=90 70 50 h 150 S 26.3 Consistent with SM phase 100 $l\sigma$ range of x. Exp. excluded 50 -0.5 -0.07 0 0.001 0.002 0.003 0 magnitude $\propto \left| \frac{m_Z}{m_{Z'}} \right|$ Rolf Oldeman (University of Liverpool) "Toward Bs oscillations at CDF" Rome 2/25/2005 6

Producing heavy B hadrons

Y(4S): B⁺ / B⁰ only B_s at Y(5S): \approx 10x smaller cross-section than B_d at Y(4S)

- → e⁺ e⁻ above B_s threshold:
 •LEP ≈880k bb events/experiment
 •SLC ≈ 85k bb events
- Fixed target E_{cm} > 2m(B_s)
 •Tried unsuccessfully at HERA-B <u>σ(bb)/σ(total)</u>≈ 10⁻⁶
- Hadron colliders:
 - Operational: Tevatron, Chicago, 1.96 TeV $p\overline{p}~\sigma_{bb}/\sigma_{tot}\approx 10^{-3}$
 - $\begin{array}{ll} \bullet \mbox{ Startup 2007: LHC, Geneve } 14 TeV & \mbox{ pp } \sigma_{bb} / \sigma_{tot} \approx 10^{-2} \\ \mbox{ Production ratio at high energy:} \\ B^0 \colon B^{-} \colon B_s \colon \Lambda_b \colon B_c \approx 4 : 4 : 1 : 1 : 0.01 \end{array}$

Reconstructing B-decays

Generally 3 types of B-decays accessible at hadron collider:

2/25/2005

Current status of B_s mixing

Heavy Flavor Averaging group: *Combined LEP,SLD,CDF1*

Most analyses used partially reconstructed decays Poor sensitivity at high Δm_s $\sigma(A) \propto e^{\frac{(\sigma(ct)\Delta m_s)^2}{2}}$

 \Rightarrow for $\Delta m_s > 15 ps^{-1}$ $\sigma(ct)$ above 70fs hurts!

pp̄ collisions at the Tevatron

Rolf Oldeman (University of Liverpool) "Toward Bs oscillations at CDF" Rome

2/25/2005 11

Tevatron performance

Collider Run II Peak Luminosity 1.20E+32 1.20E+32 1.00E+32 1.00E+32 Averag 8.00E+31 8.00E+31 Peak Luminosity eak Lum 20x 6.00E+31 6.00E+31 4.00E+31 4.00E+31 2.00E+31 2.00E+31 ۰ 0.00E+00 0.00E+00 02/01/05 02/01/02 04/01/02 06/01/02 12/01/04 08/01/02 10/01/02 12/01/02 02/01/03 04/01/03 06/01/03 08/01/03 10/01/03 12/01/03 02/01/04 04/01/04 06/01/04 08/01/04 10/01/04 10/01/01 12/01/01 04/01/01 06/01/01 08/01/01 Date \approx 360 pb⁻¹ physics Peak Luminosity
 Peak Lum 20X Average quality data

The CDFII detector

The Central Outer Tracker (COT)

30k read out wires 96 layers

4 axial superlayers (12 wires) 4 stereo superlayers (±35 mrad) Inside 1.4 Tesla solenoid

1.4 meter outer radius

200 μm single wire resolution

 $\frac{\Delta p_{T}}{p_{T}} = (0.7 \oplus 0.1 \cdot p_{T})\%$

dE/dx for $e/\pi/K/p$ separation 1.2 $\sigma \pi/K$ for $p_T>2$ GeV

The CDF silicon system

Layer00: 2 cm from the beam-pipe

Single-sided, radiation-hard, low mass

- SVXII 5 layers, double sided
 - ISL 1.5 layer, double sided

750k channels

Impact parameter resolution:13+40/p_T μ m

Uses SVXIII chip: simultaneous readout & recording

The Time-of-Flight detector (TOF)

4x4 cm scintillator bars, 3 m long (216)

100 ps timing resolution $2\sigma \pi / K$ separation for $p_T \le 1.6 GeV$

Readout on both sides of the bar

llations at CDF" Rome

2/25/2005 16

The three-level trigger

The eXtremely Fast Tracker (XFT)

150

Provides a list of tracks $p_T > 1.5 \text{GeV}$ Every (132ns) clock cycle Finds segments in 4 axial SL *Compare to pre-programmed patterns* Links segments to tracks *Compare to pre-programmed patterns* -50 Efficiency >95% for $p_T > 2 \text{GeV}^{-100}$

-150

No stereo tracking

-50

100

15D

-100

Rolf Oldeman (University c

Triggering on displaced tracks

Read out Silicon detector & Reconstruct tracks at 10's of kHz!

SVT makes hadronic B_s decays possible at CDF

SVT working principle

Step 1

Low-resolution hits fire one of 384K pre-programmed patterns

Step 2 Fit track to high-resolution hits corresponding to fired pattern

Dynamic prescaling (DPS)

Trigger is designed for peak luminosity

Average luminosity $\approx 50\%$ of peak

Fill the available L1 bandwidth with B physics!

S: BOTLIV 3 versions of the two-track trigger

High-p_T: $p_{T1}, p_{T2} > 2.5 \text{GeV}, \Sigma p_T > 6.5, Q_1 \neq Q_2$ Fixed prescale 2 **Nominal:** $p_{T1}, p_{T2} > 2.0 \text{GeV}, \Sigma p_T > 5.5, Q_1 \neq Q_2$ *Live for L* < $6x10^{31}$ **Low-p_{T}:** $p_{T1}, p_{T2} > 2.0 \text{GeV}$

Live for $L < 4 \times 10^{31}$

C:B0ILUM

C:BOTLUM CDE.

E30 .CDF

37hours

B_s yields at CDF

Compare to e.g. ALEPH all exclusive channels combined:

$B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{*0}$ lifetimes

- Simultaneous mass-lifetime fit
- Mass-sidebands give good background estimate
- $\tau_{B^+} = 1.662 \pm 0.033 \, (stat.) \pm 0.008 (syst.) \, \text{ps}$ PDG2004: $1.671 \pm 0.018 \, \text{ps}$

$$\tau_{B^0} = 1.539 \pm 0.051 (stat.) \pm 0.008 (syst.) \text{ ps}$$

PDG2004: $1.536 \pm 0.014 \text{ ps}$

Confirms theoretical prediction

$$\frac{\tau(B^+)}{\tau(B_d)} = 1.06 \pm 0.02$$

Lifetime difference in $B_s \rightarrow J/\psi \phi$

- Both the J/ ψ and the ϕ are vector-mesons spin 1 \Rightarrow polarization degree of freedom
- Three components in VV final state:
 - A₀ : longitudinal component CP even
 - A_I: transverse parallel component CP even
 - $-A_{\perp}^{"}$: transverse perpendicular comp. CP odd
- Standard model prediction:
 - CP-even = short lived
 - CP-odd = long lived
 - ΔΓ/Γ=0.12±0.06
- New physics can only(?) **decrease** $\Delta\Gamma$

CDF $\Delta\Gamma/\Gamma$ result

almost 2σ above SM!

Lifetimes in semileptonic B decays

• Signature: 8 GeV lepton (e/ μ) + charm meson

Missing neutrino

incomplete proper time reconstruction

Backgrounds:

- •c + fake lepton
- •c + $\bar{c} \rightarrow e/\mu$
- •b + $\bar{b} \rightarrow e/\mu$
- B \rightarrow c \bar{c} \rightarrow e/ μ
- $\bullet B{\rightarrow} c + \tau \rightarrow e/\mu$

•etc

 $\tau(B^+)=1.653\pm0.029\pm0.029$ $\tau(B^0)=1.473\pm0.036\pm0.052$

Flavour tags at CDF

Oscillations: flavour at production \neq flavour at decay

Depends on subtleties of b-bbar correlations Depends on subtleties of fragmentation

Current MC generators unable to predict flavour tagging properties

 \Rightarrow Require data to optimize and to calibrate

Flavour tag basics

- Effectiveness of flavour tag:
- Efficiency ε
 - Not all events have a muon, opp. side jet etc.
- Accuracy, expressed as 'dilution factor' D
 - -D = 1.0 2W (W=fraction of wrong tags)
 - Perfect tag has W=0, D=1.0
 - Random tag has W=0.5, D=0.0
- Statistical power scales as $\mathcal{E} \mathbf{D}^2$
- Knowing D event-by-event helps
 Give more weight to high-D events

Opposite side jet-charge tag

$$Q_{jet} = \frac{\sum_{i} q^{i} P_T^i (2 - T_P^i)}{\sum_{i} P_T^i (2 - T_P^i)}$$

 P_T transverse momentum; T_P : probability to be primary track

Opposite side lepton tag

- Based on a lepton-likelihood variable
 - 5 variables for muon tag $\varepsilon D^2 = 0.70 \pm 0.04 \%$
 - -9 variables for electron tag $\varepsilon D^2 = 0.37 \pm 0.03 \%$

B_d oscillation analysis

6.2K $B_d \rightarrow D^-\pi^+$ 2.2K $B_d \rightarrow J/\psi K^{*0}$

opposite-side tags only

full unbinned likelihood fit closest thing to B_s oscillation analysis

$\Delta m_d = 0.503 \pm 0.063 \pm 0.015$

PDG2004: $\Delta m_d = 0.502 \pm 0.007 \text{ ps}^{-1}$

B_s oscillation sensitivity estimate

 First CDF B_s oscillation result will only be based on well-understood opposite side tags

 $- εD^2 ≈ 0.7\%$ (JQ) + 0.7% (μ) + 0.4% (e) =1.8%

$$S = \sqrt{\frac{N\varepsilon D^2}{2}} \sqrt{\frac{S}{S+B}} e^{-\frac{(\sigma_{ct}\Delta m_s)^2}{2}}$$

significance:

	hadronic	semileptonic
Ν	≈700	≈2500 (250pb-1)
$\sigma_{c\dagger}$	70-100fs	70-100fs ⊕ 0.15ct

CDF B_s oscillation projections

Prepared for summer 2004 – still mostly valid

baseline = ϵD^2 =1.6%, σ_{ct} =67fs stretched= ϵD^2 =2.6%, σ_{ct} =47fs

Outlook for summer

- yields:
 - more data
 - new channels
- proper time resolution
 full use of L00 / event-by-event vertexing
- tagging:
 - improving existing tagging algorithms
 - implementing opposite side Kaon tag
 - implementing same-side Kaon tag

Two possible outcomes

No B_s oscillations in SM-allowed range

check double-check triple-check check again confirm reconfirm check reconfirmation

and then..

celebrate new physics!

B_s oscillations observed compatible with SM

- B_s and B_d oscillation
 parameters combined
 to give precision
 measurement of V_{td}.
 - Start of a new physics program using B_s oscillations for even more profound searches for new physics

$B_s \rightarrow J/\psi \phi$

Directly measures B_s mixing phase as CP asymmetry SM prediction O(1%)

$B_s \rightarrow D_s K$

Two diagrams \rightarrow quantum interference \rightarrow CP asymmetry

