Unraveling the *f*₀ nature by connecting *KLOE* and *BABAR* data through analyticity

Simone Pacetti INFN Laboratori Nazionali di Frascati

Roma, March 31, 2006

Outline

Introduction, formulae and data

- Basic knowledge on light scalar mesons
- Amplitudes, cross sections and rates
- BABAR cross section data
- 2 Strategy
 - Contributions to the tff's
 - Dispersion relations and χ^2
- 3 Results and new hypothesis
 - qq mesons
 - Properties of the [qq][qq] f₀ meson
 - [qq][qq] f₀: results

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

The $f_0(980)$ scalar meson

t is an isoscalar $J^{PC} = 0^{++}$ state	$\begin{array}{c} PDG \\ estimate \end{array} \left\{ \begin{array}{c} \mathit{M}_{f_0} = (980 \pm 10) \ \mathit{MeV} \\ \Gamma_{f_0} = (40 \div 100) \ \mathit{MeV} \end{array} \right.$
t has an isovector a₀(980) with similar	PDG $\int M_{a_0} = (984.7 \pm 1.2) \text{ MeV}$
nass and width	estimate $\Gamma_{a_0} = (50 \div 100) MeV$

The vacuum, the Higgs boson and the expected lowest-lying glueball have the $f_0(980)$ quantum numbers

It is a bridge between light and strange quarks. It appears:

- as a peak in the ππ invariant mass distribution of strange particle decays;
- as a dip or a shoulder when produced from non-strange quarks.

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

$f_0(980)$ mass and width time evolution

Simone Pacetti

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

Long outstanding questions

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

The qq scalar nonet

Simone Pacetti

Simone Pacetti

 $\kappa^{-}(s\overline{u})$

 $\overline{\kappa}^0(s\overline{d})$

-1

0

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

The *qqqq* cryptoexotic scalar nonet

Simone Pacetti

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

Ambiguity in studying scalar resonances

Breit-Wigner formula

Simone Pacetti

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates **BABAR cross section data**

Ambiguity in studying scalar resonances

Breit-Wigner formula

Simone Pacetti

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

Ambiguity in studying scalar resonances

Breit-Wigner formula

Simone Pacetti

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

Collecting some information about the $f_0(980)$

- Large $u\overline{u}$ and $d\overline{d}$ component
- No evidence of gluon content
- No information about the structure
- Lattice QCD
- Lower-lying glueball: $M_G \sim$ 1.6 GeV
- A $q\overline{q}$ *P*-wave scalar nonet is predicted at 1.2 \div 1.6 *GeV*
- Strong interacting **Q** produce an S-wave scalar nonet below 1 GeV

The standard analysis of the $f_0(980)$ resonance is quite difficult. There are cuts on the complex s-plane that distort the scalar pole. The study of the vertex $\phi f_0(980)\gamma$, described in terms of transition form factors, gives direct information about the f_0 structure avoiding the problem of the analysis of the scalar resonance.

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

The plan to study the vertex $\phi M \gamma$ with $M = \eta$, $f_0(980)$

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

From annihilation cross section to radiative decay rate

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

Amplitude and $\phi\eta$ transition form factor

Simone Pacetti

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

Amplitude and ϕf_0 transition form factor

Simone Pacetti

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

Radiative decay amplitudes and rates

Simone Pacetti

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

BABAR data: $\phi\eta$ cross section

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

BABAR data: ϕf_0 cross section

$\sigma(\mathbf{e}^+\mathbf{e}^- \rightarrow \phi f_0 \gamma)$

Simone Pacetti

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

BABAR data: $\phi\eta$ transition form factor

Simone Pacetti

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

BABAR data: ϕf_0 transition form factor

Simone Pacetti

Contributions to the tff's Dispersion relations and χ^2

Okubo-Zweig-lizuka (OZI) rule

Contributions to the tff's Dispersion relations and χ^2

Okubo-Zweig-lizuka (OZI) rule

Contributions to the tff's Dispersion relations and χ^2

Contributions to the $\phi\eta$ transition form factor

Simone Pacetti

Contributions to the tff's Dispersion relations and χ^2

Contributions to the $\phi f_0[q\overline{q}]$ transition form factor

Simone Pacetti

Contributions to the tff's Dispersion relations and χ^2

Asymptotic behaviour

Contributions to the tff's Dispersion relations and χ^2

 $F_{\phi\eta}(q^2)$ above the theoretical threshold $s_0=(3M_\pi)^2$

Low energy behaviour of $F_{\phi\eta}(q^2)$

$$\mathsf{F}_{\phi\eta}^{\mathsf{VMD}}(q^2) = \frac{M_{\phi}}{\mathsf{e}\mathcal{F}_{\phi}} \frac{\mathbf{g}_{\phi\eta}^{\phi}}{\mathsf{\Gamma}_{\phi}} \frac{\mathsf{\Gamma}_{\phi}M_{\phi}}{M_{\phi}^2 - q^2 - i\mathsf{\Gamma}_{\phi}M_{\phi}} + \frac{M_{\phi'}}{\mathsf{e}\mathcal{F}_{\phi'}} \frac{\mathbf{g}_{\phi\eta}^{\phi'}}{\mathsf{\Gamma}_{\phi'}} \frac{\mathsf{\Gamma}_{\phi'}M_{\phi'}\mathsf{e}^{i\delta_{\eta}}}{M_{\phi'}^2 - q^2 - i\mathsf{\Gamma}_{\phi'}M_{\phi'}}$$

Asymptotic behaviour $(q^2 \rightarrow \infty)$

 $F_{\phi\eta}$

$$(n_{q}^{2}) \propto \left(\frac{1}{q^{2}}\right)^{n_{H}+n_{\lambda}-1=2}$$

 $n_{H} = 2$ final hadronic fields
 $n_{\lambda} = \begin{cases} 0 & \text{hadronic helicity conserve}\\ 1 & \text{otherwise} \end{cases}$

$$F_{\phi\eta}^{th}(s) = \begin{cases} F_{\phi\eta}^{VMD}(s) & s_0 \le s \le s_{asy} \\ F_{\phi\eta}^{VMD}(s_{asy}) \left(\frac{s_{asy}}{s}\right)^2 & s > s_{asy} \end{cases} \qquad s \equiv q^2 \\ s_0 = (3M_\pi)^2 \\ s_{asy} = (4 \text{ GeV})^2 \end{cases}$$

3 d.o.f.

Contributions to the tff's Dispersion relations and χ^2

$F_{\phi f_0}(q^2)$ above the theoretical threshold $s_0 = (3M_\pi)^2$

Low energy behaviour of $F_{\phi f_0}(q^2)$

$$F^{\rm VMD}_{\phi f_0}(q^2) = BW_{\phi}(\underline{g}^{\phi}_{\phi f_0}, q^2) + e^{i\delta_{f_0}}BW_{\phi'}(\underline{g}^{\phi'}_{\phi f_0}, q^2) + e^{i\rho_{f_0}}BW_{\phi''}(\underline{g}^{\phi''}_{\phi f_0}, q^2)$$

Three ϕ recurrences

Asymptotic behaviour $(q^2 ightarrow \infty)$

$$F_{\phi f_0}(q^2) \propto \left(rac{1}{q^2}
ight)^{n_H+n_\lambda-1=2}$$

$$H = 2$$
 final hadronic fields

hadronic helicity conserved
 otherwise

5 d.o.f.

$$F_{\phi f_0}^{\text{th}}(s) = \begin{cases} F_{\phi f_0}^{\text{VMD}}(s) & s_0 \le s \le s_{\text{asy}} \\ \\ F_{\phi f_0}^{\text{VMD}}(s_{\text{asy}}) \left(\frac{s_{\text{asy}}}{s}\right)^2 & s > s_{\text{asy}} \end{cases} \qquad \begin{array}{c} s \equiv q^2 \\ s_0 = (3M_\pi)^2 \\ s_{\text{asy}} = (4 \text{ GeV})^2 \end{array}$$

 $n_{\lambda} =$

Contributions to the tff's Dispersion relations and χ^2

Dispersion Relations

A form factor $f(q^2)$ is an $Im(q^2)$ analytic function on the $f(q^2) = |f(q^2)|e^{i\delta(q^2)}$ q^2 complex plane with the cut $[s_0 = 9M_{\pi}^2, \infty)$ R $Re(q^2)$ Dispersion relation for the imaginary part $f(q^2) = \lim_{R \to \infty} \frac{1}{2\pi i} \oint_C \frac{f(z)dz}{z - q^2} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{Im}f(s)ds}{s - q^2}$ Dispersion relation for the logarithm Assuming no zeros on $\ln[f(q^2)] = \frac{\sqrt{s_0 - q^2}}{\pi} \int_{s_0}^{\infty} \frac{\ln|f(s)| ds}{(s - q^2)\sqrt{s - s_0}}$ the physical sheet and $q^2 < s_0$ using the function $\Phi(z) = \frac{\ln[f(z)]}{\sqrt{s_0 - z}}$ $\delta(q^2) = -\frac{\sqrt{q^2 - s_0}}{\pi} \Pr \int_{s_0}^{\infty} \frac{\ln |f(s)| ds}{(s - q^2) \sqrt{s - s_0}}$ $q^2 \ge s_0$

Simone Pacetti

Contributions to the tff's Dispersion relations and χ^2

Extension of the transition form factors below s_0

Analytic continuation via dispersion relations for the logarithm

$$\ln\left[F_{\mathcal{H}}^{an}(q^2)\right] = \frac{\sqrt{s_0 - q^2}}{\pi} \int_{s_0}^{\infty} \frac{\ln|F_{\mathcal{H}}^{th}(s)|ds}{(s - q^2)\sqrt{s - s_0}}$$

$$egin{aligned} \mathcal{F}_{\mathcal{H}}(s) &= \left\{ egin{aligned} & \mathcal{F}_{\mathcal{H}}^{ ext{an}}(s) & s < s_{0} \ & \mathcal{F}_{\mathcal{H}}^{ ext{VMD}}(s) & s_{0} \leq s \leq s_{ ext{asy}} \ & \mathcal{F}_{\mathcal{H}}^{ ext{VMD}}(s_{ ext{asy}}) \left(rac{s_{ ext{asy}}}{s}
ight)^{2} & s > s_{ ext{asy}} \end{aligned}
ight.$$

Simone Pacetti

Unraveling the f₀ nature by means of data and analyticity

 $q^2 < s_0$

Contributions to the tff's Dispersion relations and χ^2

$$\chi^{\rm 2}_{\rm tot} = \chi^{\rm 2}_{\rm exp} + \tau \chi^{\rm 2}_{\rm th}$$

The continuity of the derivative is a condition that have to be exactly verified

au is chosen large enough to force the vanishing of the corresponding $\chi^2_{
m th}$

Experimental contribution $(M_{\phi} + M_{\eta(f_0)})^2 \leq s \leq [4(3) \text{ GeV}]^2$

$$\chi^{2}_{\exp} = \sum_{j=1}^{N} \left[\frac{F^{\text{th}}_{\phi\eta(f_{0})}(s^{\exp}_{j}) - F^{\exp}_{j}}{\delta F^{\exp}_{j}} \right]^{2}$$

Data:
$$\{s_{j}^{\mathsf{exp}}, \textit{F}_{j}^{\mathsf{exp}} \pm \delta\textit{F}_{j}^{\mathsf{exp}}\}$$

Theoretical contribution $s < s_0$ and $s > s_{asy}$

Super-convergence relation

$$\chi^2_{\text{th}} = \left[\left. \frac{1}{F^{\text{an}}_{\phi\eta(f_0)}} \frac{dF^{\text{an}}_{\phi\eta(f_0)}}{ds} \right|_{s_0} - \lim_{\epsilon \to 0^+} \frac{1}{2\sqrt{\epsilon}} \int_{s_0}^{\infty} \frac{(2s_0 - s - \epsilon)\ln|F^{\text{th}}_{\phi\eta(f_0)}(s)|}{\sqrt{s - s_0}(s - s_0 + \epsilon)^2} ds \right]^2$$

Simone Pacetti

 $q\overline{q}$ mesons Properties of the $[qq][\overline{qq}] f_0$ meson $[qq][\overline{qq}] f_0$: results

Reconstructed $\phi\eta$ transition form factor

Simone Pacetti

 $q\overline{q}$ mesons Properties of the $[qq][\overline{qq}] f_0$ meson $[qq][\overline{qq}] f_0$: results

Reconstructed $\phi\eta$ transition form factor

Simone Pacetti

 $q\overline{q}$ mesons Properties of the $[qq][\overline{qq}] f_0$ meson $[qq][\overline{qq}] f_0$: results

Reconstructed ϕf_0 transition form factor

Simone Pacetti

Introduction, formulae and data Strategy Results and new hypothesis $[qq][\overline{qq}] f_0$ meson $[qq][\overline{qq}] f_0$: results

Contributions to the $\phi f_0[qq][\overline{qq}]$ transition form factor

Simone Pacetti

 $q\overline{q}$ mesons **Properties of the** $[qq][\overline{qq}] f_0$ meson $[qq][\overline{qq}] f_0$: results

Asymptotic behaviour for $F_{\phi f_0}(s)$

$$F_{\phi f_0}(s) \propto \left(rac{1}{s}
ight)^{n_H+n_\lambda-1} = \left(rac{1}{s}
ight)^3$$
 n_H

$$F_{\phi f_0}(s) = \begin{cases} F_{\phi f_0}^{an}(s) & s < s_0 \\ F_{\phi f_0}^{VMD}(s) & s_0 \le s \le s_{asy} \\ F_{\phi f_0}^{VMD}(s_{asy}) \left(\frac{s_{asy}}{s}\right)^3 & s > s_{asy} \end{cases}$$

Without any additional low energy contribution (ω), the faster vanishing asymptotic behaviour should give a small value of the transition form factor at s = 0

 Introduction, formulae and data
 qq mesons

 Strategy
 Properties of the [qq][qq] f₀ meson

 Results and new hypothesis
 [qq][qq] f₀: results

Reconstructed ϕf_0 transition form factor with $f_0[qq][\overline{qq}]$

Simone Pacetti

Introduction, formulae and data Strategy Properties of the [qq][qq] f₀ meson Results and new hypothesis [qq][qq] f₁: results

Relative phases and VMD relation

Relative phases

 $\xi(\omega) = (-178 \pm 3)^{\circ}$ $\delta(\phi') = (15 \pm 35)^{\circ}$ $\rho(\phi'') = (-218 \pm 20)^{\circ}$

VMD coupling constants relation

$$g^{\phi}_{f_0\gamma} \left[GeV^{-1}
ight] = \sum_{V}^{\overset{\phi,\phi'}{\phi',\phi''}} \frac{g^{V}_{\phi f_0}}{eF_V} \simeq -\frac{250}{56} + \frac{113}{44} + \frac{55}{563} - \frac{6.4 imes 10^{-3}}{2.176} \simeq -1.78$$

Reanalysis of KLOE data [PLB634, 148]

A reanalysis of *KLOE* data performed with a model independent procedure [Maiani-Isidori hep-ph/0603241] allows to extract directly the coupling $|g^{\phi}_{f_{0}\gamma}|$ instead of the Breit Wigner shape-dependent $BR(\phi \rightarrow f_{0}\gamma)$

$K_{LOE} |m{g}^{\phi}_{m{f}_0\gamma}| = (1.2\div 2.0) GeV^{-1}$

Self-consistency check

$$BR(\phi \rightarrow f_0 \gamma) = \frac{\alpha}{3} \left(\frac{M_\phi^2 - M_{f_0}^2}{2M_\phi} \right)^3 \frac{|g_{f_0 \gamma}^\phi|^2}{\Gamma_\phi} \simeq 2 \times 10^{-4}$$

Simone Pacetti

 Introduction, formulae and data
 $q\overline{q}$ mesons

 Strategy
 Properties of the $[qq][\overline{qq}] f_0$ meson

 Results and new hypothesis
 $[qq][\overline{qq}] f_0$: results

Duality

Asymptotic behaviour power law

$$\begin{split} F_{H}^{2}(\mathbf{s}) \propto \frac{1}{s^{2m}} & m = n_{H} + n_{\lambda} - 1 \\ \lim_{\mathbf{s} \to \infty} -\frac{\ln[F_{H}^{2}(\mathbf{s})/F_{H}^{2}(\mathbf{s}_{\text{ref}})]}{2\ln[\mathbf{s}/\mathbf{s}_{\text{ref}}]} = m \end{split}$$

$$m_{M} = -\frac{\ln(F_{M,j}^{2,dual}) - \ln(F_{M,1}^{2,dual})}{2[\ln(s_{j}^{dual}) - \ln(s_{1}^{qual})]}$$
$$F_{M,j}^{2,dual} = \frac{1}{\Delta s} \int_{s_{j}^{s_{j}^{dual} + \Delta s/2}}^{s_{j}^{dual} + \Delta s/2} F_{M}^{2}(s) ds$$
$$s_{j}^{bdual} = s_{0} + \left(j - \frac{1}{2}\right) \frac{\Delta s}{N_{int}} \qquad j = 1, 2, ..., N_{int}$$

Simone Pacetti

 Introduction, formulae and data
 $q\overline{q}$ mesons

 Strategy
 Properties of the $[qq][\overline{qq}] f_0$ meson

 Results and new hypothesis
 $[qq][\overline{qq}] f_0$: results

Duality

Asymptotic behaviour power law

$$F_{H}^{2}(s) \propto \frac{1}{s^{2m}} \qquad m = n_{H} + n_{\lambda} - 1$$
$$\lim_{s \to \infty} -\frac{\ln[F_{H}^{2}(s)/F_{H}^{2}(s_{\text{ref}})]}{2\ln[s/s_{\text{ref}}]} = m$$

$$\begin{split} m_{M} &= -\frac{\ln(F_{M,j}^{2,\text{dual}}) - \ln(F_{M,1}^{2,\text{dual}})}{2[\ln(s_{j}^{\text{dual}}) - \ln(s_{1}^{\text{dual}})]} \\ F_{M,j}^{2,\text{dual}} &= \frac{1}{\Delta s} \int_{s_{j}^{\text{dual}} + \Delta s/2}^{s_{j+1}^{\text{dual}} + \Delta s/2} F_{M}^{2}(s) ds \\ s_{j}^{\text{dual}} &= s_{0} + \left(j - \frac{1}{2}\right) \frac{\Delta s}{N_{\text{int}}} \quad j = 1, 2, ..., N_{\text{int}} \end{split}$$

Simone Pacetti

 Introduction, formulae and data
 $q\overline{q}$ mesons

 Strategy
 Properties of the $[qq][\overline{qq}] f_0$ meson

 Results and new hypothesis
 $[qq][\overline{qq}] f_0$: results

Conclusions

A general procedure, based on analyticity and annihilation cross section data, has been defined to obtain, for a generic ϕM transition form factor (where M is a pseudoscalar or a scalar light meson) an expression valid for all values of q^2 . By means of this procedure, using as input the BABAR data for $\sigma(e^+e^- \rightarrow \phi \eta)$ and considering only the ϕ -like contributions to the transition form factor, we achieved an estimate of the branching ratio $BR(\phi \rightarrow \eta\gamma)$ in agreement with the PDG value. The same procedure, once repeated for the ϕf_0 transition form factor, with the BABAR data for $\sigma(e^+e^- \rightarrow \phi f_0)$ as input, and considering the f_0 as a $q\overline{q}$ bound state, gives a prediction for $BR(\phi \rightarrow f_0\gamma)$ 30 times lower than the PDG value. The procedure has been upgraded in order to account for a $[qq][qq] f_0$ a faster vanishing asymptotic behaviour (\Rightarrow lower values at $q^2 = 0$); additional contributions (\Rightarrow enhancement at $q^2 = 0$). In this new framework, we get: $BR(\phi \rightarrow f_0 \gamma) = (1.9 \pm 0.3) \cdot 10^{-4}$. The discrepancy with respect to the PDG value, is reduced to a factor of only 2. Agreement is obtained with a recent model-independent reanalysis of KLOE data. The power law asymptotic behaviour, that in light of the duality quark-hadron, appears also at low energy, confirms the 4-quark structure of the f_0 as explanation of the high value of $BR(\phi \rightarrow f_0\gamma)$ and the expected hadronic helicity flip.