Unraveling the f_{0} nature by connecting Kloe and BABAR data through analyticity

Simone Pacetti
INFN Laboratori Nazionali di Frascati

Roma, March 31, 2006

Outline

(1) Introduction, formulae and data

- Basic knowledge on light scalar mesons
- Amplitudes, cross sections and rates
- Babar cross section data
(2) Strategy
- Contributions to the tff's
- Dispersion relations and χ^{2}
(3) Results and new hypothesis
- $q \bar{q}$ mesons
- Properties of the $[q q][\bar{q}] f_{0}$ meson
- $[q q][q q] f_{0}$: results

Introduction, formulae and data
Results and new hypothesis

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates $B_{A} B_{A R}$ cross section data

The $f_{0}(980)$ scalar meson

It is an isoscalar $J^{P C}=0^{++}$state

$$
\underset{\text { estimate }}{\text { PDG }}\left\{\begin{array}{l}
M_{f_{0}}=(\mathbf{9 8 0} \pm \mathbf{1 0}) \mathrm{MeV} \\
\Gamma_{f_{0}}=(\mathbf{4 0} \div \mathbf{1 0 0}) \mathbf{M e V}
\end{array}\right.
$$

It has an isovector $a_{0}(980)$ with similar mass and width

$$
\underset{\text { estimate }}{\text { PDG }}\left\{\begin{array}{l}
M_{a_{0}}=(984.7 \pm \mathbf{1 . 2}) \mathrm{MeV} \\
\left.\Gamma_{a_{0}}=\mathbf{(5 0} \div \mathbf{1 0 0}\right) \mathbf{M e V}
\end{array}\right.
$$

The vacuum, the Higgs boson and the expected lowest-lying glueball have the $f_{0}(980)$ quantum numbers

It is a bridge between light and strange quarks. It appears:

* as a peak in the $\pi \pi$ invariant mass distribution of strange particle decays;
* as a dip or a shoulder when produced from non-strange quarks.

Introduction, formulae and data
Strategy
Results and new hypothesis

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates $B_{A B A R}$ cross section data

$f_{0}(980)$ mass and width time evolution

Introduction, formulae and data

Basic knowledge on light scalar mesons
Amplitudes, cross sections and rates
$B_{A} B_{A R}$ cross section data

Long outstanding questions

Is the $f_{0}(980)$ an $n^{2 S+1} L_{J}=1^{3} P_{0}$ element of the conventional scalar $\boldsymbol{q} \overline{\boldsymbol{q}}$ nonet of flavor $\boldsymbol{S U (3)}$?

Is this meson a multiquark, $K \bar{K}$ or meson-meson bound states ?

Strong interest in recent literature Maiani, Piccinini, Polosa, Riquer, Jaffe, Pennington, Close, Achasov,...

In these cases
There exists a scalar $q \bar{q}$ nonet?

Where is it?

Is this meson the lower-lying glueball?
Is it an hybrid $q \bar{q} g$ with a massive gluon component?

Introduction, formulae and data
Strategy
Results and new hypothesis

The q" scalar nonet

SU(3) flavor nonet

Problems

The three light quarks u, d and s group into an octet and a singlet $q^{3} \otimes \bar{q}^{\overline{3}}=[\bar{q} q]^{1} \oplus[q q]^{8}$

Mass degeneracy of f_{0} and a_{0}

- $\boldsymbol{\sigma}$ and κ are broader than f_{0} and a_{0}

Introduction, formulae and data
Results and new hypothesis

The qव्व scalar nonet

SU(3) flavor nonet

The three light quarks u, d and s group into an octet and a singlet $q^{3} \otimes \bar{q}^{\overline{3}}=[\bar{q} q]^{1} \oplus[\bar{q}]^{8}$

Problems

Mass degeneracy of f_{0} and a_{0}

- σ and κ are broader than f_{0} and a_{0}

Lattice QCD predicts a scalar $q \bar{q}$ nonet at $1.2 \div 1.6 \mathrm{GeV}$ [Bali et al.]

Introduction, formulae and data
Strategy
Results and new hypothesis

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates $B_{A B A R}$ cross section data

The qaq9 cryptoexotic scalar nonet

Exotica

States $q \bar{q} q \bar{q}$ include exotics in 27, 10 and $\overline{\mathbf{1 0}}$ representations of flavor $S U(3)$

Cryptoexotica $Q \equiv\left|\{q q\} \overline{3}_{c} \overline{3}_{f} 0^{+}\right\rangle$
The light states are \mathbf{Q}-dominated

$$
\overline{\boldsymbol{Q}}^{3} \otimes \boldsymbol{Q}^{\overline{3}}=[\overline{\boldsymbol{Q}} \boldsymbol{Q}]^{1} \oplus[\overline{\boldsymbol{Q}} \boldsymbol{Q}]^{8}
$$

there are only non-exotic representations

Introduction, formulae and data

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates $B_{A B A R}$ cross section data

The q9aव cryptoexotic scalar nonet

Exotica

States $q \bar{q} q \bar{q}$ include exotics in 27, 10 and $\overline{\mathbf{1 0}}$ representations of flavor $\operatorname{SU}(3)$

Cryptoexotica $Q \equiv\left|\{q q\} \overline{3}_{c} \overline{3}_{f} 0^{+}\right\rangle$
The light states are \mathbf{Q}-dominated

$$
\overline{\boldsymbol{Q}}^{3} \otimes \boldsymbol{Q}^{\overline{3}}=[\overline{\boldsymbol{Q}} \boldsymbol{Q}]^{1} \oplus[\overline{\boldsymbol{Q}} \boldsymbol{Q}]^{8}
$$

there are only non-exotic representations

Introduction, formulae and data
Results and new hypothesis

Basic knowledge on light scalar mesons
Amplitudes, cross sections and rates
$B_{A B A R}$ cross section data

Ambiguity in studying scalar resonances

Breit-Wigner formula

Vector mesons V

Introduction, formulae and data
Results and new hypothesis

Basic knowledge on light scalar mesons
Amplitudes, cross sections and rates
$B_{A B A R}$ cross section data

Ambiguity in studying scalar resonances

Breit-Wigner formula

Vector mesons V

Introduction, formulae and data
Strategy
Results and new hypothesis

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

Ambiguity in studying scalar resonances

Breit-Wigner formula

Vector mesons $V=\rho, \omega, \phi, \ldots$
$V \rightarrow[P \bar{P}]_{\text {P-wave }}:$ suppressed \rightarrow threshold
$P \bar{P}$ is a little effect in the V Fock space

Scalar mesons $S=f_{0}, a_{0}, \ldots$

$$
S \rightarrow[P \bar{P}]_{\text {S-wave }}: \text { no suppression }
$$

$P \bar{P}$ is a large component of the S Fock space

Introduction, formulae and data

Results and new hypothesis

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates $B_{A B A R}$ cross section data

Collecting some information about the $f_{0}(980)$

Large $u \bar{u}$ and $d \bar{d}$ component
No evidence of gluon content
No information about the structure

- Lower-lying glueball: $M_{G} \sim 1.6 \mathrm{GeV}$
- A $q \bar{q} P$-wave scalar nonet is predicted at $1.2 \div 1.6 \mathrm{GeV}$
- Strong interacting $\boldsymbol{Q} \overline{\boldsymbol{Q}}$ produce an S -wave scalar nonet below 1 GeV

The standard analysis of the $f_{0}(980)$ resonance is quite difficult.

There are cuts on the complex s-plane that distort the scalar pole.

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates BABAR cross section data

The plan to study the vertex $\phi M \gamma$ with $M=\eta, f_{0}(980)$

Data on the cross section for

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \gamma^{*}(q) \rightarrow \phi M \\
& \text { give } \\
&\left|F_{\phi M}\left(q^{2}\right)\right|^{2} \quad \begin{array}{l}
q^{2} \geq\left(M_{\phi}+M_{M}\right)^{2}
\end{array}
\end{aligned}
$$

In the unphysical region $\left[\left(M_{\phi}-M_{M}\right)^{2},\left(M_{\phi}+M_{M}\right)^{2}\right]$

$$
F_{\phi M}\left(q^{2}\right)=\sum_{i=1}^{N_{V}} G_{e e}^{V_{i}} G_{\phi M}^{V_{i}} B W_{i}\left(q^{2}\right)
$$

Number N_{V} and species of the intermediate V_{i} strongly depend on the quark structure of the meson M

$$
\Gamma(\phi \rightarrow M \gamma)=\operatorname{DR}\left\{\begin{array}{c}
G_{\phi M}^{V_{i}}, \sigma(\phi M) ; \\
i=1, \ldots, N_{V}
\end{array} ; \sigma \begin{array}{c}
F_{\phi M}\left(q^{2}\right) \\
q^{2} \rightarrow \infty
\end{array}\right\}
$$

The asymptotic behaviour of $F_{\phi M}\left(q^{2}\right)$ is a function of the number of hadronic fields in the vertex ϕM_{γ}

Introduction, formulae and data
Strategy
Results and new hypothesis

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates $B_{A B A R}$ cross section data

From annihilation cross section to radiative decay rate

$$
e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow M \phi
$$

The cross section is:

$$
\sigma=\sigma_{Q E D} \cdot\left|F_{\phi M}\left(q^{2}\right)\right|^{2}
$$

$$
\phi \rightarrow \gamma^{*} M \rightarrow e^{+} e^{-} \boldsymbol{M}
$$

The diff. decay rate is:

$$
\frac{d \Gamma}{d q^{2}}=\left[\frac{d \Gamma}{d q^{2}}\right]_{Q E D}\left|F_{\phi M}\left(q^{2}\right)\right|^{2}
$$

radiative decay $\left(q^{2}=0\right)$:

$$
\Gamma=\Gamma_{\text {QED }} \cdot\left|F_{\phi M}(0)\right|^{2}
$$

If we know the form factor $F_{\phi M}$ as a function of q^{2}, we can relate

$$
\text { BABAR } \sigma\left(e^{+} e^{-} \rightarrow M \phi\right) \text { and } \frac{d \Gamma\left(\phi \rightarrow e^{+} e^{-} M\right)}{d q^{2}} \quad \text { KLOE }
$$

Large values of radiative decay rate $\Gamma\left(q^{2}=0\right)$

Large values of σ $\left[q^{2}>\left(M_{M}+M_{\phi}\right)^{2}\right]$ Very large values of σ if $M_{M} \sim M_{\phi}$

Introduction, formulae and data
Strategy
Results and new hypothesis

Amplitude and $\phi \eta$ transition form factor

$$
\mathcal{M}=\sum_{j} \frac{g_{\phi \eta}^{v_{j}}}{M_{j}^{2}-q^{2}-i \Gamma_{j} M_{j}} \frac{M_{V_{j}}^{2}}{F_{V_{j}}}\left[\varepsilon^{\mu \nu \alpha \beta} \epsilon_{\nu} p_{\alpha} q_{\beta}\right] \frac{1}{q^{2}}\left[-i e \bar{v}\left(p_{+}\right) \gamma_{\mu} u\left(p_{-}\right)\right]
$$

$$
F_{\phi \eta}\left(q^{2}\right)=\sum_{j} \frac{M_{j}}{e F_{v_{j}}} \frac{g_{\phi \eta}^{v_{j}}}{\Gamma_{j}} \frac{\Gamma_{j} M_{j}}{M_{j}^{2}-q^{2}-i \Gamma_{j} M_{j}}
$$

Introduction, formulae and data
Strategy
Results and new hypothesis

Amplitude and ϕf_{0} transition form factor

$\mathcal{M}=\sum_{j} \frac{g_{\phi f_{0}}^{V_{j}}}{M_{j}^{2}-q^{2}-i \Gamma_{j} M_{j}} \frac{M_{V_{j}}^{2}}{F_{V_{j}}} \epsilon_{\nu}\left[p^{\mu} q^{\nu}-g^{\mu \nu}(p q)\right] \frac{1}{q^{2}}\left[-i e \bar{v}\left(p_{+}\right) \gamma_{\mu} u\left(p_{-}\right)\right]$

$$
F_{\phi f_{0}}\left(q^{2}\right)=\sum_{j} \frac{M_{j}}{e F_{V_{j}}} \frac{g_{\phi f_{0}}^{V_{j}}}{\Gamma_{j}} \frac{\Gamma_{j} M_{j}}{M_{j}^{2}-q^{2}-i \Gamma_{j} M_{j}}
$$

Introduction, formulae and data

Results and new hypothesis

Basic knowledge on light scalar mesons

Amplitudes, cross sections and rates
BABAR cross section data

Radiative decay amplitudes and rates

$$
\mathcal{M}=F_{\phi \eta}(0) \varepsilon^{\mu \nu \rho \sigma} \epsilon_{\mu}(p) \epsilon_{\nu}(p) p_{\rho} q_{\sigma}
$$

$$
\mathcal{M}=F_{\phi f_{0}}(0)\left[q^{\mu} p^{\nu}-g^{\mu \nu}(q p)\right] \epsilon_{\mu}(p) \epsilon_{\nu}(p)
$$

$$
\Gamma(\phi \rightarrow \eta \gamma)=\frac{\alpha}{3}\left[\frac{M_{\phi}^{2}-M_{\eta}^{2}}{2 M_{\phi}}\right]^{3} F_{\phi \eta}(0)^{2}
$$

Introduction, formulae and data
Results and new hypothesis

BABAR data: $\phi \eta$ cross section

Introduction, formulae and data
Strategy
Results and new hypothesis

BABAR data: ϕf_{0} cross section

$$
\sigma\left(e^{+} e^{-} \rightarrow \phi f_{0} \gamma\right)
$$

Introduction, formulae and data
Strategy
Results and new hypothesis

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates $B_{A B A R}$ cross section data

BABAR data: $\phi \eta$ transition form factor

$$
\sigma_{\phi \eta}(s)=\frac{\pi}{6} \frac{\alpha^{2}}{s^{3}}\left(s+2 m^{2}\right)\left\{\frac{\left[\left(s+M_{\phi}^{2}-M_{\eta}^{2}\right)^{2}-4 M_{\phi}^{2} s\right]^{3}}{s\left(s-4 m^{2}\right)}\right\}^{\frac{1}{2}} \cdot\left|F_{\phi \eta}(s)\right|^{2} \quad s=q^{2}
$$

$\left|F_{\phi \eta}(s)\right|^{2}$

Introduction, formulae and data
Strategy
Results and new hypothesis

Basic knowledge on light scalar mesons Amplitudes, cross sections and rates $B_{A B A R}$ cross section data

BABAR data: ϕf_{0} transition form factor

$\left|F_{\phi f_{0}}(s)\right|^{2}$

Okubo-Zweig-lizuka (OZI) rule

Hard gluons

- Gluons carry color while mesons are colorless
\Rightarrow more than 1 gluon exchanged
- $C(V)=-1$
$C\left(n_{g}\right.$ gluons $)=(-1)^{n_{g}}$
\Rightarrow at least 3 gluons
- $E_{V}>1 \mathrm{GeV} \Rightarrow \alpha_{S}<1$
\Rightarrow suppression α_{S}^{3}

Okubo-Zweig-lizuka (OZI) rule

Large N_{c}

- Denominator

Flavor connected process:
$\Rightarrow \mathcal{O}\left(N_{c}^{-1}\right)$

- Numerator

Flavor disconnected process with an extra quark loop:
$\Rightarrow \mathcal{O}\left(N_{c}^{-2}\right)$

Contributions to the $\phi \eta$ transition form factor

$\phi \eta$ final state: $I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$

$$
\begin{aligned}
& |\phi\rangle=\boldsymbol{s} \bar{s} \quad|\boldsymbol{\eta}\rangle=X_{\eta}\left|\omega^{\mathbf{p}}\right\rangle+\boldsymbol{Y}_{\boldsymbol{\eta}}\left|\phi^{\mathbf{p}}\right\rangle
\end{aligned}
$$

ω-family contributions are OZI suppressed

ϕ-family contributions are OZI allowed

Contributions to the $\phi f_{0}[q \bar{q}]$ transition form factor

$$
\begin{aligned}
& \phi f_{0} \text { final state: } I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right) \\
& |\phi\rangle=\boldsymbol{s} \bar{s} \quad\left|f_{0}\right\rangle=X_{f_{0}}\left|\omega^{\mathbf{s}}\right\rangle+\boldsymbol{Y}_{f_{0}}\left|\phi^{\mathbf{s}}\right\rangle
\end{aligned}
$$

ω-family contributions are OZI suppressed

ϕ-family contributions are OZI allowed

Asymptotic behaviour

Nominal power law behaviour for hadronic form factor $F_{H}(s)$ as $s \rightarrow \infty$
[Brodsky, Lepage]

$$
\begin{aligned}
& F_{H}(s) \propto\left(\frac{1}{s}\right)^{n_{H}-1} \\
& s \rightarrow \infty
\end{aligned}
$$

n_{H} final hadronic fields

Helicity rule: hadronic helicity flip in $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \phi M\left(\operatorname{spin}_{M}=0\right)$

- CM: $\left|\lambda_{\phi}-\lambda_{M}\right|=\left|\frac{\vec{p} \cdot \vec{S}_{\text {ot }}}{|\vec{p}|}\right|=0,1$
- Helicity conservation: $\lambda_{\phi}+\lambda_{M}=\lambda_{\phi}=0$

$$
F_{H}(s) \propto\left(\frac{1}{s}\right)^{n_{H}-1+n_{\lambda}}
$$

- Only one d.o.f. (one transition form factor): $\left|\lambda_{\phi}\right|=1$

$$
n_{\lambda}=\left|\lambda_{\phi}-\lambda_{M}\right|
$$

$F_{\text {oin }}\left(q^{2}\right)$ above the theoretical threshold $s_{0}=\left(3 M_{\pi}\right)^{2}$

Low energy behaviour of $F_{\phi \eta}\left(q^{2}\right)$
3 d.o.f.

$$
F_{\phi \eta}^{\mathrm{VMD}}\left(q^{2}\right)=\frac{M_{\phi}}{e F_{\phi}} \frac{g_{\phi \eta}^{\phi}}{\Gamma_{\phi}} \frac{\Gamma_{\phi} M_{\phi}}{M_{\phi}^{2}-q^{2}-i \Gamma_{\phi} M_{\phi}}+\frac{M_{\phi^{\prime}}}{e F_{\phi^{\prime}}} \frac{g_{\phi \eta}^{\phi^{\prime}}}{\Gamma_{\phi^{\prime}}} \frac{\Gamma_{\phi^{\prime}} M_{\phi^{\prime}} e^{i \delta_{\eta}}}{M_{\phi^{\prime}}^{2}-q^{2}-i \Gamma_{\phi^{\prime}} M_{\phi^{\prime}}}
$$

Asymptotic behaviour $\left(q^{2} \rightarrow \infty\right)$

$$
F_{\phi \eta}\left(q^{2}\right) \propto\left(\frac{1}{q^{2}}\right)^{n_{H}+n_{\lambda}-1=2}
$$

$$
\boldsymbol{n}_{\boldsymbol{H}}=2 \text { final hadronic fields }
$$

$$
\boldsymbol{n}_{\lambda}= \begin{cases}0 & \text { hadronic helicity conserved } \\ 1 & \text { otherwise }\end{cases}
$$

$$
F_{\phi \eta}^{\mathrm{th}}(s)=\left\{\begin{array}{lll}
F_{\phi \eta}^{\mathrm{VMD}}(s) & s_{0} \leq s \leq s_{\mathrm{asy}} & s \equiv q^{2} \\
F_{\phi \eta}^{\mathrm{VMD}}(\text { Sasy })\left(\frac{s_{\text {asy }}}{s}\right)^{2} & s>s_{\text {asy }} & s_{0}=\left(3 M_{\pi}\right)^{2} \\
s_{\mathrm{asy}}=(4 G e V)^{2}
\end{array}\right.
$$

$F_{\phi f_{0}}\left(q^{2}\right)$ above the theoretical threshold $s_{0}=\left(3 M_{\pi}\right)^{2}$

Low energy behaviour of $F_{\phi f_{0}}\left(q^{2}\right)$

$$
F_{\phi f_{0}}^{\mathrm{VMD}}\left(q^{2}\right)=B W_{\phi}\left(g_{\phi f_{0}}^{\phi}, q^{2}\right)+e^{i \delta_{f_{0}}} B W_{\phi^{\prime}}\left(g_{\phi f_{0}}^{\phi^{\prime}}, q^{2}\right)+e^{i \rho_{f_{0}}} B W_{\phi^{\prime \prime}}\left(g_{\phi f_{0}}^{\phi^{\prime \prime}}, q^{2}\right)
$$

Three ϕ recurrences
Asymptotic behaviour ($q^{2} \rightarrow \infty$)

$$
F_{\phi f_{0}}\left(q^{2}\right) \propto\left(\frac{1}{q^{2}}\right)^{n_{H}+n_{\lambda}-1=2}
$$

$$
n_{H}=2 \text { final hadronic fields }
$$

$$
\boldsymbol{n}_{\lambda}= \begin{cases}0 & \text { hadronic helicity conserved } \\ 1 & \text { otherwise }\end{cases}
$$

$$
F_{\phi f_{0}}^{\mathrm{th}}(s)= \begin{cases}F_{\phi f_{0}}^{\mathrm{VMD}}(s) & s_{0} \leq s \leq \text { Sasy } \\ F_{\phi f_{0}}^{\mathrm{VMD}}\left(\text { Sasy }^{\mathrm{V}}\left(\frac{s_{\text {asy }}}{s}\right)^{2}\right. & s>\text { Sasy }\end{cases}
$$

$$
\begin{aligned}
& s \equiv q^{2} \\
& s_{0}=\left(3 M_{\pi}\right)^{2} \\
& s_{\text {asy }}=(4 \mathrm{GeV})^{2}
\end{aligned}
$$

Dispersion Relations

A form factor $f\left(q^{2}\right)$ is an analytic function on the q^{2} complex plane with the cut $\left[s_{0}=9 M_{\pi}^{2}, \infty\right)$

$$
f\left(q^{2}\right)=\left|f\left(q^{2}\right)\right| e^{i \delta\left(q^{2}\right)}
$$

Dispersion relation for the imaginary part

$$
f\left(q^{2}\right)=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{z-q^{2}}=\frac{1}{\pi} \int_{s_{0}}^{\infty} \frac{\operatorname{Im} f(s) d s}{s-q^{2}}
$$

Dispersion relation for the logarithm

Assuming no zeros on the physical sheet and using the function

$$
\Phi(z)=\frac{\ln [f(z)]}{\sqrt{s_{0}-z}} \quad q^{2} \geq s_{0} \quad \delta\left(q^{2}\right)=-\frac{\sqrt{q^{2}-s_{0}}}{\pi} \operatorname{Pr} \int_{s_{0}}^{\infty} \frac{\ln |f(s)| d s}{\left(s-q^{2}\right) \sqrt{s-s_{0}}}
$$

Extension of the transition form factors below S_{0}

Analytic continuation via dispersion relations for the logarithm

$$
\ln \left[F_{H}^{\mathrm{an}}\left(q^{2}\right)\right]=\frac{\sqrt{s_{0}-q^{2}}}{\pi} \int_{s_{0}}^{\infty} \frac{\ln \left|F_{H}^{\mathrm{th}}(s)\right| d s}{\left(s-q^{2}\right) \sqrt{s-s_{0}}} \quad q^{2}<s_{0}
$$

$$
F_{H}(s)= \begin{cases}F_{H}^{\mathrm{an}}(s) & s<s_{0} \\ F_{H}^{\mathrm{VMD}}(s) & s_{0} \leq s \leq s_{\text {asy }} \\ F_{H}^{\mathrm{VMD}}(\text { Sasy })\left(\frac{s_{\text {asy }}}{s}\right)^{2} & s>\text { sasy }\end{cases}
$$

$$
\chi_{\mathrm{tot}}^{2}=\chi_{\mathrm{exp}}^{2}+\tau \chi_{\mathrm{th}}^{2}
$$

The continuity of the derivative is a condition that have to be exactly verified
τ is chosen large enough to force the vanishing of the corresponding $\chi_{\text {th }}^{2}$

Experimental contribution
$\left(M_{\phi}+M_{\eta\left(f_{0}\right)}\right)^{2} \leq s \leq[4(3) \mathrm{GeV}]^{2}$

$$
\chi_{\exp }^{2}=\sum_{j=1}^{N}\left[\frac{F_{\phi \eta\left(f_{0}\right)}^{\mathrm{th}}\left(s_{j}^{\exp }\right)-F_{j}^{\exp }}{\delta F_{j}^{\exp }}\right]^{2}
$$

$$
\text { Data: }\left\{s_{j}^{\exp }, F_{j}^{\exp } \pm \delta F_{j}^{\exp }\right\}
$$

Theoretical contribution
$\boldsymbol{s}<\boldsymbol{s}_{0}$ and $\boldsymbol{s}>\boldsymbol{s}_{\text {asy }}$

$$
\chi_{\mathrm{th}}^{2}=\left[\left.\frac{1}{F_{\phi \eta\left(f_{0}\right)}^{\mathrm{an}}} \frac{d F_{\phi \eta\left(f_{0}\right)}^{\mathrm{an}}}{d s}\right|_{s_{0}}-\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{2 \sqrt{\epsilon}} \int_{s_{0}}^{\infty} \frac{\left(2 s_{0}-s-\epsilon\right) \ln \left|F_{\phi \eta\left(f_{0}\right)}^{\mathrm{th}}(s)\right|}{\sqrt{s-s_{0}}\left(s-s_{0}+\epsilon\right)^{2}} d s\right]^{2}
$$

Reconstructed $\phi \eta$ transition form factor

Simone Pacetti

Reconstructed $\phi \eta$ transition form factor

Coupling constants
$g_{\phi \eta}^{\phi}=12 \pm 1 \mathrm{GeV}^{-1}$
$g_{\phi \eta}^{\phi^{\prime}}=40 \pm 2 \mathrm{GeV}^{-1}$

Resonances parameters (input)

$$
\begin{array}{ll}
M_{\phi}=1019.5 \mathrm{MeV} & \Gamma_{\phi}=4.3 \mathrm{MeV} \\
M_{\phi^{\prime}}=1665 \mathrm{MeV} & \Gamma_{\phi^{\prime}}=159 \mathrm{MeV}
\end{array}
$$

Reconstructed ϕf_{0} transition form factor

Coupling constants

$g_{\phi f_{0}}^{\phi}=9 \pm 1 \mathrm{GeV}^{-1}$
$g_{\phi f_{0}}^{\phi^{\prime}}=36 \pm 5 \mathrm{GeV}{ }^{-1}$
$g_{\phi f_{0}}^{\phi^{\prime \prime}} M_{\phi^{\prime \prime}} / F_{\phi^{\prime \prime}}=(6.3 \pm 0.3) \times 10^{-3}$

Resonances parameters (input)

$$
\begin{array}{ll}
M_{\phi}=1019.5 \mathrm{MeV} & \Gamma_{\phi}=4.3 \mathrm{MeV} \\
M_{\phi^{\prime}}=1665 \mathrm{MeV} & \Gamma_{\phi^{\prime}}=159 \mathrm{MeV} \\
M_{\phi^{\prime \prime}}=2176 \mathrm{MeV} & \Gamma_{\phi^{\prime \prime}}=51 \mathrm{MeV}
\end{array}
$$

Contributions to the $\phi f_{0}[q q][\overline{q]}]$ transition form factor

VMD contributions

No ω^{\prime} contribution is considered In the same region ϕ^{\prime} dominates

$$
\frac{M_{\phi^{\prime}}}{\left|F_{\phi^{\prime}}\right|} \frac{\left|F_{\omega^{\prime}}\right|}{M_{\omega^{\prime}}}>10
$$

Asymptotic behaviour for $F_{\phi f_{0}}(s)$

$$
F_{\phi f_{0}}(s) \propto\left(\frac{1}{s}\right)^{n_{H}+n_{\lambda}-1}=\left(\frac{1}{s}\right)^{3} \quad n_{H}=3
$$

$$
F_{\phi f_{0}}(s)= \begin{cases}F_{\phi f_{0}}^{\mathrm{an}}(s) & s<s_{0} \\ F_{\phi f_{0}}^{\mathrm{VMD}}(\boldsymbol{s}) & s_{0} \leq \boldsymbol{s} \leq \boldsymbol{s}_{\mathrm{asy}} \\ F_{\phi f_{0}}^{\mathrm{VMD}}\left(\boldsymbol{s}_{\text {asy }}\right)\left(\frac{s_{\text {asy }}}{s}\right)^{3} & \boldsymbol{s}>\boldsymbol{s}_{\text {asy }}\end{cases}
$$

Without any additional low energy contribution (ω), the faster vanishing asymptotic behaviour should give a small value of the transition form factor at $s=0$

Reconstructed ϕf_{0} transition form factor with $f_{0}[q q][\bar{q}]$

$$
\left|F_{\phi_{0}}(s)\right|^{2}
$$

$$
\begin{aligned}
& g_{\phi f_{0}}^{\omega}=76 \pm 7 \mathrm{GeV}^{-1} \\
& g_{\phi f_{0}}^{\phi}=34 \pm 4 \mathrm{GeV}^{-1} \\
& g_{\phi f_{0}}^{\phi^{\prime}}=17 \pm 5 \mathrm{GeV}^{-1} \\
& g_{\phi f_{0}}^{\phi^{\prime \prime}} M_{\phi^{\prime \prime}}^{\prime \prime} / F_{\phi^{\prime \prime}}=(1.9 \pm 0.4) \cdot 10^{-3}
\end{aligned}
$$

$$
\begin{array}{ll}
M_{\omega}=783.7 \mathrm{MeV} & \Gamma_{\omega}=8.5 \mathrm{MeV} \\
M_{\phi}=1019.5 \mathrm{MeV} & \Gamma_{\phi}=4.3 \mathrm{MeV} \\
M_{\phi^{\prime}}=1665 \mathrm{MeV} & \Gamma_{\phi^{\prime}}=159 \mathrm{MeV} \\
M_{\phi^{\prime \prime}}=2176 \mathrm{MeV} & \Gamma_{\phi^{\prime \prime}}=51 \mathrm{MeV}
\end{array}
$$

Relative phases and VMD relation

Relative phases

$$
\xi(\omega)=(-178 \pm 3)^{o} \quad \delta\left(\phi^{\prime}\right)=(15 \pm 35)^{o} \quad \rho\left(\phi^{\prime \prime}\right)=(-218 \pm 20)^{o}
$$

VMD coupling constants relation

$$
g_{f_{0} \gamma}^{\phi}\left[G e V^{-1}\right]=\sum_{V}^{\stackrel{\omega}{\phi^{\prime}, \phi^{\prime \prime}}} \frac{g_{\phi f_{0}}^{V}}{e F_{V}} \simeq-\frac{250}{56}+\frac{113}{44}+\frac{55}{563}-\frac{6.4 \times 10^{-3}}{2.176} \simeq-1.78
$$

Reanalysis of KLOE data [PLB634, 148]
A reanalysis of KLOE data performed with a model independent procedure [Maiani-Isidori hep-ph/0603241] allows to extract directly the coupling $\left|g_{t_{0} \gamma}^{\phi}\right|$ instead of the Breit Wigner shape-dependent $B R\left(\phi \rightarrow f_{0} \gamma\right)$

```
Kloe
|g}\mp@subsup{g}{\mp@subsup{f}{0}{}\gamma}{\phi}|=(1.2\div2.0)GeV-
```

Self-consistency check

$$
B R\left(\phi \rightarrow f_{0} \gamma\right)=\frac{\alpha}{3}\left(\frac{M_{\phi}^{2}-M_{f_{0}}^{2}}{2 M_{\phi}}\right)^{3} \frac{\left|g_{f_{0} \gamma}^{\phi}\right|^{2}}{\Gamma_{\phi}} \simeq 2 \times 10^{-4}
$$

Duality

Asymptotic behaviour power law

$$
\begin{gathered}
F_{H}^{2}(s) \propto \frac{1}{s^{2 m}} \quad m=n_{H}+n_{\lambda}-1 \\
\lim _{s \rightarrow \infty}-\frac{\ln \left[F_{H}^{2}(s) / F_{H}^{2}\left(s_{\mathrm{ref}}\right)\right]}{2 \ln \left[s / s_{\mathrm{ref}}\right]}=m
\end{gathered}
$$

$$
\begin{gathered}
m_{M}=-\frac{\ln \left(F_{M, j}^{2, \text { dual }}\right)-\ln \left(F_{M, 1}^{2, \text { dual }}\right)}{2\left[\ln \left(s_{j}^{\text {dual }}\right)-\ln \left(s_{1}^{\text {dual }}\right)\right]} \\
F_{M, j}^{2, \text { dual }}=\frac{1}{\Delta s} \int_{s_{j}^{\text {dual }}-\Delta s / 2}^{s_{i+1}^{\text {dual }}+\Delta s / 2} F_{M}^{2}(s) d s \\
s_{j}^{\text {dual }}=s_{0}+\left(j-\frac{1}{2}\right) \frac{\Delta s}{N_{\text {int }}} \quad j=1,2, \ldots, N_{\text {int }}
\end{gathered}
$$

Duality

Asymptotic behaviour power law

$$
\begin{gathered}
F_{H}^{2}(s) \propto \frac{1}{s^{2 m}} \quad m=n_{H}+n_{\lambda}-1 \\
\lim _{s \rightarrow \infty}-\frac{\ln \left[F_{H}^{2}(s) / F_{H}^{2}\left(s_{\mathrm{ref}}\right)\right]}{2 \ln \left[s / s_{\mathrm{ref}}\right]}=m
\end{gathered}
$$

$$
\begin{gathered}
m_{M}=-\frac{\ln \left(F_{M, j}^{2, \text { dual }}\right)-\ln \left(F_{M, 1}^{2, \text { dual }}\right)}{2\left[\ln \left(s_{j}^{\text {dual }}\right)-\ln \left(s_{1}^{\text {dual }}\right)\right]} \\
F_{M, j}^{2, \text { dual }}=\frac{1}{\Delta s} \int_{s_{j}^{\text {dual }}-\Delta s / 2}^{s_{j+1}^{\text {dual }}+\Delta s / 2} F_{M}^{2}(s) d s
\end{gathered}
$$

$$
s_{j}^{\text {dual }}=s_{0}+\left(j-\frac{1}{2}\right) \frac{\Delta s}{N_{\text {int }}} \quad j=1,2, \ldots, N_{\text {int }}
$$

Conclusions

- A general procedure, based on analyticity and annihilation cross section data, has been defined to obtain, for a generic ϕM transition form factor (where M is a pseudoscalar or a scalar light meson) an expression valid for all values of q^{2}.
- By means of this procedure, using as input the BABAR data for $\sigma\left(e^{+} e^{-} \rightarrow \phi \eta\right)$ and considering only the ϕ-like contributions to the transition form factor, we achieved an estimate of the branching ratio $B R(\phi \rightarrow \eta \gamma)$ in agreement with the PDG value.

The same procedure, once repeated for the ϕf_{0} transition form factor, with the BABAR data for $\sigma\left(e^{+} e^{-} \rightarrow \phi f_{0}\right)$ as input, and considering the f_{0} as a $q \bar{q}$ bound state, gives a prediction for $B R\left(\phi \rightarrow f_{0} \gamma\right) 30$ times lower than the PDG value.

- The procedure has been upgraded in order to account for a [qq][qq] f_{0}
- a faster vanishing asymptotic behaviour (\Rightarrow lower values at $q^{2}=0$);
- additional contributions (\Rightarrow enhancement at $q^{2}=0$).
- In this new framework, we get: $B R\left(\phi \rightarrow f_{0} \gamma\right)=(1.9 \pm 0.3) \cdot 10^{-4}$.

The discrepancy with respect to the PDG value, is reduced to a factor of only 2. Agreement is obtained with a recent model-independent reanalysis of KLOE data.
The power law asymptotic behaviour, that in light of the duality quark-hadron, appears also at low energy, confirms the 4-quark structure of the f_{0} as explanation of the high value of $B R\left(\phi \rightarrow f_{0} \gamma\right)$ and the expected hadronic helicity flip.

