Primi risultati di Borexino e prospettive future

M. Pallavicini Università di Genova & INFN

Contenuti

- Il Sole e i neutrini solari
 - I neutrini: sonda per le reazioni nucleari del Sole
 - Il Sole: sorgente per esperimenti di fisica del neutrino
- Motivazioni per Borexino
 - Cenni storici al problema dei neutrini solari e sviluppi recenti
 - Il ruolo di Borexino oggi
- Sviluppo e costruzione dell'esperimento
 - Difficoltà sperimentali e loro soluzione
- Primi risultati e prospettive
 - \blacksquare La prima misura in tempo reale dei ν solari di bassa energia
 - Prospettive scientifiche

Il Sole (I)

- Il Sole è la stella ovviamente meglio conosciuta e più studiata
 - I fotoni in tutto lo spettro danno un'enorme quantità di informazioni, ma solo sulla superficie del Sole
 - Per la struttura profonda dobbiamo basarci su modelli e estrapolazioni
 - Eliosismologia, ad esempio

Roma - 16 novembre 2007

- 0 0.25 R_s (0.7 10⁶ Km): nocciolo
 - Reazioni nucleari: T~1.5 10⁷ °K
 - Ciclo pp e ciclo CNO
 - 7 10¹¹ Kg/s di idrogeno in elio
- 0.25 0.75 R_s: zona radiativa
 - I fotoni trasportano l'energia in ~ 10⁵ y
- 0.75 1.0 R_s: zona convettiva
 - Forte convezione e turbolenza
 - Complessi fenomeni superficiali molto studiati, ma non ancora del tutto capiti
- > R_s: corona
 - Gas a milioni di gradi
 - Complessi fenomeni magnetoidrodinamici poco capiti

Reazioni nucleari solari

- Da molto tempo è chiaro che le reazioni che tengono in funzione il Sole (e tutte le stelle) sono le reazioni nucleari del ciclo pp e del ciclo CNO
 - Nel ciclo pp, 4 protoni si fondono in un nucleo di ⁴He con liberazione di circa 27 MeV di energia
 - E' il ciclo fondamentale per tutte le stelle non troppo calde, come il Sole
 - Nel ciclo C-N-O, questi elementi catalizzano la produzione di ⁴He, senza essere consumati nella reazione

- Questo ciclo è quello dominante per stelle calde
- Nel Sole dovrebbe contribuire per 1-2 % ma la cosa è ancora molto incerta
 - Recenti nuove misure di "metallicità" hanno cambiato di un fattore 2 il contributo

astro-ph/0410214

Reazioni nucleari solari: ciclo pp

- <u>Il ciclo pp</u>
 - E' il ciclo dominante per stelle non troppo calde come il Sole
 - Il ciclo si divide in vari rami, ognuno dei quali è associato all'emissione di neutrini di varia energia
 - **Complessivamente:**

 $4p \rightarrow ^{4}He+Q+neutrini$

- Il ciclo CNO
 - E' fondamentale per stelle più calde del Sole
 - Nel Sole si suppone produca 1-2% dell'energia
 - Problema non chiaro.

Recenti misure di "metallicità" sembrano cambiare
 astro-ph/0410214
 i numeri in modo significativo
 astro-ph/0610052

 Anche il CNO emette neutrini di energia relativamente alta (> 1 MeV)

Che cosa è un "modello solare" ?

- E' un modello evolutivo del Sole che ne segue la storia dalla formazione fino a oggi
 - Include:
 - Equazioni di equilibrio idrostatico
 - Bilancio energetico e di massa
 - Reazioni nucleari
 - Trasporto dell'energia (irraggiamento e convezione)
 - Dipende da molti parametri e/o assunzioni
 - **Composizione chimica iniziale**
 - Sezioni d'urto nucleari
 - Campi magnetici, rotazione
- Fra l'altro, il modello determina la temperatura oggi del nucleo, e quindi la produzione di neutrini
 - Incertezze dovute alla composizione chimica, alle sezione d'urto nucleari

Rivelazione v solari

- Il flusso di neutrini solari a Terra è ~ 10¹⁰ cm⁻² s⁻¹ (energia 0.1 10 MeV)
 - I neutrini sono accoppiati alla materia solo da interazioni deboli.
 - $\sigma = 10^{-46} 10^{-43}$ cm⁻² dipendente dal processo e dall'energia.
 - **a** λ in acqua ~ 30 pc a 1 MeV.
- I rivelatori di v devono essere grossi! (massivi)
 - Esempio: v solari da 1 MeV

$$\frac{\Phi \approx 10^8 \text{ cm}^{-2}}{\sigma \approx 2 \cdot 10^{-46} \text{ cm}^2} \Rightarrow R \approx 2 \cdot 10^{-38} \text{ s}^{-1} \text{ per atomo bersaglio}$$

Se vogliamo 1 evento/mese

$$\Delta t = 2.510^6 s \implies \frac{1}{2 \cdot 10^{-38} \ 2.5 \cdot 10^6} = 2 \cdot 10^{31} \text{ atomi} = 600 \text{ t } \text{H}_2\text{O}$$

- I rivelatori devono essere sotterranei
 - Con questi numeri, il fondo dovuto ai raggi cosmici è intollerabile
 - Sotto il Gran Sasso, il flusso di cosmici è ridotto di un fattore 10⁶

Homestake: 1970-1995 (Nobel 2002)

• In acqua:

 $V_{e,\mu,\tau} + e^- \rightarrow V_{e,\mu,\tau} + e^-$

- L'elettrone diffuso emette un cono di luce
 Cerenkov che può essere rivelata con dei tubi fotomoltiplicatori
- Si misura in tempo reale la direzione del v incidente, consentendo lo studio delle distribuzioni angolari

Roma – 16 novembre 2007

Le oscillazioni di v

- La spiegazione ormai accettata per il deficit solare è il fenomeno delle oscillazioni di neutrino.
- Nel vuoto:
 - Se si accetta l'ipotesi che i neutrini hanno massa diversa da zero, non vi è garanzia che gli autostati di massa coincidano con quelli di sapore
 - Per una sorgente puntiforme monocromatica:

$$P_{e \to \mu} = \sin^2 \left(2\theta \right) \sin^2 \left[\frac{1.27 \Delta m^2 L}{E_v} \right] \qquad \Delta m \text{ in eV} \\ \text{L in } m \\ \text{E}_v \text{ in MeV} \end{cases}$$

Il Sole non è puntiforme, e le righe non sono esattamente monocromatiche.

Decoerenza su distanza inferiore a quella Terra-Sole

$$P_{e\to\mu} = \frac{1}{2}\sin^2\left(2\theta\right)$$

Le oscillazioni nel vuoto danno un **deficit**, ma **NON dipendente da E** come osservato. **Manca qualcosa!**

Le oscillazioni di v nella materia

- Effetto MSW
 - **L**'interazione dei v_e con la materia è diversa da quella di v_{μ} , v_{τ}
 - Indice di rifrazione efficace nel Sole, velocità di propagazione diversa
 - I corrispondenti stati si sfasano, modificando P_{ee}

SNO e KamLand (2001-2002)

- SNO e Kamland hanno completato la prima generazione di esperimenti, dimostrando che:
 - Le oscillazioni con effetto MSW spiegano il deficit solare senza dover introdurre modifiche al MS.
 - Gli (anti) neutrini elettronici oscillano (KamLand).

Motivazioni per Borexino nel 2007

Solar Neutrino Survival Probability

- Fisica dei neutrini:
 - Verificare il meccanismo MSW
 - Migliorare la misura dei parametri
- Fisica del Sole
 - Test della fisica del nucleo
 - Determinare il flusso del ⁷Be
 - Determinare il flusso pep e pp e controllare il bilancio energetico
 - Misurare direttamente la componente CNO e determinarne il ruolo nel Sole

• Inoltre:

- La sorgente di calore geotermico (geo-neutrini)
- Il "core" di una supernova durante l'esplosione
- Momento magnetico del neutrino con una sorgente radioattiva (⁵¹Cr)

(Poland)

M. Pallavicini - Università di Genova & INFN

Rivelazione e segnatura dei v

- Borexino rivela i v solari per mezzo dello scattering elastico su elettroni in un volume di scintillatore liquido ultra-purificato
 - Linea monoenergetica 0.862 MeV del ⁷Be v principalmente
 - Ma anche in futuro pep ν , CNO $\nu~$ e forse pp ν
- Rivelazione con luce di scintillazione:
 - Bassa soglia in energia
 - Buona ricostruzione spaziale
 - Buona risoluzione in energia
 MA...
 - No direzionalità
 - Gli eventi indotti da v non sono distinguibili da decadimenti β
 - Lo scintillatore deve essere straordinariamente puro

Un po' di numeri

- Perché 20 anni per fare Borexino ?
 - Con 100 t di massa bersaglio, il numero di eventi al giorno attesi è ~40

■ ~40 / 86400 / 100000 = ~5 10⁻⁹ Bq/Kg

- Un evento di diffusione ν-e è indistinguibile da un decadimento β nucleare o da uno scattering compton, la radioattività naturale intrinseca dello scintillatore deve essere più bassa di questo numero
- MA:

Acqua minerale nature	rale: 10 Bq/Kg	⁴⁰ K, ²³⁸ U, ²³² Th
Aria:	10 Bq/m3	²²² Rn, ⁸⁵ Kr, ³⁹ Ar
Roccia qualunque:	100-1000 Bq/Kg	⁴⁰ K, ²³⁸ U, ²³² Th,
		altro

Lo scintillatore di Borexino DEVE essere (e fortunatamente è) 9-10 ordini di grandezza MENO RADIOATTIVO di qualunque cosa sulla Terra

15 anni di lavoro in 4 slides (I)

- I problemi da affrontare
 - 14C (β ~160 KeV): dentro il PC
 - Selezione scintillatore
 - ³⁹Ar (β), ⁸⁵Kr(β–γ), ²²²Rn(α,β,γ):
 aria
 - Sviluppo di N₂ ultrapuro
 - ²³⁸U(α,β,γ), ²³²Th(α,β,γ),
 ²¹⁰Pb(α,β), ²¹⁰Po(α): ovunque
 - Purificazioni, selezione materiali
 - γ dalla roccia e dai materiali
 - Schermature, Selezione materiali
 - µ dai Raggi cosmici
 - Underground e µ ID con rivelatore

- Le soluzioni
 - Sviluppo di strumenti, tecniche di misura, tecniche di purificazione completamente innovativi
- Lo strumento fondamentale
 - Counting Test Facility

Qualche impianto

Roma – 16 novembre 2007

15 anni di lavoro in 4 slides (II)

- Rivelatore e Impiani
 - <u>Tutti</u> i materiali selezionati per:
 - Bassa radioattività intrinseca
 - Bassa emanazione di Rn
 - **Tolleranza al contatto col PC**
 - Tubi, recipienti, impianti:
 - elettropuliti, lavati con detersivi selezionati, trattati con acido e passivati, sciacquati con acqua ultrapura fino a classe 20-50
 - Impianto a tenuta di vuoto
 - Requisiti: < 10⁻⁸ atm/cc/s
 - Regioni critiche protette con sacchi di nylon flussati in azoto
 - Tutte le operazioni di manutenzione da effettuare sotto flusso di azoto e doppio contenimento

- PMTs (2212)
 - Possono stare in PC e acqua
 - Vetro selezionato a bassa attività
 - Time jitter: 1.1 ns (per avere una buona ricostruzione spaziale)
- Nylon vessels
 - Selezione materiale per radioattività, resistenza meccanica, tolleranza al PC e all'acqua
 - < 1 c/d/100 t in FV</pre>
 - Construzione in camera bianca con aria filtrata dal ²²²Rn
 - Mai esposto all'aria!

15 anni di lavoro in 4 slides (III)

- Acqua (capacità 1.8 m³/h)
 - **RO**, **CDI**, filtri, N₂ stripping
 - U, Th: < 10⁻¹⁴ g/g
 - ²²²Rn: ~ 1 mBq/m³
 - ²²⁶Ra: <0.8 mBq/m³
 - **18.2-18.3** MΩ/cm tipico @ 20°C
- Scintillatore
 - IV: PC+PPO (1.5 g/l)
 - OV & Buffer: PC+DMP (5 g/l)
 - Distillazione PC
 - 6 stadi
 - **80** mbar, 90 °C
 - Stripping sottovuoto con <u>low Ar-Kr</u> <u>N₂</u>
 - Vapore per umidificare 60-70%

- Purificazione del PPO
 - PPO è solido
 - Soluzione concentrata (120 g/l)
 - Soluzione purificata con:
 - Water extraction
 - Filtraggio
 - Distillazione
 - N₂ stripping con LAKN
- Riempimento
 - Purging della SSS con LAKN ('06)
 - Riempimento con acqua (Aug. 06 → Nov. 06)
 - Sostituzione dell'acqua con PC+PPO or PC+DMP (Jan. 07 → May. 07)
- Inizio run: 15 maggio, 2007

15 anni di lavoro in 4 slides (IV)

RadioIsotope		Concentration or Flux		Strategy for Reduction		
Name	Source	Typical	Required	Hardware	Software	Achieved
μ	cosmic	~200 s ⁻¹ m ⁻²	~ 10 -10	Underground	Cherenkov signal	<10 -10
		at sea level		Cherenkov detector	PS analysis	(overall)
Ext. γ	rock			Water Tank shielding	Fiducial Volume	negligible
Int. y	PMTs, SSS			Material Selection	Fiducial Volume	negligible
	Water, Vessels			Clean constr. and handling		
¹⁴ C	Intrinsic PC/PPO	~ 10 ⁻¹²	~ 10 ⁻¹⁸	Old Oil, check in CTF	Threshold cut	~ 10 ⁻¹⁸
238U	Dust	~ 10 ⁻⁵ -10 ⁻⁶ g/g	< 10 ⁻¹⁶ g/g	Distillation, Water Extraction		< 10-17
²³² Th	Organometallic (?)	(dust)	(in scintillator)	Filtration, cleanliness		< 10-17
⁷ Be	Cosmogenic (¹² C)	~ 3 10 ⁻² Bq/t	< 10 ⁻⁶ Bq/ton	Fast procurement, distillation	Not yet measurable	?
⁴⁰ K	Dust,	~ 2 10 ⁻⁶ g/g	$< 10^{-14}$ g/g scin.	Water Extraction	Not yet measurable	?
	PPO	(dust)	< 10 ⁻¹¹ g/g PPO	Distillation		
²¹⁰ Pb	Surface contam.			Cleanliness, distillation	Not yet measurable	?
	from ²²² Rn decay				(NOT in eq. with ²¹⁰ Po)	
²¹⁰ Po	Surface contam.			Cleanliness, distillation	Spectral analysis	~ 60
	from ²²² Rn decay				a/b stat. subtraction	~ 0.01 c/d/t
²²² Rn	air, emanation from	~ 10 Bq/l (air)	< 1 c/d/100 t	Water and PC N ₂ stripping,	Delayed coincidence	< 0.02 c/d/t
	materials, vessels	~100 Bq/l (water)	(scintillator)	cleanliness, material selection		
³⁹ Ar	Air (nitrogen)	~17 mBq/m ³ (air)	< 1 c/d/100 t	Select vendor, leak tightness	Not yet measurable	?
⁸⁵ Kr	Air (nitrogen)	~ 1 Bq/m ³ in air	< 1 c/d/100 t	Select vendor, leak tightness	Spectral fit	~ 0.2
			<0.01 ppt	(learn how to measure it)	fast coincidence	<0.35
Roma – 16 novembre 2007 M. Pallavicini - Università di Genova & INFN						

Roma – 16 novembre 2007

M. Pallavicini - Università di Genova & INFN

Water Tank nel 1998

Fototubi e vessel

Fototubi: PC & Water proof

Installazione dei PMT nella sfera

Roma – 16 novembre 2007

Installazione dei vessels di nylon (2004)

Installazione PMT e fibre ottiche

La sfera finita senza vessels

Roma – 16 novembre 2007

Roma – 16 novembre 2007

Un giorno di dati. Trigger rate ~ 15 Hz.

- μ sono identificati sia dall'OD sia dall'ID
 - **OD eff: ~ 99%**
 - ID basato su variabili di forma dell'impulso
 - Fattore di reiezione stimato
 > 10⁴ (conservativo)

¹¹C e neutroni dopo un muone

- μs producono ¹¹C per spallazione su ¹²C
 - Nel 95% dei casi la produzione è accompagnata da neutroni
 - Possiamo identificare il primo neutrone
 - Stiamo lavorando per predere anche gli altri
 - Tutti gli eventi entro 2 ms dopo un μ sono buttati

- Dopo i tagli, i μ non sono un problema per l'analisi del ⁷Be
 - Fondo residuo stimato : < 1 c/d/100 t</p>

Ricostruzione della posizione

- Ricostruzione della posizione degli eventi nella sfera
 - Fit della distribuzione temporale degli eventi usando il tempo di volo
 - Verificata su MC e con dati reali (ad esempio ²¹⁴Bi-²¹⁴Po)

Definizione del volume fiduciale

- Alla perifieria del Volume Fiduciale il fondo esterno è dominante
 - γ dai materiali (fototubi, sfera) che superano lo spessore del buffer
 - Sono eliminati con un "taglio di volume fiduciale"
 - Si selezionano le 100 t interne
 - **R < 3.276 m** (100 t massa nominale)

 Il fondo esterno è dominante nella "Neutrino Window", a parte la regione del picco del ²¹⁰Po

Spettro finale dopo tutti i tagli ¹⁴C ²¹⁰Po (solo, non in eq. con il ²¹⁰Pb!) 10⁵ FONDI IRRIDUCIBILI 10° 10⁴ Total 10^{5} ^{14}C ¹¹C µ-induced background 10° 10³ ⁷Be solar neutrinos 85 Kr+ 7 Be v 10^{-3} 11**C** 10² 10^{2} 10^{1} 10 10° 10 0.5 1.0 1.5 2.0 200 300 600 700 800 900 100 400 500 1000 photoelectrons Visible Energy [MeV]

A parte il picco dovuto al ²¹⁰Po e a un modesto contenuto di ⁸⁵Kr, il fondo è essenzialmente solo quello irriducibile dovuto a ¹⁴C e ¹¹C cosmogenico.

Calibrazione in energia e stabilità

- Finora non abbiamo fatto calibrazioni con sorgenti interne
 - Non è chiaro quando lo faremo (rischi di contaminazione)
- La calibrazione attuale è fatta usando l'end point del ¹⁴C
 - Stabilità e risoluzione monitorata usando il picco α del ²¹⁰Po
 - Per ora non è possibile ottenere una grandissima precisione:

- Strategia:
 - Fit della sola regione della spalla
 - Uso della regione dalla fine del ¹⁴C fino al picco del ²¹⁰Po per limitare il contenuto di ⁸⁵Kr
 - pep fissati al valore atteso SSM-LMA
- Componenti del fit:
 - **⁷Be** ν
 - ⁸⁵Kr
 - CNO+²¹⁰Bi combinati
 - Non distinguibili in questa regione di energia
 - Light yield lasciato libero

Fit con sottrazione α/β del picco del ²¹⁰E

- Il fondo del ²¹⁰Po è sottratto statisticamente nel modo seguente:
 - Per ogni bin in energia, un fit alla variabile α/β di Gatti porge due gaussiane
 - Dal fit, il numero di particelle α nel bin può essere misurato
 - Si sottrae questo numero
 - Lo spettro residuo è fittato fra 270 e 800 KeV
 - Risultati consistenti con l'analisi senza sottrazione statistica

Il primo risultato (astro-ph 0708.2251v2)

⁷Be v Rate: $47 \pm 7_{STAT} \pm 12_{SYS}$ c/d/100 t

- Errori statistici:
 - Effetto combinato della statistica, della scarsa conoscenza del contenuto di ⁸⁵Kr e della mancanza di una precisa calibrazione in energia calibration
 - Per ora questi termini sono liberi nel fit e contribuiscono all'errore statistico
- Errori sistematici:
 - In larga misura legati alla determinazione del volume fiduciale
 - Con solo 45 giorni di dati, and senza alcuna calibrazione, l'errore massimo stimato è del 25%
 - Sarà migliorato rapidamente anche senza calibrazioni interne
 - Le calibrazioni saranno probabilmente indispensabili per la misura di precisione

Prospettive per il futuro

- Dopo il risultato estivo, siamo ottimisti...
 - Misura di precisione del flusso del ⁷Be nel 2008/2009
 - Upper limit o misura del flusso del CNO
 - Possibilità, del tutto inattese e ancora da verificare, di:
 - Misurare i neutrini del pep
 - Misurare quelli del pp (questo davvero mai nemmeno sperato, si vedrà...)
- Inoltre:
 - Test di modelli geofisici misurando i geo-neutrini, i v emessi dalla radioattività naturale responsabile dell'eccesso termico del pianeta
 - Rivelazione di neutrini da supernova, se c'è e se siamo accesi....
 - Misura del momento magnetico del neutrino con sorgente radioattiva
 - Ricerca di decadimenti rari

