

.

Giacomo Polesello

INFN, Sezione di Pavia

LHC: pp Collider \sqrt{s} =14 TeV Startup: mid-2007

Main motivations:

- Elucidate the mechanism of ElectroWeak Symmetry breaking:
 - Look for Higgs boson in allowed interval 100 GeV-1 TeV
 - In absence of low mass Higgs, study production of longitudinal gauge boson pairs.
- Find evidence for possible deviation from the Standard Model
 - Strong theoretical motivations to think that SM is only effective theory
 - In order to solve some of the theoretical difficulties with SM, deviations should be observable at \sim TeV scale

LHC Energy

 $\sqrt{s} = 14$ TeV: explore the TeV scale, search for new massive particles up to 5 TeV Maximum energy limited by the bending power needed to fit ring in 27 Km circumference LEP tunnel

$$p(\mathsf{TeV}) = \mathsf{0.3B}\ (\mathsf{T})\ \mathsf{R}(\mathsf{km})$$

LHC: B = 8.4 T:

 \sim 1300 superconducting dipoles working at 1.9 K On track for closing the machine in 2007

Luminosity:

$$\mathcal{L} = \frac{N}{\sigma}$$

with \mathcal{L} : Luminosity N: event frequency, σ : cross-section Two luminosity scenarios:

- peak $\sim 10^{33}$ cm⁻²s⁻¹ initial "low luminosity": $\int \mathcal{L} dt = 10 \text{ f} b^{-1} \text{ per year}$
- peak $\sim 10^{34}$ cm⁻²s⁻¹ design "high luminosity": $\int \mathcal{L}dt = 100 \text{ f}b^{-1}$ per year

Benchmark: ensure detection of Higgs boson in the range 100 GeV-1 TeV $m(H) \sim 100 - 150$ GeV $H \rightarrow \gamma\gamma$ $\sigma \times BR \times \epsilon \sim 10 - 20$ fb $S/B \sim 1/50$ m(H) = 1 TeV $H \rightarrow WW \rightarrow \ell \nu jj$ $\sigma \times BR \times \epsilon \sim 2 - 3$ fb $S/B \sim 1/2$

Discovery when statistical significance for signal $S/\sqrt{B} > 5 \rightarrow$

Required integrated luminosity for discovery (no K-factors):

•
$$H
ightarrow \gamma \gamma$$
 : \sim 1000 events $\sim 100~{
m fb}^{-1}$

•
$$H \rightarrow WW : \sim 50 \text{ events} \sim 20 \text{ fb}^{-1}$$

How is luminosity \mathcal{L} achieved?

If two beams containing n_1 and n_2 particles collide with a frequency f:

$$\mathcal{L} = f \frac{n_1 n_2}{4\pi \sigma_{beam}^2}$$

with σ_{beam} gaussian transverse beam profile

LHC values: $n_1 = n_2 = 10^{11}$, and $\sigma_{beam} \sim 16 \times 10^{-6}$ m, determined by the physics

of colliding beams.

To achieve $\mathcal{L} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, LHC has to run with a bunch crossing every 25 ns

Inelastic proton-proton cross-section at $\sqrt{s} = 14$ TeV is ~ 70 mb \Rightarrow

LHC interaction rate at high luminosity: $\sim 7 \times 10^{-2} \times 10^{-24} \times 10^{34} = 7 \times 10^{8}$ Hz 40 MHz crossing frequency: $\Rightarrow \sim 25$ superimposed interactions per crossing (pile-up)

Characteristics of pile-up interactions

Soft partonic interactions: describe with non-perturbative phenomenological models Collider jargon: "Minimum bias": experimental definition: depends on experiment's trigger. Usually associated to non-single diffractive events

Measured at $S\bar{p}pS$ and Tevatron, large uncertainties in extrapolation to LHC

Main features:

 ${\sim}7$ charged particles per unit of rapidity ${\Rightarrow}$ ${\sim}~100$ charged particles over $|\eta|$ < 2.5 per crossing

Significant radiation damage from interaction! $< p_T > \sim 500 \text{ MeV} \Rightarrow \text{can select interesting}$ particles by cut in p_T

Example: $h \rightarrow 4\mu$ event in CMS at high luminosity

Large impact on detector design:

• Speed:

LHC detectors must have fast response otherwise integrate over too many bunch crossings

Typical response time: 20-50 ns \rightarrow integrate over 1-2 bunch crossings

 \Rightarrow very challenging readout electronics

• Granularity:

LHC detectors must be highly granular to minimise probability that pile-up particles in same detector element as interesting object

 \Rightarrow Large number of electronics channels

• Radiation hardness:

High flux of particles from pp collisions \Rightarrow high radiation environment

In 10 years of LHC data: up to $10^{17}n~{
m cm}^{-2}$, up to $10^7{
m Gy}$

Radiation decrease like d^2 from beam: detectors near beam pipe mostly affected

 \Rightarrow Need radiation resistant detector technologies especially at high $|\eta|$

 \Rightarrow Need also radiation hard electronics

Basics of hadron collider physics

Quarks and gluons (partons) taking part in hard (high Q^2) interactions carry only a fraction of proton momentum

Spectator quarks not taking part in hard interaction fly along proton direction \Rightarrow their fragmentation product go undetected in the beam pipe Energy in center of mass system (CMS) available for interaction $\sqrt{\hat{s}}$:

$$\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$$

With $\sqrt{s} = 14 \text{ TeV}$, proton-proton CMS energy

 x_1 , x_2 fraction of proton momentum carried by respectively parton 1 and 2 Typically $x_1 \neq x_2 \Rightarrow$ Hard interaction system boosted in the lab reference frame

Parton distribution functions

Momentum distribution of partons in protons given by universal parton distribution functions (PDF)

 $xf(x,Q^2)$

Universal: do not depend on the hard scattering process in which partons take part Phenomenological function extracted mostly from Deep Inelastic Scattering of leptons on hadrons

For $x_1 \sim x_2$:

- W/Z production: $x \sim 0.1$
- $\bar{t}t$ production: $x \sim 0.15$
- 1 TeV SUSY: $x \sim 0.4$
- 5 TeV Z': $x \sim 0.6$

Proton-proton cross-section

Convolution of PDF's with partonic cross-section

$$\sigma = \sum_{a,b} \int dx_1 dx_2 f_a(x_1, Q^2) f_b(x_2, Q^2) \hat{\sigma}_{a,b}(x_a, x_b)$$

Dynamical information contained in partonic cross-section $\hat{\sigma}$ Need to deconvolve structure functions \Rightarrow uncertainty in extracting physical parameters from cross-section measurement

Proton beam is wide-band parton beam:

- Ideal for exploration and discovery: span a large range of center of mass energies
- Variable $\hat{s} \rightarrow$ less kinematic constraints for final state reconstruction
- Explorable \hat{s} is a function of both luminosity and and proton-proton energy: can extend reach by pushing luminosity

Variables in hadron collider physics

• Transverse momentum p_T :

 $p_T \equiv p \sin \theta$

 η

 η

Component of momentum of particles in the plane perpendicular to the beam axis

$$\eta \equiv -\log(\tan\frac{\theta}{2})$$
$$= 0: \ \theta = 90 \qquad \eta = 1: \ \theta \sim 40$$
$$= 2.5: \ \theta \sim 10 \quad \eta = 5: \ \theta \sim 0.8$$

Equivalent to rapidity y for massless particles

Better variable than polar angle θ : η distribution is independent of the boost Implications for particle detection: typically detectors segmented in θ : $\Delta \eta \sim \Delta \theta$ for $|\eta| \lesssim 1$, very poor η granularity for $3 < |\eta| < 5$

The \mathbb{E}_T variable

Total energy and momentum in final and initial state equal: $(E_f, \vec{p}_f) = (E_i, \vec{p}_i)$.

Initial state in collider: $E_i = \sqrt{s}$, $\vec{p_i} = 0$

For e^+e^- collider all final state particles in detector acceptance $\vec{p}_f = 0$, if non-interacting particle with momentun \vec{p}^{ν} produced (ν , $\tilde{\chi}_1^0$), then $\vec{p}_f \neq 0$, and

$$\vec{p}^{\nu} = \vec{p}^{miss} = -\sum_{j} \vec{p}_{j} = -\vec{p}_{f}$$

With j running on all the detected particles

For hadron collider: particles from spectator quarks undetected in the beam pipe, $\vec{p}_f \neq 0$ $\Sigma_k (\vec{p}_T)_k \sim 0$ for particles k outside acceptance $\Rightarrow \Sigma_j (\vec{p}_T)_j = 0$ for particles j in acceptance. If non-interacting particle with momentun \vec{p}_T^{ν} produced:

$$\vec{p}_T^{\nu} = \vec{p}_T^{miss} = -\sum_j (\vec{p}_T)_j$$

Approximate \vec{p}_T^{miss} by $\not\!\!\!E_T$, vector sum of energy deposition in calorimeter cells:

$$E_x^{miss} = \sum_j E_j \sin \theta_j \cos \phi_j \quad E_y^{miss} = \sum_j E_j \sin \theta_j \sin \phi_j$$

j runs on cells with energy deposition and $\phi_j(heta_j)$ respectively azimuthal and polar angle of cell j

Backgrounds to discovery physics

High p_T events dominated by QCD jet production:

- Strong production
- Many contributing diagrams
 σ_{jet}(E^{jet}_T > 100 GeV) ~ μb
 Signal processes rare:
 Involve heavy particles:
 σ_{q̃q}(m(q̃) ~ 1 TeV) ~ pb
 Have weak cross-section
 σ_{Higgs}(m(Higgs) = 100 GeV) ~ 30 pb
 QCD background from 5-6 orders of
 magnitude larger than signals

Overwhelming QCD backgrounds in exclusively hadronic channels

 \Rightarrow rely on final states involving γ , leptons, $mathbb{E}_T$, b-jets \Rightarrow pay additional price in BR

Typical cross-section values:

Process	σ	Events/s	Events/year (low L)
$W \to e\nu$	15 nb	15	10 ⁸
$Z \to ee$	1.5 nb	1.5	10 ⁷
$\overline{t}t$	800 pb	0.8	10 ⁷
$\overline{b}b$	500 µb	10^5	10^{12}
$\left \widetilde{q}\widetilde{q} \left(m_{\widetilde{q}} = \!\! 1 \; TeV ight) ight.$	1 pb	0.001	10^{4}
Higgs (m $_H$ =0.8 TeV)	1 pb	0.001	10^{4}

Large statistics for discovery physics up to the TeV scale.

Large cross-section for Standard Model processes:

- Large backgrounds to discovery
- Large control samples to calibrate backgrounds

Precision measurements dominated by systematic effects

ATLAS and CMS detectors

Do not know how new physics will manifest itself:

 \Rightarrow Detectors must be sensitive to as many particles and signatures as possible:

 $e, \mu, \tau, \nu, \gamma, \text{ jets}, b - \text{quarks}$

• Momentum/charge of tracks and secondary vertices (e.g. from *b*-quark decays) measured in central tracker. Excellent momentum and position resolution required

- Energy and position of electrons and photons measured in electromagnetic calorimeters. Excellent position and energy resolution required
- Energy and position of hadrons and jets measured mainly in hadronic calorimeters. Good coverage and granularity required
- Muons identified and momentum measured in external muon spectrometer (+ central tracker). Excellent resolution required.
- Neutrinos "detected and measured" through measurement of missing transverse energy $\not\!\!\!E_T$. Calorimeter coverage over $|\eta| < 5$ needed

ATLAS detector

CMS detector

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner cavity Calorimeters outside field 4 magnets	Solenoid Calorimeters inside field 1 magnet
TRACKER	Si pixel + strips TRD \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixel + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb - liquid argon σ/E ~ 10%/√E uniform longitudinal segmentation	PbW0₄ crystals σ/E ~ 3-5%/√E no longitudinal segm.
HAD CALO	Fe-scintillator + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Cu-scint. (> 5.8 λ + catcher) $\sigma/E \sim 65\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_T \sim 7 \%$ at 1 TeV standalone	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

A few examples of required performance:

- Lepton measurement: $p_T \sim \text{GeV} \rightarrow 5\text{TeV}$ ($b \rightarrow lX$, W', Z')
- Mass Resolution (m ~ 100 GeV):

$$\sim 1\% \quad (H \to \gamma \gamma, 4l)$$

 $\sim 10\% \quad (W \to jj, H \to bb)$

- Calorimeter coverage: $|\eta| < 5$ (E_T^{miss} , forward jet tag)
- Particle identification :

$$\epsilon_b \sim 50\% \quad R_j \sim 100 \quad (H \to bb, \text{SUSY})$$

 $\epsilon_\tau \sim 50\% \quad R_j \sim 100 \quad (A/H \to \tau\tau)$
 $\epsilon_\gamma \sim 80\% \quad R_j \sim 10^3 \quad (H \to \gamma\gamma)$
 $\epsilon_e > 50\% \quad R_j \sim 10^5$

 \bullet Trigger: 40 MHz \rightarrow 100 Hz reduction

Electron-photon identification (ATLAS)

Separate electrons/photons from the overwhelming background of QCD jets Reject charged hadrons in jets through longitudinal and lateral energy deposition pattern (lateral and longitudinal segmentation). Identify EM object Main remaining background : fragmentation of quarks/gluons where a π^0 carries away most of the momentum, with the decay $\pi^0 \rightarrow \gamma\gamma$ Distinguish two photons from π^0 decay from single photon through detailed study of EM shower in Calorimeter

High EM calo granularity crucial to separate two photons If track from π^{\pm} superimposed to EM cluster can fake electron Use matching between position/momentum of track and position/energy of EM cluster to reject fake electrons

Require excellent EM energy and position resolution

Identification of τ hadronic decays

Exploit difference between hadronic decays of τ 's and QCD jets:

- Low track multiplicity $(1 < N_{tr} < 3)$, charge
- Narrow jet in calo (Radius in EM calo, Number of strips in presampler)
- Impact parameter

ATLAS study: build likelihood function in bins of jet P_T ($15 < P_T < 600 \text{ GeV}$)

Distribution of impact parameter symmetric for tracks from fragmentation of light quarks Significant enhancement of positive impact parameters for tracks from

b-hadron decays

B-tagging

b-hadrons decay a a few mm away from interaction vertex

Measure decay path of b-hadrons through impact parameter: minimum distance from primary vertex

B-tagging (cont)

For a jet, build likelihood function from the impact parameter of the tracks associated to it

ATLAS: Study samples of fully simulated WH, ttH, $\bar{t}t$ events Measure rejection on QCD jets as a function of tagging efficiency

Large Menu of physics topics:

• Standard Model:

- W mass measurement (goal 15 MeV), triple Gauge Couplings (to 10^{-3})
- Top physics: measure m_t, $\sigma_{\bar{t}t}$, polarisation, rare decays, single top....
- Soft interactions, QCD, B-physics,
- Higgs searches, both SM and SUSY
- New physics:
 - SUSY
 - Extra Dimensions
 - Leptoquarks, extra gauge bosons, technicolor, compositeness,

Concentrate on SUSY and Extra Dimension theories, most mature candidates for new physics