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Establishing SUSY experimentally

Assume an excess seen in inclusive analyses: how does one verify wheteher it is

actually SUSY? Need to demonstrate that:

• Every particle has a superpartner

• Their spin differ by 1/2

• Their gauge quantum numbers are the same

• Their couplings are identical

• Mass relations predicted by SUSY hold

This can only be performed through precise measurements of masses, BR,

cross-sections, angular distributions

Possibly full task will require high luminosity LC

Try to develop a strategy for performing as many as possible of these measurements at

the LHC



Measurement of model parameters

The problem is the presence of a very complex spectroscopy due to long decay chains,

with crowded final states

Many concurrent signatures obscuring each other

General strategy:

• Choose signatures identifying well defined decay chains

• Extract constraints on masses, couplings, spin from decay kinematics/rates

• Try to match emerging pattern to tentative template models, SUSY or anything else

• Having adjusted template models to measurements, try to find additional signatures

to discriminate different options

In order to develop this program we need to base ourselves on guidance from theory:

interesting signatures defined by prejudices on models one considers good candidates

for BSM physics



Practical approach on Monte Carlo:

• Start from predictive models: masses and decay patterns defined in terms of few

parameters. Example: mSUGRA

• For each model choose points in parameter space covering the main

phenomenological scenarios (benchmark point)

• For each benchmark study in detail available signatures

Many groups defining banchmarks

Benchmarks evolve with contraints from astroparti-

cles/low energy studies

Detailed analysis performed in ATLAS TDR on 11

model points (mSUGRA, GMSB. AMSB).

New points defined for final studies both in ATLAS

and CMS

m
0

m1/2 

mh, b→sγ

g-2

Show in detail application of this program to a SUGRA model point



Typical starting point: χ̃0
2 decays

QCD Background: need decay chains involving leptons (e,µ), b’s, τ ’s

Consider signatures from χ̃0
2 decays:

• χ̃0
2 → χ̃0

1Z
∗ (6% BR to (e, µ)χ̃0

1 non–resonant)

• χ̃0
2 → χ̃0

1Z (6% BR to (e, µ)χ̃0
1 resonant)

• χ̃0
2 → χ̃0

1h → χ̃0
1b̄b

• χ̃0
2 →

˜̀±(∗)`∓ → χ̃0
1`

+`− (` mostly τ̃1 at high tan β)

One or more of these decays present in all mSUGRA Points considered

Abundantly produced: BR(q̃L → qχ̃0
2) typically 30% in mSUGRA

R-parity conservation ⇒ two undetected LSP’s per event

⇒ no mass peaks, constraints from edges and endpoints in kinematic distributions

Key result: If a chain of at least three two-body decays can be isolated, can measure

masses and momenta of involved particles in model-independent way.



Two-body kinematics

a
b

c

4-momentum conservation

m2
a = (Eb + Ec)

2 − (~pb + ~pc)
2 E2

b(c) = m2
b(c) + |~pb|

2

In rest frame of a: ~pb + ~pc = 0 ⇒ |~pb| = |~pc| = |~p|

m2
a = (Eb + Ec)

2 m2
a = m2

b + m2
c + 2 |~p|2 + 2

√

m2
b + |~p|2

√

m2
c + |~p|2

Solve for |~p|: |~p|2 = [m2
b, m

2
a, m

2
c] where

[x, y, z] ≡
x2 + y2 + z2 − 2(xy + xz + yz)

4y
(1)



Cascade of successive two-body decays

q

b

p

ac

c q

θ

p

a

b

Go to rest system of intermediate particle b:

|~pp|
2 = |~pa|

2 = [m2
p, m

2
b, m

2
a] |~pq|

2 = |~pc|
2 = [m2

q, m
2
b, m

2
c] (2)

We are interested in the invariant mass of the two visible particles: m2
pq:

m2
pq = (Ep + Eq)

2 − (~pq + ~pq)
2 = m2

p + m2
q + 2(Ep + Eq − |~pp||~pq|cosθ)

mpq has maximum or minimum value when p or q are back-to-back or collinear in rest

frame of b:

(mmax
pq )2 = m2

p + m2
q + 2(Ep + Eq + |~pp||~pq|) (3)



Let us specialize to the decay:

q̃L → χ̃0
2 q

|
→ ˜̀±

R `∓

|
→ χ̃0

1 `±

By substituting into Equation 3 p, q → `+`−, c → χ̃0
2, b → ˜̀

R, a → χ̃0
1, and by

treating the leptons as massless, we obtain:

(mmax
`` )2 = 4|~p||~q| = 4

√

√

√

√[0, m2
˜̀
R
, m2

χ̃0
1
]
√

√

√

√[0, m2
˜̀
R
, m2

χ̃0
2
]

By substituting the formula for [x, y, z] we obtain the desired result:

(mmax
`` )2 =

(m2
χ̃0

2
− m2

˜̀
R
)(m2

˜̀
R
− m2

χ̃0
1
)

m2
˜̀
R



Invariant mass distribution

If the spin of the intermediate particle b is zero, the decay distribution is:

dP

d cos θ
=

1

2

Where cos θ is the angle between the two visible particles in the rest frame of b

If the two visible particles p, q are massless:

m2
pq = 2|~pp||~pq|(1 − cos θ) and (mmax

pq )2 = 4|~pp||~pq|

We can thus define the dimensionless vari-

able:

m̂2 =
m2

pq

(mmax
pq )2

=
1

2
(1 − cos θ) = sin2 θ

2

By a changement of variable:

dP

dm̂
= 2m̂
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m
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/d

m



Complete results for q̃L → ˜̀̀ decay chain: (Allanach et al. hep-ph/0007009)

l+l− edge (mmax
ll )2 = (ξ̃ − l̃)(l̃ − χ̃)/l̃

l+l−q edge (mmax
llq )2 = (q̃ − ξ̃)(ξ̃ − χ̃)/ξ̃ ��
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l+l−q thresh (mmin
llq )2 =































































[ 2l̃(q̃ − ξ̃)(ξ̃ − χ̃)

+(q̃ + ξ̃)(ξ̃ − l̃)(l̃ − χ̃)

−(q̃ − ξ̃)
√

(ξ̃ + l̃)2(l̃ + χ̃)2 − 16ξ̃l̃2χ̃ ]

/(4l̃ξ̃)

l±nearq edge (mmax
lnearq

)2 = (q̃ − ξ̃)(ξ̃ − l̃)/ξ̃

l±farq edge (mmax
lfarq

)2 = (q̃ − ξ̃)(l̃ − χ̃)/l̃

With χ̃ = m2
χ̃0

1

, l̃ = m2
l̃R

, ξ̃ = m2
χ̃0

2

, q̃ = m2
q̃



Example: Point SPS1a

m0 = 100 GeV, m1/2 = 250 GeV, A = −100 GeV, tan β = 10, µ > 0

Chosen as a point friendly to a 1 TeV linear Collider, with appropriate Dark Matter

density predicted

Mass spectrum

Particle Mass (GeV) Particle Mass (GeV)

g̃ 595.5 ũR 520.5

ũL 537.3 d̃L 543.0

b̃1 491.9 t̃1 379.1

ẽL 202.1 ẽR 143.0

τ̃1 133.4 τ̃2 206.0

χ̃0
1 96.5 χ̃±

1 176.4

χ̃0
2 176.8 χ̃0

4 377.8

h 114.0 A 394.4
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Point SPS1a

Total cross-section: ∼50 pb

Identify long decay chain with clean signature from study of Branching Ratios:

BR(g̃ → q̃Lq) ∼25% BR(g̃ → q̃Rq) ∼40% BR(g̃ → b̃1b) ∼17%

BR(q̃L → χ̃0
2q) ∼30% BR(q̃L → χ̃±q′) ∼60%

BR(χ̃0
2 →

˜̀
R`)=12.6% BR(χ̃0

2 → τ̃1τ )=87% BR(χ̃±
1 → τ̃1ντ)∼ 100%

Analysis strategy

• Measure mχ̃0
1
, m˜̀

R
, mχ̃0

2
, mq̃L

from the q̃L → ˜̀̀ decay chain

• Go up the decay chain one step: address g̃ → b̃b

• Identify shorter or rarer decay chains: χ̃0
2 → τ̃1τ , χ̃0

4 →
˜̀̀ , ˜̀→ `χ̃0

1, q̃R → qχ̃0
1

and extract masses using measured mχ̃0
1
, mχ̃0

2



Isolate SUSY signal by requiring:

• At least four jets: pT,1 > 150 GeV, pT,2 > 100 GeV, pT,3 > 50 GeV.

• Meff ≡ ET,miss + pT,1 + pT,2 + pT,3 + pT,4 > 600 GeV, ET,miss > max(100 GeV, 0.2Meff)

• Exactly two opposite-sign same-flavour e, µ (OSSF) with pT (l) > 20 GeV and pT (l) > 10 GeV

W and Z suppressed by jet requirements, and t̄t by hard kinematics

Build lepton-lepton invariant mass for selected events

m(ll) (GeV)
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SM background almost negligible

SUSY background mostly uncorrelated χ̃±
1

decays

Subtract SUSY and SM background using

flavour correlation:

e+e− + µ+µ− − e±µ∓



Lepton-lepton edge measurement ��
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m`+`− after flavour subtraction

Fit to sharp edge shape smeared by gaussian

resolution

For 100 fb−1 statistical error on the fit com-

parable to 0.1% uncertainty on lepton en-

ergy scale

Very high precision measurement, compara-

ble to W mass,

Need to understand systematic effects to fully exploit potential. Fit result (300 fb−1):

mmax
l+l− = mχ̃0

2

√

√

√

√

√

√

√

1 −
m2

˜̀
R

m2
χ̃0
2

√

√

√

√

√

√

√

1 −
m2

χ̃0
1

m2
˜̀
R

= 77.077 ± 0.03 (stat)±0.08 (E scale) GeV



Lepton-lepton-jet edges ��
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Consider two leading jets: plot min(m``j1, m``j2) (left), max(m``j1, m``j2) (right)

Distributions fall linearly to end (threshold) point.

Shapes modified by resolutions and backgrounds, need detailed study

Evaluate statistical uncertainty with simple linear fit. Fit results (300 fb−1):

∆(mmax
llq ) = ±1.4 (stat)±4.3 (scale) GeV, ∆(mmin

llq ) = ±1.6 (stat)±2.0 (scale) GeV



Lepton-jet edges ��
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Require m`` below edge, m``j < 600 GeV, choose jet giving minimum m``j

Define: mlq(high) = max (ml+q, ml−q) mlq(low) = min (ml+q, ml−q)

Fit results (300 fb−1):

∆(mlq(high)) == ±1.0 (stat)±3.8 (scale) GeV, ∆(mlq(low)) ± 0.9 (stat)±3.0 (scale) GeV

Enough constraints: can solve for sparticle masses



Sparticle mass calculation

Generate sets of edge measurements normal distributed according to statistical errors

estimated for 100 fb−1. For each set solve numerically equations for sparticle masses.

Strong correlation among masses, as kinematic constraints measure mass differences
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Probability distributions for reconstructed masses ∼ gaussian

χ̃0
1, χ̃0

2,
˜̀
R masses reconstructed with ∼ 5 GeV , q̃L mass with ∼ 9 GeV (300 fb−1)

Statistical and E-scale errors only, systematics should also be considered



High tanβ case:

Mixing in τ sector increases with increasing tan β. Consequences:

• Decrease of τ̃1 mass with respect to `R

• In mSUGRA enhanced coupling to Wino χ̃0
2

10
-2

10
-1

1

10 20 30
tanβ

B
ra

nc
hi

ng
 R

at
io

 Chi02 to stau1

 Chi02 to slepR

χ̃0
2 → τ̃1τ → ττ χ̃0

1 dominates over

χ̃0
2 →

˜̀
R` → ``χ̃0

1

For significant region in (m0 − m1/2)

plane lepton-lepton signal still de-

tectable at high tan β.

Observation of both decays gives handle

on tan β



Point SPS1A (m0 = 100 GeV, m1/2 = 250 GeV, tan β = 10, A = −100 GeV, µ > 0)

Suppress Standard Model background with cuts on /ET , Meff, jet multiplicity

Select decays χ̃0
2 → τ̃1τ requiring two jets tagged as hadronic τ decays.

Calculate invariant mass of τ+τ− candidates
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Subtract misidentified QCD jets using same-sign pairs

No sharp edge, but clear structure, a few GeV uncertainty on edge position



Gluino-sbottom mass reconstruction

From reconstruction of q̃L decay chain know m(χ̃0
1), m(χ̃0

2).

Building on this information go up the decay chain: study g̃ → b̃1b

Select events with OS-SF lepton pair. For m`+`− near edge, χ̃0
1 essentially at rest ⇒

~p(χ̃0
2) ' (1 −

m(χ̃0
1)

m(``)
)~p`` with ~p`` = ~p`1 + ~p`2
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Select events with 65 < m`` < 78 GeV

Reconstruct approximate χ̃0
2 momentum

Require two jets tagged as b

Reject events compatible with q̃Lχ̃0
2 decay (q̃ 6= b̃)

Plot m(χ̃0
2b) versus m(χ̃0

2bb) (flavour subtracted)

( two entries per event ) ⇒ observe structure



Select peak region in scatter plot by choosing χ̃2
0 coupling such that

m(χ̃0
2bb)-m(χ̃0

2b) < 150 GeV

m(χ̃0
2b) reconstructs g̃ → χ̃0

2b decay

Typically hardest jet selected because m(b̃) − m(χ̃0
2) > m(g̃) − m(b̃)
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Gluino mass measurement

Require selected m(χ̃0
2b) in peak region:

380 < m(χ̃0
2b) < 600 GeV

Plot m(χ̃0
2bb) distribution

Residual background small ⇒ perform gaussian fit

Peak width determined by approximate p(χ̃0
2)

Statistical uncertainty on peak position: ±4(2.2) Gev for 100 (300) fb−1

Dominated by 1% error on hadronic energy scale



Sbottom mass measurement

Selected events are a mixture of g̃ → b̃1b and g̃ → b̃2b

As shown in scatter plot, m(χ̃0
2b) strongly correlated with m(χ̃0

2bb)

Can factor out the spread due to p(χ̃0
2) by plotting m(χ̃0

2bb)-m(χ̃0
2b)
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With 100 fb−1 two contributions probably indistinguishable, quote weighted mean

With 300 fb−1, if excellent control of b-jet measurement is achieved, two peaks can be

distinguished, and relative rate measured



Heavy gauginos in squark decays

Gaugino mixing matrix crucial ingredient in SUSY parameter study

M =











































M1 0 −mZcβsW mZsβsW

0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ

mZsβsW −mZsβcW −µ 0











































(4)

In mSUGRA |µ| > M2, ⇒ χ̃0
1 ∼ B̃, χ̃0

2 ∼ W̃ 3, χ̃±
1 ∼ W̃±

Lighter gauginos give handle only on M1 and M2

For 100 fb−1, m(q̃, g̃) ∼ 1 TeV, we will collect a few 104 SUSY events

Rare squarks decays into heavier gauginos might be statistically accessible

In mSUGRA χ̃0
3 almost exclusively higgsino, BR(q̃L → χ̃0

3) typically at the 0.1% level

χ̃0
4 and χ̃+

2 have typically some gaugino admixture:

BR (q̃L → χ̃0
4, χ̃

+
2 ) a few % over significant parameter space



Need a clear signature allowing good separation from dominant light gauginos

BR(χ̃0
4, χ̃

+
2 → `+`− + X) through sleptons = a few %

Opposite Sign, Same Flavour (OS-SF) leptons ⇒ background subtraction.

Take example of SPS1A (m)

q̃L → χ̃0
4 q

|
→ ˜̀±

R `∓

|
→ χ̃0

1 `± [D1]

q̃L → χ̃0
4 q

|
→ ˜̀±

L `∓

|
→ χ̃0

1 `± [D2]

|
→ χ̃0

2 `± [D3]

q̃L → χ̃±
2 q′

|
→ ν̃` `±

|
→ χ̃±

1 `∓ [D4]
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Analysis requirements

• Exactly two SS-OF leptons (PT (1) > 20 GeV, PT (2) > 10 GeV)

• ≥ 3 jets, Pt(j1) > 150, Pt(j2) > 100, Pt(j3) > 50 GeV; Meff > 600 GeV; /ET > 100 GeV

• m`+`− > 100 GeV ⇒ above χ̃0
2 edge

• MT2 > 80 GeV

M 2
T2 ≡ min/p

1
+/p

2
=/p

T

[max {m2
T (pl1

T , /p1), m
2
T (pl2

T , /p2)}]

where

m2
T (pl

T ,qT ) ≡ 2(E l
TQT − p

l
T · qT )

El
T = |pl

T | and QT = |qT |

Cambridge MT2 variable with mχ = 0
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 Signal

 SUSY back.

 top back.

Strongly reduces t̄t and SUSY background from uncorrelated decays

After cuts events left for 100 fb−1: ∼40 t̄t and ∼30 W, Z+ jets.



Look for an excess in m(`+`−) distributions:
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Observed signal

Expected signal

Analysis results after all cuts (100 fb−1):

Point Nev Signal Signif. SUSY bck. SM bck. Interval (GeV)

A 259.1 ± 21.1 12.3 92.3 27.1 150–290

Precision on end-point measurement: 2.3 GeV (300 fb−1)

Difficult to assess which decay gives end point



Additional measurements build on measured q̃L, ˜̀
R, χ̃0

2, χ̃0
1 masses:

• Measure slepton left direct production

• Use shorter decay chains to measure additional masses: q̃R → χ̃0
1q, q̃L → χ̃0

4q, ...

Available measurements for SPS1a (300 fb−1):

Errors

Variable Value (GeV) Stat. (GeV) Scale (GeV) Total

mmax
`` 77.07 0.03 0.08 0.08

mmax
``q 428.5 1.4 4.3 4.5

mlow
`q 300.3 0.9 3.0 3.1

mhigh
`q 378.0 1.0 3.8 3.9

mmin
``q 201.9 1.6 2.0 2.6

mmin
``b 183.1 3.6 1.8 4.1

m(`L) − m(χ̃0
1) 106.1 1.6 0.1 1.6

mmax
`` (χ̃0

4) 280.9 2.3 0.3 2.3

mmax
ττ 80.6 5.0 0.8 5.1

m(g̃) − 0.99 × m(χ̃0
1) 500.0 2.3 6.0 6.4

m(q̃R) − m(χ̃0
1) 424.2 10.0 4.2 10.9

m(g̃) − m(b̃1) 103.3 1.5 1.0 1.8

m(g̃) − m(b̃2) 70.6 2.5 0.7 2.6



Interpretation of results

We have now a set of measurement of kinematic paramters

Results do not depend a priori on a special choice of the model

For instance, we can state that in the data appears the decay:

a → b q

|
→ c `∓

|
→ d `±

Where something can be said about a, b, c, d. e.g.:

• d does not interact in the detector

• c should have lepton quantum number

• a should have baryon quantum number

And we know the masses of a, b, c, d

Model dependence enters when we try to give a name to the particles, and match

them to a template decay chain



Constraints on SUSY model from measurements

Measured mass relations can be used to constrain models

Simplest approach: postulate SUSY breaking model, and verify if any set of the model parameters fits

measured quantities. Exercise performed for SPS1a postulating mSUGRA
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• m0 dominated by sleptons (∆m0 ∼ 2%)

• m1/2 ” by light gauginos (∆m1/2 ∼ 0.6%)

• Need b̃1 and b̃2 for tan β, otherwise long tails

• Trilinear couplings A0 related to µ, fixed by χ̃0
4

• Wrong µ sign ruled out by bad fit

Measurements at the LHC can constrain SUSY models

Exercise relies on correct interpretation of kinematic signatures as SUSY decay chains

Spin information needed to confirm SUSY interpretation (in progress)


