THE PVLAS ANOMALY

THE PVLAS ANOMALY 29/07/2005-23/6/2007
 >120 PAPERS

L'ANOMALIA DI PVLAS: UN MIRAGGIO*

AD POLOSA
INFN ROMA 'LA SAPIENZA`
M BERGANTINO, R FACCINI, L MAIANI, A MELCHIORRI, A STRUMIA.

*ARXIV:0706.341923 JUN 2007

GLOSSARY

BIREFRINGENCE = GENERATION OF AN ELLIPTICITY IN LINEARLY POLARIZED LIGHT IN THE PRESENCE OF H. INDUCTION OF $\xi 2$.

$$
\begin{aligned}
& \rho_{\alpha \beta}=\frac{1}{2}\left(\begin{array}{cc}
1+\xi_{3} & \xi_{1}-i \xi_{2} \\
\xi_{1}+i \xi_{2} & 1-\xi_{3}
\end{array}\right) ; \quad \xi_{1,2,3} \in[-1,1] \\
& \xi_{3}=1 \Leftrightarrow \operatorname{lin}-y \| \quad \xi_{1}=1 \Leftrightarrow \operatorname{lin}-y\left(45^{\circ}\right) \\
& \xi_{3}=-1 \Leftrightarrow \operatorname{lin}-y \perp \quad \xi_{1}=-1 \Leftrightarrow \operatorname{lin}-y\left(-45^{\circ}\right) \\
& \xi_{2}=i \frac{A_{1} A_{2}^{*}+A_{2} A_{1}^{*}}{\left|A_{1}\right|^{2}+\left|A_{2}\right|^{2}}
\end{aligned}
$$

DICHROISM = ROTATION OF THE PLANE OF LINEAR POLARIZATION OF LIGHT IN THE PRESENCE OF H; THIS HAS TO DO WITH LOSS OF POWER IN A CERTAIN DIRECTION OF PROPAGATION (THE IMAGINARY PART OF THE REFRACTION INDEX).

DIELECTRIC VACUUM

L Maiani, R Petronzio, E Zavattini, (MPZ) Phys. Lett. B175, 359 (1987)
THE ORIGINAL IDEA OF E. ZAVATTINI WAS TO MEASURE VACUUM DIELECTRIC PROPERTIES; IN PARTICULAR BIREFRINGENCE DUE TO PHOTON-PHOTON INTERACTIONS IN PRESENCE OF AN EXTERNAL MAGNETIC FIELD

BUT IN MPZ, PHYSICS BEYOND QED IS PROPOSED:

See S Adler, Photon Splitting and Photon Dispersion in a Strong Magnetic Field,
Ann. Phys. 67, 599 (1971)

MPZ-DICHROISM

$$
\mathcal{L}_{\mathrm{I}}=\frac{1}{4 M} \phi F \cdot F \quad \vee \quad \frac{1}{4 M} \phi F \cdot \tilde{F}
$$

CONSIDER E.G. THE PSEUDOSCALAR

$$
\mathcal{L}_{\mathrm{I}} \propto \phi\left|\mathbf{E}_{\gamma}\right|\left|\mathbf{H}_{\mathrm{ext}}\right| \cos \lambda
$$

LOOSE POWER ALONG H

THE APPARATUS

E Zavattini et al. (PVLAS collaboration), Phys. Rev. Lett. 96, 110406 (2006)

$$
\begin{aligned}
& L_{\text {int }}=1 \mathrm{~m} \\
& \lambda_{\text {laser }}=1064 \mathrm{~nm} \sim 1 \mathrm{eV} \\
& H=5.5 \mathrm{~T} \\
& P \sim 10^{-8} \mathrm{mbar} \\
& \nu_{m} \sim 0.3 \mathrm{~Hz} \\
& \nu_{\mathrm{SOM}}=506 \mathrm{~Hz} \\
& \epsilon_{\mathrm{SOM}}=10^{-3} \mathrm{rad}
\end{aligned}
$$

THE QWP TRANSFORMS APPARENT ROTATIONS IN ELLIPTICITIES WHICH THEN BEAT WITH THE SOM (CARRIER ELLIPTICITY SIGNAL) AND ARE DETECTED

MEASURING DICHROISM

LASER λ

THE EFFECT

$$
\alpha=\frac{\left(\kappa_{\|}-\kappa_{\perp}\right)}{2} D \sin \lambda
$$

$$
\begin{aligned}
I= & I_{0}\left(\text { before } P_{2}\right)\left\{\sigma^{2}+[\alpha(t)+\eta(t)+\Gamma(t)]^{2}\right\} \\
& \alpha(t)=\alpha_{0} \cos \left(4 \pi \nu_{m} t+\Theta_{m}\right) \\
& \eta(t)=\eta_{0} \cos \left(2 \pi \nu_{\mathrm{SOM}} t+\Theta_{\mathrm{SOM}}\right)
\end{aligned}
$$

α (THE ROTATION TO BE DETECTED) IS EXPECTED TO BE SMALL

In the Fourier amplitude spectra of the detection photodiode signal the largest intensity comes from the term $\alpha \eta$
(η gives an help) beating with

$$
\nu_{\mathrm{SOM}} \pm 2 \nu_{m}
$$

$2 V_{m}$

RESULTS

RESULTS AFTER QWP $\Pi / 2$ INVERSION

BUT LIFE IS HARD...

PVLAS ARXIV:0706.3419 23 JUN 2007

$$
\text { No Rotation after } 45000 \text { passes }\left\{\begin{array}{l}
<1.2 \times 10^{-8} \mathrm{rad} @ 5.5 T \\
<1.0 \times 10^{-8} \mathrm{rad} @ 2.3 T
\end{array}\right.
$$

No Ellipticity after 45000 passes $\left(<1.4 \times 10^{-8} @ 2.3 T\right)$ while at $5.5 T$ still present $. .2 \times 10^{-7} @ 5.5 T$

THESE RESULTS EXCLUDE PARTICLE INTERPRETATION OF PVLAS

	$10 \bigcirc W$	$\bigcirc \mathrm{O}^{\circ} 0^{\circ}$	\bigcirc OWP 0°
$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$			
$\begin{gathered} \mathrm{E} \\ \mathrm{~m} \\ \mathrm{n} \\ \mathrm{n} \\ \\ \end{gathered}$			
$\begin{gathered} E \\ n \\ n \\ \infty \\ n \end{gathered}$			

FORMER EXPERIMENTAL CHALLENGES

'AXION' INTERPRETATION

THE DICHROISM AMPLITUDE WAS PROPTO H**2 AS IT SHOULD IN AN AXION MODEL; MEASURED TO BE ~1O**4 THAN EXPECTED BY QED

$$
\begin{aligned}
& P_{\gamma \leftarrow \phi}=g^{2} H^{2} L^{2} \frac{\sin ^{2}\left(\frac{q L}{2}\right)}{\left(\frac{q L}{2}\right)^{2}} \quad \mathrm{q} \text { is the transfered momentum } \\
& \Rightarrow \epsilon=\sin 2 \lambda\left(\frac{H L}{4 M}\right)^{2} N_{\text {pass }}\left[\frac{\sin \left(m_{\phi}^{2} L / 4 \omega\right)}{m_{\phi}^{2} L / 4 \omega}\right]^{2}
\end{aligned}
$$

PVLAS CLAIMED TO OBSERVE A SCALAR (FROM ROT. SIGN) WITH

$$
\begin{aligned}
& 2 \times 10^{5} \mathrm{GeV} \lesssim M \lesssim 6 \times 10^{5} \mathrm{GeV} \\
& 1 \mathrm{meV} \lesssim m_{\phi} \lesssim 1.5 \mathrm{meV}
\end{aligned}
$$

WHICH STRONGLY CONFLICTS WITH THE OBSERVATION BY CAST

CAST

S Andriamonje et al. (CAST collaboration), see review [hep-ex/0702006]

IMAGING X-RAY OPTICAL SYSTEM

GRAVITY

A Dupays et al., Phys. Rev. Lett. 98, 131802 (2007)

$$
\mathcal{L}=y \phi \bar{\psi} \psi
$$

TAKE THE LEADING RADIATIVE CONTRIBUTION TO Y

$$
y \sim \frac{\alpha}{\pi} \frac{m_{p}}{M} \ln \left(\frac{\Lambda}{m_{p}}\right)
$$

$$
\text { EXP. }<10 * *-2
$$

$$
V(r) \simeq G \frac{m_{1} m_{2}}{r}\left[1+\frac{1}{G m_{p}^{2}} \frac{y^{2}}{4 \pi}\left(\frac{Z}{A}\right)_{1}\left(\frac{Z}{A}\right)_{2} \exp \left(-m_{\phi} r\right)\right] \quad m_{\phi}^{-1}=0.2 \mathrm{~mm}
$$

CONT'D

INCONSISTENT WITH PVLAS BY A FACTOR OF ~10** 11

Kapner et al., Phys. Rev. Lett. 98, 021101 (2007)

$$
g_{\text {PVLAS }}^{2} \times 10^{33}=10^{23} \mathrm{GeV}^{-2}
$$

REGENERATION

R Rabadan, A Ringwald, K. Sigurdson, Phys. Rev. Lett. 96, 11407 (2006)

SHINING-THROUGH-WALL EXPERIMENT

$$
\begin{aligned}
&\left.P_{\gamma \leftarrow \phi}\right|_{q L \ll 1} \sim 2 \times 10^{-9}\left[\left(\frac{g}{10^{-6} \mathrm{GeV}^{-1}}\right)\left(\frac{H}{10 \mathrm{~T}}\right)\left(\frac{L}{10 \mathrm{~m}}\right)\right]^{2} \\
&\left(N_{\gamma}^{\mathrm{reg}} / s\right)=\left(N_{\gamma}^{\mathrm{FEL}} / s\right) \times P^{2} \\
&\left(N_{\gamma}^{\mathrm{FEL}} / s\right) \sim 10^{17} / s
\end{aligned}
$$

REGENERATION PLANS:

LASER-LASER

M Bergantino, R Faccini, ADP

$$
\mathcal{L}=10^{40} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}
$$

CRYSTALS

M Bergantino, R Faccini, ADP
W Buchmuller and F Hoogeveen, Phys Lett B237, 278 (1990)

WHAT ABOUT PRIMAKOFF IN A CRYSTAL?

OTHER

INTERPRETATIONS

A PARTIAL LIST OF MODELS

- PARAPHOTONS AND MILLICHARGED PARTICLES
- BOUNDS FROM CMB :: CMB ELLIPTICITIES?
- MOHAPATRA-NASRI MODEL
- CHERN-SIMONS COUPLED VECTORS

A MICROSCOPIC POINT OF VIEW

E Masso and J Redondo Phys. Rev. Lett. 97, 151802 (2006)

IF V IS A LOW ENERGY SCALE, WE NEED A VERY TINY CHARGE FOR THE PARAFERMION THE `MILLICHARGE`.
QED WITH EXTRA U(1) FIELDS CAN ACCOMODATE THIS
B Holdom, Phys. Lett. B166, 196 (1986)

CONSIDER A MULTIPLICATION OF U(1)'S

$$
\mathcal{L}=-\frac{1}{4} \mathbf{F}^{T} \mathbf{M}_{\mathrm{mix}} \mathbf{F}+\frac{1}{2} \mathbf{A}^{T} \mathbf{M}_{\mathrm{mass}} \mathbf{A}+e \sum_{i=0}^{2} j_{i} A_{i}
$$

DIAGONALIZE

$$
\text { HYP :: } \quad \mathbf{M}_{\text {mix }}=\left(\begin{array}{lll}
1 & \epsilon & \epsilon \\
\epsilon & 1 & 0 \\
\epsilon & 0 & 1
\end{array}\right)
$$

MIXINGS ARE ASSUMED TO BE SMALL MAKING THE HYP THAT THEY ARE INDUCED BY ULTRAMASSIVE FERMIONS CIRCULATING IN LOOPS; $12 \rightarrow 0$

$$
\mathbf{U}=\left(\begin{array}{ccc}
1 & \epsilon \frac{m_{1}^{2}}{m_{0}^{2}-m_{1}^{2}} & \epsilon \frac{m_{2}^{2}}{m_{0}^{2}-m_{2}^{2}} \\
\epsilon \frac{m_{0}^{2}}{m_{1}^{2}-m_{0}^{2}} & 1 & 0 \\
\epsilon \frac{m_{0}^{2}}{m_{2}^{2}-m_{0}^{2}} & 0 & 1
\end{array}\right)
$$

WE CAN ROTATE, BY U, THE (PARA)PHOTONS FIELDS IN SUCH A WAY TO OBTAIN THE KINETIC PART IN THE STANDARD F.F FORM -- KEEP UP TO FIRST ORDER IN \in

$$
\text { HYP :: } \quad e_{2}=-e 1=-e
$$

RECONCILING WITH STARS

$$
\begin{aligned}
& q_{\mathrm{eff}}=e \epsilon \quad(\text { vacuum }) \\
& q_{\mathrm{eff}}=e \epsilon \frac{\mu^{2}}{q^{2}} \quad \text { small povided } \quad \omega_{P}(\sim \mathrm{KeV}) \gg \mu
\end{aligned}
$$

EXCLUSION PLOT
$\epsilon \frac{\mu^{2}}{\mathrm{eV}^{2}}<4 \times 10^{-8} \quad$ HBstars

GRAVITY AGAIN

A Dupays et al., Phys. Rev. Lett. 98, 131802 (2007)
-ALP DOES NOT HAVE A DIRECT COUPLING TO PHOTONS
-ALP-PHOTONS VERTEX ARISES BECAUSE OF A PHOTONPARAPHOTON MIXING ϵ
-A PARAPHOTON MASS μ INDUCES AN EFFECTIVE PHOTON FORM FACTOR SUCH THAT THE COUPLING IS REDUCED FOR $Q \gg \mu$

$$
\begin{aligned}
& \frac{1}{k^{2}} \mapsto \frac{1}{k^{2}} \frac{\mu^{2}}{\mu^{2}-k^{2}} \quad \text { effective propagator } \\
& \Rightarrow y^{\prime}=\frac{\alpha}{4} \frac{\mu}{M} \quad \text { finite }\left[\mathrm{LO}\left(\mu / m_{p}\right)\right] \\
& \Rightarrow \text { include } e^{-}
\end{aligned}
$$

$$
V(r) \simeq G \frac{m_{1} m_{2}}{r}\left[1+\frac{4}{G m_{p}^{2}} \frac{y^{\prime 2}}{4 \pi}\left(\frac{Z}{A}\right)_{1}\left(\frac{Z}{A}\right)_{2} \exp \left(-m_{\phi} r\right)\right] \quad m_{\phi}^{-1}=0.2 \mathrm{~mm}
$$

$$
\text { SINCE } Y^{\prime} \text { IS SMALLER THAN Y, BY } \mu / M P, A \text { SMALLER VALUE OF M IS ALLOWED! }
$$

$$
\mathrm{M} \sim 10 * * 5 \mathrm{GEV}
$$

MILLICHARGES \& DICHROISM

H Gies, J Jaeckel, A Ringwald, Phys. Rev. Lett. 97, 140402 (2006)

$$
\begin{aligned}
\gamma(\text { lin pol }) & \rightarrow e^{+} e^{-} \quad \text { with } \omega>2 m_{e} \text { in } H^{\text {ext }} \\
& \Rightarrow \text { dichroism }
\end{aligned}
$$

NEVER OBSERVED IN LAB BECAUSE OF THE THRESHOLD

IN PVLAS $W>2 m \in$

$$
\Delta \lambda \simeq \frac{1}{4}\left(\kappa_{\|}-\kappa_{\perp}\right) L \sin (2 \lambda)
$$

review in W Dittrich and H Gies, Springer Tracts Mod. Phys. 166, 1 (2000)

MILLI-PARAMETERS

birefringence $\quad \Delta \phi=\left(n_{\|}-n_{\perp}\right) \omega L$ un
The propagation speed of the laser photons is slightly changed in the magnetic field owing to the coupling to virtual charged pairs

M Ahlers, H Gies, J Jaeckel, A Ringwald, Phys. Rev. D75, 035011 (2007)

See also SN Gninenko, NV Krasnikov and A Rubbia, Phys. Rev. D75, 075014 (2007)

COSMIC BOUNDS

A Melchiorri, AD Polosa, A Strumia, Phys. Lett. B (2007)
::HYP::
-COSMOLOGY AFTER DECOUPLING
-ONLY SM PARTICLES AT BEGINNING
START PRODUCING MILLICHARGED BY PHOTONS

$$
\begin{aligned}
& \Gamma \sim\left\langle n_{\gamma} \sigma_{\gamma \gamma \rightarrow \epsilon \bar{\epsilon}} v\right\rangle_{T} \sim T \\
& n_{\gamma}=\left(2 \zeta(3) / \pi^{2}\right) T^{3} \\
& H=\dot{a} / a \sim T^{3 / 2}
\end{aligned}
$$

Γ / H maximal at low $T:: T_{*} \sim \max \left(T_{0}, m_{\epsilon}\right)$

FITTING FIRAS

WE EXPECT AN ENERGY DEPENDENT DEPLETION OF THE CMB SPECTRUM

$$
\begin{aligned}
& f(E) \equiv(\text { small }) \text { deviation from } f_{B E}(E) \\
& r(E) \equiv f(E) / f_{B E}(E) \\
& x \equiv E / T \\
& f_{B E}(E) H \frac{d}{d \ln z} r(x)=-\frac{f(E)}{4 E} \int d \mathbf{p}^{\prime} f\left(E^{\prime}\right) \hat{\sigma}(s) \mapsto n_{\gamma} H \frac{d}{d \ln z} \frac{n_{\gamma}^{\text {dev }}}{n_{\gamma}}=-\gamma_{T}
\end{aligned}
$$

$$
H \frac{d}{d \ln z} r(x)=\frac{T}{32 \pi^{2} x} \int d c_{\theta} d x^{\prime} x^{\prime} f_{B E}\left(x^{\prime}\right) \hat{\sigma}\left(s=2 x x^{\prime} T^{2}\left(1-c_{\theta}\right)\right)
$$

frequency in $1 / \mathrm{cm}$

FITTING FIRAS

AS A RESULT ONE FINDS THAT

$$
Y \equiv \frac{n_{\epsilon}}{n_{\gamma}} \lesssim 6 \times 10^{-5} \text { at } 3 \sigma \text { c.l. for } m_{\epsilon}=0.1 \mathrm{eV}
$$

FOR GENERAL MASSES AND CHARGES ISOCURVES OF Y

MODEL DEPENDENT EXCLUSION

ONCE MILLICHARGES HAVE BEEN PRODUCED THEY CAN START DISINTEGRATING INTO PARAPHOTONS PAIRS -- GOING RAPIDLY TO THERMAL EQUILIBRIUM -- BUT STILL THEY CAN KEEP ON DEPLETING CMB VIA

$$
\gamma_{\mathrm{CMB}} \epsilon \rightarrow \gamma^{\prime} \epsilon
$$

OTHER BOUNDS CAN BE STUDIED

$$
\begin{aligned}
& Y_{\gamma}^{\text {depletion }} \sim \min \left[1, \sigma\left(\gamma \epsilon \rightarrow \gamma^{\prime} \epsilon\right) \frac{Y_{\epsilon} n_{\gamma}\left(T_{*}\right)}{H\left(T_{*}\right)}\right] \\
& \sigma\left(\gamma \epsilon \rightarrow \gamma^{\prime} \epsilon\right) \sim \frac{\epsilon^{2} \epsilon^{\prime 2} e^{4}}{4 \pi T_{*}^{2}} \\
& \epsilon^{\prime} \sim O(1) ?
\end{aligned}
$$

DEPENDING ON THE PARAPHOTON MODEL ...

TURBOLENT MAGNETIC FIELDS

A Mirizzi, G G Raffelt, P Serpico, arXiv:0704.3044

SPECTRAL MODIFICATION OF A GAMMA-TEV SOURCE AT THE GALACTIC CENTER. PHOTON-AXION OSCILLATIONS CAUSE A DOWNWARD SHIFT OF THE HIGH ENERGY SPECTRUM (A CHANGE OF NORMALIZATION OF THE TYPICAL POWER SPECTRUM BETWEEN LOW AND HIGH ENERGIES)

MORE SCALARS

RN Mohapatra and S Nasri Phys. Rev. Lett. 98, 050402 (2007)

$$
\begin{aligned}
& \Phi(S), \sigma(S), \phi(P S) \\
& \frac{\Phi \phi}{M^{2}} F \cdot \tilde{F} \text { rather than } \frac{\phi}{M} F \cdot \tilde{F} \\
& \frac{\Phi \phi}{M^{2}} F \cdot \tilde{F} \mapsto \frac{\phi}{M_{\text {PVLAS }}} F \cdot \tilde{F} \text { if } T<\mathrm{keV} \\
& \text { HYP :: Low TEMPERATURE Phase transition }
\end{aligned}
$$

$$
\frac{\langle\Phi\rangle}{M^{2}}=\frac{1}{M_{\mathrm{PVLAS}}}
$$

IN THE SUN IT IS PH.S. INHIBITED ALSO THE PROCESS

$$
\begin{aligned}
& \gamma \gamma \rightarrow \Phi \phi \text { if } m_{\Phi} \sim 10 \div 50 \mathrm{MeV} \\
& \mathrm{M}^{* * 2 \sim 10 * * 5 \mathrm{GEV} * * 2 \text { IS CONSISTENT WITH }} \begin{array}{l}
\text { COSMOLOGICAL \& ASTROPHYSICAL DATA }
\end{array}
\end{aligned}
$$

A VECTOR

I Antoniadis, A Boyarsky, O Ruchayskiy, hep-ph/0606306

$\kappa \sim 10^{-17}$
suppress axions from stars
PVLAS DICHROISM?
PVLAS birefringence $\propto m_{\gamma}^{(H)} \sim \frac{\kappa H}{m_{\phi}}$

$$
m_{\phi} \sim \kappa v_{\phi} \text { and } m_{\phi} \rightarrow 0 \text { as } \kappa \rightarrow 0
$$

IN A C.S. LAGRANGIAN

$$
\mathcal{L}=-1 / 4 F_{A}^{2}-1 / 4 F_{\phi}^{2}+m_{\gamma}^{2} / 2 A^{2}+m_{\phi}^{2} \phi^{2}-2 \kappa \epsilon\left(A, \phi ; F_{A}\right)
$$

WHAT IF A VECTOR AXION IS PRODUCED WITH LONGITUDINAL POLARIZATION?

$$
\epsilon_{\|}^{\mu}=\left(\frac{|\vec{k}|}{m_{\phi}}, \frac{\omega \vec{k}}{m_{\phi}|\vec{k}|}\right)
$$

CONCLUSIONS I

- EXPERIMENTALLY DRIVEN FIELD :: MAYBE WE ARE CLOSE TO A FINAL ANSWER TO CONFIRM/DISPROVE THE PVLAS RESULT*
- ALL THEORETICAL MODELS MERE DESCRIBED SEEM TO HAVE TROUBLES WITH DATA
- I HAVE NOT MENTIONED OTHER MODELS LIKE THE CHAMALEON BY BRAX ET AL. [...]
*M Fairbairn et al.,

CONCLUSIONS II

- EXPERIMENTALLY DRIVEN FIELD :: PVLAS DISPROVES PVLAS*
- ALL THEORETICAL MODELS HERE DESCRIBED SEEM TO HAVE TROUBLES WITH DATA :: IT SEEMS THAT NOW WE KNOW WHY

THE MPZ

 CALCULATION
CONVERSION PROBABILITY

$$
\left\{\begin{array}{l}
\square \mathbf{A}+\frac{1}{M} \mathbf{B}_{\perp} \dot{\phi}=0 \\
\left(\square+m^{2}\right) \phi-\frac{1}{M} \mathbf{B}_{\perp} \cdot \dot{\mathbf{A}}=0
\end{array} \quad\right. \text { PSEUDOSCALAR }
$$

LOOK FOR SOLUTIONS

$$
\begin{aligned}
& \mathbf{A}=A_{\|} \mathbf{i}+A_{\perp} \mathbf{j} \\
& \mathbf{A}_{\perp}=\mathbf{A}_{\perp 0} e^{-i|k| t+i k z}
\end{aligned}
$$

MIXING AXION AND A\|

$$
\psi=\binom{A_{\|}}{\phi}=\binom{\lambda}{\mu} e^{-i \omega t+i k z} \equiv \mathbf{u} e^{-i \omega t+i k z}
$$

AND SOLVE THE LINEAR SYSTEM

$$
\begin{aligned}
& \mathcal{M} \mathbf{u}=0 \\
& \mathcal{M}=\left(\begin{array}{cc}
k^{2}-\omega^{2} & -i \frac{B}{M} \omega \\
i \frac{B}{M} \omega & k^{2}+m^{2}-\omega^{2}
\end{array}\right)
\end{aligned}
$$

L Maiani, R Petronzio, E Zavattini, Phys. Lett. B175, 359 (1987)

$$
\begin{aligned}
& \omega_{ \pm}^{2}=k^{2}+\frac{1}{2}\left[m^{2}+\frac{B^{2}}{M^{2}} \pm \sqrt{\left(m^{2}+\frac{B^{2}}{M^{2}}\right)^{2}+4 \frac{k^{2} B^{2}}{M^{2}}}\right] \\
& \lambda_{ \pm}=\frac{i \omega_{ \pm} B}{M} \frac{1}{k^{2}-\omega_{ \pm}^{2}} \\
& \mathbf{u}_{ \pm}=\binom{\lambda_{ \pm}}{1}
\end{aligned}
$$

INITIAL CONDITION :: O-AXIONS

$$
\begin{aligned}
& A_{\|}(t=z=0)=\cos \lambda \\
& \phi(t=z=0)=0
\end{aligned}
$$

$$
\begin{aligned}
& A_{\|}=\cos \lambda\left[\epsilon e^{-i \omega_{+} t}+(1-\epsilon) e^{-i \omega_{-} t}\right] e^{i k z} \\
& \phi=\cos \lambda \Phi\left[e^{-i \omega_{+} t}+e^{-i \omega_{-} t}\right] e^{i k z}
\end{aligned}
$$

$$
\epsilon=\frac{\omega_{+}\left(k^{2}-\omega_{-}^{2}\right)}{D(k)}
$$

$$
\Phi=-\frac{i M}{B} \frac{\left(k^{2}-\omega_{+}^{2}\right)\left(k^{2}-\omega_{-}^{2}\right)}{D(k)}
$$

$$
D(k)=\omega_{+}\left(k^{2}-\omega_{-}^{2}\right)-\omega_{-}\left(k^{2}-\omega_{+}^{2}\right)
$$

$$
\epsilon \sim \frac{B^{2}}{M^{2}} \text { small }
$$

EXPANDING IN THE SMALL PARAMETER

$$
\begin{aligned}
\left|A_{\|}\right| & =\cos \lambda\left[1-2 \epsilon \sin ^{2}\left(\frac{\Delta \omega L}{2}\right)\right] \\
& =\cos \lambda\left[1-2\left(\frac{B L}{4 M}\right)^{2} \frac{\sin ^{2} x}{x^{2}}\right]_{x=L \Delta \omega / 2 \ll 1}
\end{aligned}
$$

PROCEED SIMILARLY FOR $|\Phi|$

DICHROISM

$$
P_{\phi \leftarrow \gamma} \equiv \frac{|\phi|^{2}}{\left|A_{\|}(t=z=0)\right|^{2}}
$$

HETERODINE \& SOM

THE SOM (STRESS OPTIC MODULATOR) IS A NEW TYPE OF POLARIZATION MODULATOR DEVICED WITHIN THE PVLAS COLLABORATION: IT INDUCES A CONTROLLABLE BIREFRINGENCE ON A GLASS WINDOW BY MEANS OF AN ELECTRICAL STRESS APPLIED TO IT

F Brandi et al., Meas. Sci. Technol. 12, 1503 (2001)

> THE MODULATION OF ELLIPTICITY TO BE MEASURED IS AT VERY LOW FREQUENCY, WHERE I/F NOISE AND OTHER SOURCES OF LOW FREQ. NOISE ARE DANGEROUS

THE ELLIPTICITY MODULATED THROUGH A MAGNETIC FIELD MODULATION BEATS WITH KNOWN ELLIPTICITY INDUCED ON LIGHT USING A POLARIZATION MODULATOR (SOM)

