Outline

Basic Definitions

Geometrical Luminosity

Beam-beam Effects

Luminosity as a Function of the Collider Parameters

Single Bunch Luminosity (DA Φ NE Case)

Multi Bunch Luminosity (DA PNE Case)

KLOE Detector Implications

Luminosity Optimization Process in DA Φ NE

The DA INF Luminosity Monitor

Integrated Luminosity Optimization

Main References

SEMINARS ON DAΦNE Frascati - February 21, 2000

IR Reference Frame $y \equiv$ vertical axis e⁻ e^+ $z \equiv$ longitud. axis IP s⁺ S $\mathbf{x} \equiv$ horizontal axis

 $\{x, y, z\} \equiv$ Lab. Reference Frame

Basic Definitions

Cross Section: Event Rate per Unit Incident Flux per Target Particle

Luminosity:

Counting Rate for a Unit Cross Section Event

Counter Rotating Beams Luminosity

$$Gaussian Beam SingleBunch Luminosityn_(x,y,z,t) = N_{-} \frac{e^{-\frac{x^2}{2\sigma_{x-}^2} - \frac{y^2}{2\sigma_{y-}^2} - \frac{(z-vt)^2}{2\sigma_{z-}^2}}}{(2\pi)^{\frac{3}{2}}\sigma_{x-}\sigma_{y-}\sigma_{z-}}$$

n_+(x,y,z,t) = N_{+} $\frac{e^{-\frac{x^2}{2\sigma_{x+}^2} - \frac{y^2}{2\sigma_{y+}^2} - \frac{(z+vt)^2}{2\sigma_{z+}^2}}}{(2\pi)^{\frac{3}{2}}\sigma_{x+}\sigma_{y+}\sigma_{z+}}}$
 $\sigma_{x\pm}, \sigma_{y\pm} = \text{constants}}$
 $L = f_R \frac{N_+N_-}{2\pi\sqrt{(\sigma_{x+}^2 + \sigma_{x-}^2)(\sigma_{y+}^2 + \sigma_{y-}^2)}}$
 $\sigma_{x+} = \sigma_{x-} - \sigma_{y+} = \sigma_{y-}$
 $L = f_R \frac{N_+N_-}{4\pi \sigma_x \sigma_y}$

GEOLUM Fortran Code

Luminosity as a Function of the Collider Parameters

Beam-Beam Effects

For a gaussian charge distribution:

$$y = -\frac{2Nr_{e} y}{\gamma} \quad 0 \quad \frac{\exp \left[-\frac{x^{2}}{2\sigma_{x}^{2} + w} - \frac{y^{2}}{2\sigma_{y}^{2} + w}\right]}{\left(2\sigma_{y}^{2} + w\right)^{\frac{3}{2}} \left(2\sigma_{x}^{2} + w\right)^{\frac{1}{2}}} dw$$

$$x = -\frac{2Nr_e x}{\gamma} \quad 0 \quad \frac{\exp \left[-\frac{x^2}{2\sigma_x^2 + w} - \frac{y^2}{2\sigma_y^2 + w}\right]}{\left(2\sigma_y^2 + w\right)^{\frac{1}{2}} \left(2\sigma_x^2 + w\right)^{\frac{3}{2}}} dw$$

Beam-Beam Linear Approach

Focussing Quadrupole (thin lens):

Linear Beam-Beam Tune Shift

$$\xi_{y}^{+} = \frac{N_{-}r_{e}\beta_{y}^{+}}{2\pi\gamma \sigma_{y}^{-}(\sigma_{y}^{-} + \sigma_{x}^{-})} = Q_{y} \qquad \xi_{x}^{+} = \frac{N_{-}r_{e}\beta_{x}^{+}}{2\pi\gamma \sigma_{x}^{-}(\sigma_{y}^{-} + \sigma_{x}^{-})} = Q_{x}$$

Choice of the Working Point

Tune Resonances $mQ_x + nQ_y = p$ m,n,p N $|m| + |n| = resonance \ order$

Choice of the Working Point

Tune Resonances $mQ_x + nQ_y = p$ m,n,p N $|m| + |n| = resonance \ order$

Beam-Beam Nonlinear Effects

- Nonlinear Beam-beam Kick
- Synchro-betatron Effects
- Radiation Damping
- Quantum Fluctuations in Synchrotron Radiation Emission
- Lattice Nonlinearities (sextupoles, higher order multipoles)
- RF Nonlinearities

Simulation Codes (used for DAΦNE)

LIFETRACK by Shatilov

BBC by Hirata

Working Point Simulations

Beam-beam Simulation Information

- Beam Blowup: Vertical and Horizontal
- Distribution Tails
- Beam Lifetime in Collision
- Beam-beam effects in Presence of Coupling (Transverse Tilt and Emittance Ratio)
- Beam-beam effects vs IR Parameters

(vertical angle, vertical displacement,...)

- Luminosity Degradation

Maximum Linear Beam-beam Tune Shift

The Linear Beam-beam Tune Shift Actually Sets the Maximum Achievable Luminosity in Practically all the Existing Colliders

No Consistent and Exhaustive Theory Exists

Estimate of the Max Linear Tune Shift:

Phenomenological models: J. Seeman Crtiterion M.Bassetti Criterion

Statistical Elaboration of the Maximum Linear Tune Shifts Achieved in the Existing Colliders

Single Bunch luminosity vs Collider Parameters

Low Beta Scheme

Few Centimeters Vertical Beta @ IP Obtainable:

Between the IP and the First Quadrupole:

$$\beta_w(z) = \beta_w 1 + \frac{z}{\beta_w}^2 \qquad w = x, y$$

Low Beta Scheme Implications

Large Vertical Beta Functions in D Quads @ IR

Larger Negative Values of Vertical Chromaticities

Stronger Correcting Sextupoles

Smaller Dynamic Aperture

Decrease of Beam Lifetime

Short Bunches for Minimizing the Hourglass Effect

Increase of Toushek Effect

Decrease of Beam Lifetime

Higher Frequency Components in the Beam Spectrum

Possible Coupling with High Frequency Vacuum Chamber Modes: Instabilities

Higher Peak RF Voltages: Larger Number of Cavities

RF Nonlinearities, Stronger High Order Modes

Coherent Synchrotron Radiation with High Current per Bunch

• • • • • •

Large Emittance Lattice

The Wiggler in the Arc Increases the Radiation Damping and Allows To Modify the Emittance Value without Changing the Damping Times

Large Emittance Implies:

Large Beam Dimensions Large Physical Aperture Large Dynamic Aperture to Preserve Beam Lifetime

Round Beam vs Flat Beam

Round Beam (k~1):

A Factor 2 of Luminosity Gain Both the Beta Functions @ IP Must Be Small: Technically Difficult to Obtain Large Negative Chromaticities in Both Planes Strong Sextupole Correction Small Dynamic Aperture Strong Beam-beam Effects Increased Toushek Effect Poor Beam Lifetime

Flat Beam (k<<1):

A Factor 2 of Luminosity Loss Chromaticity Handling not Critical: It is Possible to Arrange the Collider Parameters in Order to Obtain Better Luminosity Performances Multibunch Luminosity

$$L = N_B L_{SB}$$

Large Number of Bunches:

- Separate Rings
- Small Distance Between 2 adiacent bunches
- Multibunch Instabilities
- Low Impedance Vacuum Chamber
- HOM 'Free' Ring Components
- Longitudinal Feedback System
- Horizontal Crossing Angle @ IP Required in Order to Avoid Parasitic Crossing
- Synchro-betatron Resonances

• • • • •

- Large Stored Current
- Vacuum System Limitations
- Large Rf Power
- Vacuum Chamber Large Heating Load

• • • • •

DAONE Design Parameters

Energy 510 MeV/beam Single Bunch Luminosity 4.4 10³⁰ cm⁻² s⁻¹ Multibunch Luminosity 5.3 10³² cm⁻² s⁻¹ Beam-beam Tune Shift (V/H) 0.04/0.04 **Ring Length** 97.69 m **Dipole Bending Radius** 1.4 m 10⁻⁶ m rad **Natural Emittance** Coupling 0.01 4 10⁻⁴ Natural Relative Energy Spread 3.0 10⁻² m r.m.s. Bunch Length 17.8/36.0 ms Damping Times (L/T) Beta Functions @ IP (V/H) 4.5/450 cm Horizontal Crossing Angle 12.5 mrad **8.9 10**¹⁰ Particles/Bunch Max Number of Bunches 120 **RF Frequency** 368.26 MHz

KLOE Detector Implications

Because of the DAΦNE Low Energy The Detector Solenoid Effects Cannot Be Treated as a Lattice Perturbation.

The Solenoidal Field Introduces <u>Coupling</u> between the Vertical and Horizontal Planes that Must Be Carefully Corrected.

Experimental Requirements Concerning Solid Angle Stay Clear Forced to Have Permanent IR Quadrupoles and a Very Reduced Configuration of Beam Dignostics

KLOE Effects Compensation

Solenoid Frame Rotation Angle:

$$\theta_{S} = \frac{1}{2(B\rho)} \sum_{z_{1}}^{z_{2}} B_{z}(s) ds$$

Field Integral Compensation:

 $B_{z}(s)ds + B_{z}(s)ds + B_{z}(s)ds = 0$ Comp.1 KLOE Comp.2

Rotated IR Quadrupoles to correct Coupling:

 $\Theta_n^Q = \frac{1}{2(B\rho)} \int_{IP}^{C_n} B_z(s) ds \quad n = 1, 2, 3 \qquad C_n \quad n - \text{th quad center position}$

$$B_{z} = 0.6 T \quad (B\rho) = 1.70 T m$$

$$C_{1} = 0.53 m \quad C_{2} = 1.04 m \quad C_{3} = 1.59 m$$

$$\theta_{1}^{Q} = 5.35 \deg \quad \theta_{2}^{Q} = 10.5 \deg \quad \theta_{3}^{Q} = 16.1 \deg$$

Solenoid Field Effects @ IR

Solenoid Field Effect - No AdditionalCoupling

Vertical scale 100 times the Horizontal one

Coupling Effects @ IR

Vertical scale 100 times the Horizontal one

Vertical Position @ IP

Luminosity Vertical Scan

 $y = \sqrt{\sigma_{y+}^2 + \sigma_{y-}^2}$ $y = \sqrt{2} \sigma_y$ if: $\sigma_{y+} = \sigma_{y-}$

IP Vertical Angle Measurement

In the Solenoid Rotating Frame:

$$y_{\max}(z_{IP}) = (y_{IP}^{+} - y_{IP}^{-}) z_{IP}$$

IP Optics Measurement

 $y = \sqrt{\sigma_{y+}^2 + \sigma_{y-}^2}$ by Luminosity Scans or Beam – Beam Deflection

Longitudinal Position @ IP

Luminosity Longitudinal Scan

 $\beta_x = 4.5 \text{ m}$

Fine Tuning by Luminosity Scans: Luminosity vs Horzontal Mutual Position Single BeamBump with 100 μm Step

Transverse Tilt Geometrical Effect

Effective Sigmas vs Transverse Tilt

Transverse Tilt Estimate

Response Matrix IP Coupling Analysis

Tune Monitor Measurements

and:

lon Trapping, Chromaticity, Instabilities,

. . .

Beam-Beam Tune Shift Measurement

WARNING: Perturbative Measurement !

Orbit Aquisition System Measurements

IP1 Colliding Beams **Beam-Beam Deflection Orbit IP2 Separated Beams** 0.30-0.25-0.20-0.15-0.10-0.05 -0.00--0.05--0.10--0.15-V -0.20 Н -0.25 -0.30--0.35-25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 5.0 15.0 20.0 90.0 95.0 100.0 10.0 IP2 IP1

+ Global Orbit, Global and IR Dispersion, ...

SLM Measurements

Coupling Measurement

Emittance

$$\epsilon = (1 + \kappa) \frac{\sigma_x^2}{\beta_x} \text{ if } \eta_x = 0$$

$$\epsilon^+ = (0.5 \pm 0.1) \ 10^{-6} \text{ m rad}$$

$$\epsilon^- = (0.5 \pm 0.1) \ 10^{-6} \text{ m rad}$$
April 25, 1999

Luminosity Monitor Proportional Counter Position

KLOE Interaction Region

Luminosity Monitor

$$L = \dot{N}_{SB} \Big/ \begin{array}{c} E_{MAX} \\ dE \\ E_T \end{array} \frac{\partial^2 \sigma_{SB}}{\partial E \partial} \\ \frac{\partial \partial E}{\partial E} \partial \end{array}$$

CALORIMETER: KLOE-like Proportional Counter Alternated Layers of Lead (0.5 mm) and Scintillating Fibers (1 mm diameter) (by F.Cervelli INFN PISA)

Energy Threshold Calibration by Gas Bremsstrahlung

Luminosity Measurement Total Error < ± 15 %

Integrated Luminosity Optimization

Main References:

CAS - 5th General Accelerator Physics Course CERN 94-01, January 26, 1994 Volumes 1 & 2

M.Sands, The Physics of Electron Storage Rings an Introduction, SLAC-121 UC-28 (ACC), Nov., 70

Proposal for a Φ -Factory, LNF-90/031(R) April 30, 90

S.Bartalucci et al., DAΦNE Design Criteria, DAΦNE Technical Note G-2, Frascati, November 12, 90

D.H.Perkins, Introduction to High Energy Physics 3rd Edition, Addison Welley Publishing Company