### Experience with Resistive Plate Chambers at BaBar



Gianluca Cavoto Princeton University Univ.Roma La Sapienza - INFN Roma

Seminario di Fisica dei Campi e Particelle. 14 maggio 2004

# Outline

### – RPC

- General concepts, many incarnations.
- Very active R&D, accurate ageing studies.
- BaBar muon and neutral hadron detector (IFR)
- BaBar RPC
  - 1999-2000: Original version, many problems...
  - 2000-2001 some R&D, improved RPCs (tested in situ Nov2000)
  - Forward Endcap upgrade 2002.
  - Experience with data-taking (Run3: 2002-2003; Run4: 2003-now).

# **Resistive Plate Chambers**

A dream: "Build a **cheap** detector with good timing and position resolution for large surfaces"

- A constant uniform E field between two parallel electrode plates with gas.
  - Particle generates a discharge
- Electrode made of high bulk resistivity material
  - Self-controlled discharge, localized dead region
- Gas mix with high absorption coeff for UV light
  - No secondary discharge

R. Santonico and R. Cardarelli, NIM 187(1981) 377

## The basic principles

- Streamer mode
  - Large charge (100-1000pC): no signal amplification needed
  - Rate limitation (10 Hz/cm2)
- Avalanche mode
  - Small charge (1-10pc)
  - Worse S/N ratio
  - higher rate capability

Ageing proportional to integrated charge  ${\it Q}_{int}$ 



## RPC as muon detectors

**Freons**: *electronegative*! Suppress streamer formation **Hydrocarbur gas:** *absorb photons* from discharge

Gas mixture  $C_2H_2F_4$  (96.5- a)%, i-  $C_2H_4$  3.5%, SF<sub>6</sub> a % (a ~1%)

#### Avalanche mode

|                      |                              | CMS         |
|----------------------|------------------------------|-------------|
| Time Resolution      | ≤ 3 ns                       | trigger RPC |
| Efficiency           | ≥ 95 %                       | ]           |
| Rate Capability      | $\geq$ 1 kHz/cm <sup>2</sup> |             |
| Intrinsic Noise Rate | $\leq$ 15 Hz/cm <sup>2</sup> |             |
| Streamer Probability | ≤ 10 %                       | ]           |
| HV Plateau           | ≥ 300 V                      |             |

\_\_\_\_

Bakelite electrodes:  $\rho_V \sim 8 \ 10^{10} \ \Omega \cdot cm$ 

# Very active field

### Sessions:

**RPC 2003 VII Workshop** http://clrwww.in2p3.fr/RPC2003/

- Trigger
  - BaBar, Belle, Argo, Alice, CMS (endcap/barrel), Opera, HARP
- Montecarlo Simulation
  - avalanche
- Timing device
  - Star, Alice TOF,...
- Ageing studies
  - ALICE TOF, Atlas, LHCb, CMS, glass RPC, bakelite resistivity
- New applications
  - Digital HADCal, Imaging RPC, RPC as neutron detector, neutrino detector for NuMi Off-axis exp.
- Dedicated electronics
  - Alice TOF TDC, NINO amplifier,...
- Large scale production and testbeam studies
  - Atlas,Opera(BaBar),CMS

# ALICE TimeOfFlight detector

ALICE-TOF has 10 gas gaps, each of 250 micron width Built in the form of strips, each with an active area of 120 x 7 cm<sup>2</sup>, readout by 96 pads (each 2.5 x 3.5 cm<sup>2</sup>)



## The BaBar detector



# BaBar IFR



40% B decay muons within 0.3< $\theta$ <1. rad

# **BaBar Resistive Plate Chambers**

### • RPC operated in streamer mode.

- Single gap counter
  - 2 mm gas gap polycarbonate spacer
  - Bakelite electrode
    - □  $ρ_V = 3-12 \ 10^{11} \ \Omega cm$
  - Linseed oil/n-pentane (70/30)
    - Multiple coating
  - Graphite paint
    - $\Box \rho_{s} = 100 \text{ K}\Omega/\Box$
- Gas mix
  - 45% Ar, Iso 4.8%, **C<sub>2</sub>H<sub>2</sub>F<sub>4</sub>50.2%**
  - ~1vol/day (then 3vol/day)
- Electronics read-out
  - 40 mV threshold

-Aluminum Foam X strips H.V. -Insulator -Graphite **Bakelite** 2 mm Gas  $2 \,\mathrm{mm}$  $2 \,\mathrm{mm}$ Bakelite ← Graphite Insulator ) spacers Foam Y strips Aluminum -1 mm Cosmic rate 0.1 Hz/cm<sup>2</sup>

**Max rate ~ 5-10 Hz/cm<sup>2</sup>** 

10

### Summer sunny summer...



# Linseed oil troubles.

"It is a mixture of the glycerides of linolenic, linoleic, oleic, stearic, and palmitic acids with high degree of unsaturation of its fatty acid radicals."

#### R-COOH = Fatty Acid =

Test RPCs were subjected to a heating cycle at 36° C in a test stand.

- Permanent changes in both current and efficiency were seen
- Large oil drops spanning the 2 mm gap were found.



12

## Linseed Oil



Have not been able to remove any barrel RPCs

### Local spikes!!!

Henry Band - U. of Wisconsin

# Gluey, lower resistivity

### **Removed in Nov2000**

### **Forward Endcap Photos**







Well cured, dry linseed oil



Oct. 24, 2003

Henry Band - U. of Wisconsin Gianluca Cavoto

# Voltage divider effect

### **BaBar RPC chamber simple Ohmic model**

J. Va'vra, <u>http://www.slac.stanford.edu/~jjv/activity/babar\_rpc\_my\_summary.pdf and</u> <u>http://www.slac.stanford.edu/~jjv/activity/babar\_rpc\_my\_summary\_1.pdf</u>

- J.Va'vra  $V_{PS}$   $V_{GAP}$   $V_{Bisselit}$   $R_{Bisselit}$   $R_{Bisselit}$   $R_{Bisselit}$  Equivalent static model:  $V_{PS}$   $V_{CAP}$   $V_{CAP}$   $V_{CAP}$   $V_{CAP}$   $V_{CAP}$   $V_{CAP}$   $V_{CAP}$  $V_{CAP}$
- Lexan button: ρ<sub>v</sub> ~ 1.7x10<sup>11</sup>Ω cm
- Bakelite: ρ<sub>v</sub>~2.5x10<sup>11</sup> Ω cm
- Equivalent resistance: R<sub>Bakelite</sub> = ρ<sub>V</sub> (t<sub>gap</sub>/Area) ~ 5x10<sup>8</sup> Ω R<sub>Lexan button</sub> = ρ<sub>V</sub> (t<sub>gap</sub> / Area) ~ 3.4 x 10<sup>11</sup> Ω.

  For these conditions:

$$V_{GAP} = V_{PS} / (1 + 2R_{Bakelite} / R_{Lexan spacer}) \sim V_{PS}$$

- To satisfy  $V_{GAP} \sim V_{PS}$ , we must have:
  - $R_{Lexan \, spacer} >> R_{Bakelite}$ .

 $V_{GAP} \sim 0.85 \text{ x } V_{PS}$ .

For example, a factor of 60 increase in R<sub>Bakelite</sub> gives:

5

If (*locally/globally*)  $\rho_V$  increases

or

If current too high (*high rate*)  $\rightarrow V_{GAP} = V_{PS} - R_{bakelite}I_{dark}$  $V_{GAP}$  below streamer threshold!!!

14

# No life without water

н +



Phenol

Formaldehyde



Phenol = Benzene-OH =  $\bigcup_{n=1}^{\infty}$ 

 $\begin{array}{l} \text{Benzene-OH + field -> Benzene-O^{\text{-}} + H^{\text{+}}} \\ \text{Benzene-O^{\text{-}} + H_2O -> Benzene-OH + OH^{\text{-}} \bullet} \\ \text{OH^{\text{-}} delivers the charge at anode} \\ \text{2OH -> H_2O + O_2 at anode} \end{array}$ 

Similar model for linseed oil, fatty acids and water

Gianluca Cavoto

Model of conductivity:

ÓН

Bakelite

 $H_2O$ 

A current in the Bakelite is modulated by a presence of water and Phenol impurities.

### Charge flowing through the detector depletes it of water!



15

# Graphite vaporization: a dead end...

 $O_2$  to the anode

#### Graphite oxidizes ("burns") and produces CO<sub>2</sub> gas.

Nominal graphite  $\rho_{S} \sim 100 k \Omega / \Box$ Cathode side:  $120 k \Omega / \Box$ Anode side:  $> 100 M \Omega / \Box$  Graphite was repainted on a small section and connected to HV

Efficiency was restored proving that the inner gap was working

Good graphite

Permanent damage

Threshold effect after 0.2-0.6C/cm<sup>2</sup>



Vaporized graphite

## Barrel declining efficiency



# Muon identification algorithm

- Improved tracking through the IFR with a KalmanFilter-based algorithm
  - Takes into account properly multiple scattering and position resolution



Neural Network technique to use all the available information  $(\lambda_{expected}, \lambda_{measured}, track \ continuity)$ Gianluca Cavoto

# Barrel declining eff vs µID

All RPCs

 $RPCs \ge 10\%$ 



Gianiuca

19

## Original production problems

#### Original RPCs exhibit many failure modes

- Nearly all RPCs show a slow decline in efficiency (linseed oil, debrii?)
- Many also suffer a complete efficiency loss in several months (graphite?)
- Correlated with position in gas chain -barrel
  - 0 1 <eff> = 55%
  - 0 2 <eff> = 43%
  - o 3 <eff> = 30%
  - 47% of barrel chambers leak, efficiency ~8% lower than above

#### No practical remediation of damaged chambers possible

Barrel layers: 3 RPC module, gas flow from fwd to bwd (1 to 3)

# R&D during 2000

In Nov 2000 24 new modules installed in FWD EC as test in situ.

- Made with a new oiling procedure
  - Single coating, linseed oil/n-pentane 40/60

Declining efficiency

Raised HV working point



- Chemical analysis of linseed oil from damaged RPC:
  - Phthalates (from PVC tubes used in gap coating)
  - They prevent polymerization of linseed oil.
- Need to review procedures at production stage

In 2001 decision to replace the entire Forward Endcap

Siamuca Cavolo

# Nov 2000 RPC

Bulk current (I @ 5.0kV) Single rate with cosmics





Ageing effects increasing with Q<sub>int</sub>

Total Q<sub>int</sub> 15-75mC/cm<sup>2</sup> (2 dead RPCs)

In test-stand debris and impurities found close to local discharge point. Better QA in production!



Gianluca Cavot damaged area



# Forward Endcap 2002 upgrade



# QA/QC at General Technica

#### Checks during assembly

- Clean assembly room
- Clean bakelite slabs, graphite painting, sampling graphite resistivity
- Spacer gluing (temperature and humidity monitored)

### Linseed oil mixture

- Periodic chemical analysis, sampling polymerization on sacrificial chambers (12 gaps)
- Gas tightness test
  - Digital first bubble test

### Unglued spacer identification

Manual push test



Gas inlet made by a corner piece



## Checking spacers...



Sample spacer glued at the same time as all the gap spacers.



Trying to remove it..

Wait before moving assembled gap!

25

# Oiling technique

### Single coating

- Fill a 12-20 gaps raising the tank
- Slowly lowering the tank (3hours)
- Filtering oil (remove dust accumulated in draining)



Complete polymerization achieved in 36 hours by flushing air (@40° C)



# Leakage and Push







27



### Good if $<2\mu A @ 7 kV$



28

# Cosmic tests

29

### After complete RPC assembly (strip planes glued)

• All the RPC tested with cosmics at GT before shipping



Gas tightness, efficiency plateau, radiography test at SLAC All RPC >95% efficient with (cosmic) single rate ~0.1Hz/cm2 before installation

## New BaBar Forward EndCap

• 16 layers \* 6 RPC \*2 gap =**192 gaps** 



30

Gianluca Cavoto

## **Operations in BaBar**

RPC installed in summer 2002

• Operated in BaBar in Run3 (since Nov2002) Layer 14 hit map



Behind 11cm Fe

 $10^3 = 1\%$  occupancy

Machine background worse than expected Layer 15/16 not operated routinely *layer 13/14 average rate ~ 5-10Hz/cm<sup>2</sup>* <sub>Gianluca Cavoto</sub>

## Improved µID



Largest effect due to increase in absorber. (Layer15-16 not used, still room for improvement)

Data control samples:  $e^+e^- \rightarrow \mu\mu\gamma$ , pions from  $\tau \rightarrow 3\pi v_{\tau}$ 



### **Occupancy plots (FWD ec Layer 1)** Internal layer (1-12) 0.2-1 Hz/cm<sup>2</sup> (middle gaps hotter) **RPC** hot LER Only Run 44268 spot $10^3 = 1\%$ occupancy HER Only Run 44257 Collision Run 44200 10 2 -28 -200 .100 0 100 300 1 Laver I - I IDCluster Layer I - I IDCluster 100 ∟300. Layer 1 - I IDCluster

Internal layers background dominated by beam-beam background Gianluca Cavoto



# FWD EC efficiency history

Evaluated with collision data  $(e^+e^- \rightarrow \mu^+\mu^- events)$ 

![](_page_34_Figure_2.jpeg)

# Shielding necessary

![](_page_35_Figure_1.jpeg)

High rate, low eff.

Based on collision run

- Eff = .87 @ 1.5 Hz/cm2
- Eff = .65 @ 9 Hz/cm2
- Eff = .50 @ 15 Hz/cm2

![](_page_35_Picture_7.jpeg)

## **On-line monitoring**

- Single rate, current, gas flow continuously monitored

![](_page_36_Figure_2.jpeg)

Ability to spot operational problems and appearance of ageing effects.

37

## Integrated charge

![](_page_37_Figure_1.jpeg)

38

## Plateaux stability

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

### Cosmic data

![](_page_38_Figure_4.jpeg)

No visible drift so far...

39

## **Increased Dark Currents**

![](_page_39_Figure_1.jpeg)

- The dark currents with cosmics have increased in time for some chambers
  - Collision
  - Cosmic
  - Bulk contribution
- Most of increase is in the bulk current

Bulk I: I @4.5kV

![](_page_40_Figure_0.jpeg)

Dark currents differences: I(6) - I(5) I(4) - I(3) I(2) - I(1)10 5 5

![](_page_40_Figure_2.jpeg)

One single gas circuit for 2 gaps

Gas mix in the downstream gap likely to be different

In Run4 gas flow raised to 8 vol/day for RPC seeing high background

ЧA

-5 L

2

Run3

8

Month of run

## Single rate in cosmics

![](_page_41_Figure_1.jpeg)

![](_page_41_Figure_2.jpeg)

Gap on the horizontal plane show an increase in single rate.

Worrisome... (no exponential behaviour at least)

![](_page_41_Picture_5.jpeg)

## Increased Singles rate

![](_page_42_Figure_1.jpeg)

- Summing the 2D occupancy for the inner layers shows that the additional noise occurs in regions of higher background (inner ring) and in the 2<sup>nd</sup> RPC of the gas chain
- Random hot spots are more likely in the 2<sup>nd</sup> RPC
- Increase in 2<sup>nd</sup> RPC larger when downstream of higher background region

![](_page_42_Figure_5.jpeg)

![](_page_42_Picture_6.jpeg)

### Evidence of bakelite resistance changes?

![](_page_43_Figure_1.jpeg)

## **Recent Operational changes**

- Raised gas flows to 8vol/day in middle RPCs after Run 3
- During Christmas 03 shutdown reversed gas flows in all FWD EC RPCs

![](_page_44_Picture_3.jpeg)

![](_page_45_Figure_0.jpeg)

### Layer 14 Backgrounds

![](_page_46_Figure_1.jpeg)

![](_page_46_Picture_2.jpeg)

### RPC Efficiency from Cosmics

![](_page_47_Figure_1.jpeg)

Gianluca Cavoto

**48** 

### Cosmic rays with and without LER beam

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_2.jpeg)

### **Radiography of FWD EC with** $\mu^+\mu^-$

![](_page_49_Figure_1.jpeg)

### Initial Humidity Measurements

- First preliminary measurements
  - Dry Gas in input ~ 0% RH
    - (SLAC average environmental RH ~30%)
  - Gas in output 25-28% for FET14
- We are removing water from the RPCs Building a system to deliver 30-50% RH gas

Need to be tested carefully in test-stand!

We could worsen things though!!!

![](_page_50_Picture_8.jpeg)

# Measuring HF production

- LHC exp reports production of HF in RPC operated in streamer mode. Believed to be a cause of RPC degradation.
- Want to measure it in exhaust gas line from FWD RPC (layer14)
  - Line already installed, buying components for exp'l setup

![](_page_51_Figure_4.jpeg)

**52** 

## Conclusions

### - RPCs in BaBar have been a troubled life.

- Original version RPCs average Barrel RPCs efficiency is now 40% (40% RPCa have zero eff) but μID basically preserved
- Many failures, some related to bad construction, some to bad operations.
  - BaBar will replace 2 sextants with LST this summer.
- 2002 RPCs still in good shape
  - Suffer from high machine background, collision efficiency reduced in few cases.
    - Closely monitoring operational parameters (rate, currents)
  - For few RPC Q<sub>int</sub> ~50 mC/cm<sup>2</sup>, more than Nov2000 RPCs but efficiency with cosmics is unchanged (~95%)

They won't die for graphite vaporization in BaBar's lifespan

If properly built and operated, RPCs properly work

![](_page_52_Picture_11.jpeg)

This document was created with Win2PDF available at <a href="http://www.daneprairie.com">http://www.daneprairie.com</a>. The unregistered version of Win2PDF is for evaluation or non-commercial use only.