Shower Reconstruction for the ANTARES Neutrino Telescope

- Cosmic Radiation
- Cosmic Neutrinos
- The ANTARES Neutrino Telescope
- Reconstruction of Showers

Bettina Hartmann Universität Erlangen-Nürnberg Physikalisches Institut I

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Cosmic Radiation I

- for high energies: mainly p, α
- *E* < 1 TeV: detected by satellites / balloons
- E > 1 TeV: air shower arrays (e.g. KASCADE, AGASA, Pierre-Auger)

Cosmic Radiation II

Bettina Hartmann, Universität Erlangen-Nürnberg

Cosmic High Energy Neutrinos

Production:

accelerated protons interact with interstellar matter, CMB or synchrotron radiation

$$p + p/\gamma \rightarrow \pi^{\pm} + X$$
$$\hookrightarrow \mu + \nu_{\mu}$$
$$\hookrightarrow e + \nu_{e} + \nu_{\mu}$$

 $\nu_e: \nu_\mu: \nu_\tau = 1:2:0$; neutrino oscillations $\rightsquigarrow \nu_e: \nu_\mu: \nu_\tau \approx 1:1:1$

- + not deflected in magnetic fields \Rightarrow identification of source
- + proof for hadron acceleration
- hardly interacts with matter
 - + large range
 - – hard to detect \Rightarrow need to instrument huge target mass

Physics with Neutrino Telescopes

- neutrino astronomy: identification of neutrino point sources: SN remnants, GRBs, AGNs, ...
- diffuse cosmic neutrino flux
- search for Cold Dark Matter: WIMPs
- search for exotics, discovery of unknown physics...

Background: Atmospheric Neutrinos

- produced when high energy cosmic particles interact with atmosphere
- from all directions
- irreducible background, but flux approximately known
- \Rightarrow signature of cosmic neutrinos:

direction (point sources) or energy spectrum (diffuse flux)

Detection Principle

 neutrino interacts with matter (rock/water/ice)
 production of charged particles (muons, hadrons, electrons, taus)
 charged particles radiate
 cerenkov photons
 the water/ice
 photons detected
 photo multipliers

Čerenkov angle $\Theta_C = \arccos(1/\beta n)$ in seawater:

 $\Theta_C \approx 42^\circ$

use large transparent masses in nature ⇒ lakes, ocean, antarctic ice earth shields all particles except neutrinos

Neutrino Telescopes world wide

ANTARES

ANTARES: Astronomy with a Neutrino Telescope and Abyss environmental **RES**earch

• collaboration of 20 institutes 🕆 TOULON HYÈRES 57 from 6 European countries SEYNE S-MER • members from particle physics, Levar ILES D'HYÈRES astronomy, oceanology 43[°]00 Moscow Port-Cros Amsterdam Porquerolles 200 m Erlangen 2200 m **IFREMER** cable Berlin Bong Brest Mulhouse Strasbourg Paris Saclay 42°50 lienn FRANCE **ANTARES** Bologna Marseille (2400m deep) Roma Madrid Rome IFREMER Pisa 2400 m 10km Toulon València Catania 42°40 Genova

0

5°50

6°00

6°10

Bettina Hartmann, Universität Erlangen-Nürnberg

Villefranche-sur-Mer

6°20

Ν

ANTARES Layout

Bettina Hartmann, Universität Erlangen-Nürnberg

The ANTARES Optical Modules

ANTARES Construction: Milestones

- October 2001: deployment of deep sea cable
- December 2002: deployment of Junction Box

 March - July 2003:
 Prototype Sector Line and Mini Instrumentation Line

Current Status of ANTARES

Two test lines deployed March 2005 and connected April 2005 MILOM:

- Mini Instrumentation Line + (3+1) Optical Modules
- Calibration and Monitoring, e.g.
 - light attenuation
 - sea current
 - seismometer
- taking data in ns resolution!

Line 0:

- (almost) full length line, 23 storeys with 3 glass spheres each
- no electronics
- used for structural and cable tests

 \Rightarrow to be recovered soon

Deep Sea Optical Background

Rates measured with Prototype Sector Line March - July 2003

Two components:

1. baseline:

- isotropic background
- caused by ⁴⁰K decays and bacteria bioluminescence
- mainly single photons
- rate ~ 60 kHz to ≈ 200 kHz per OM

2. bursts:

- caused by larger sea organisms
- aperiodic, localised
- MHz rates in nearby OMs
- affected OMs not usable for reconstruction

From Signal to Event

Bettina Hartmann, Universität Erlangen-Nürnberg

Event Types in ANTARES

• $\nu_{\tau} + N \rightarrow \tau + \text{shower} \rightarrow \nu_{\tau} + \text{shower} \Rightarrow$ "Double Bang"

efficiency small for this event type

• Glashow resonance: $\bar{\nu}_e + e^- \rightarrow l + \nu_l$ at $\bar{\nu}_e \approx 6 \text{ PeV}$

Reconstruction of Showers

Difficulty:

- ANTARES optimised for the detection of muon tracks
- distance between lines 60 75 m, between storeys 14.5 m; hadronic showers: length \approx 10 m
 - \Rightarrow "point-like" events in the detector

Benefits:

- Detection of NC processes only possible with shower reconstruction
- additional event class! ⇒enhanced sensitivity of detector
- chance to look upwards
- improvement of reconstruction of contained CC ν_{μ} events hadronic shower can be taken into account as well

Event Sample and Reconstruction Scheme

generated events (Monte Carlo Simulation):

- 5000 NC events inside detector volume
- primary energy between 100 GeV and 10 PeV, energy spectrum E^{-1}
- background: 60 kHz noise per OM

Reconstruction Scheme:

Hit selection \Rightarrow noise suppression

Reconstruction of position

Prefit of direction and energy

Fit of direction and energy

Cut away badly reconstructed events

Noise Suppression

- global condition:
 causal connection to the largest hit in the event
- local condition: another hit on same storey within 20 ns
 or amplitude ≥ 3 photoelectrons (p.e.)
- avoid accidental
 background coincidences: another hit on same line
 or amplitude ≥ 1.5 p.e.

Reconstruction of Position: Reconstruction Principle

Triangulation

from position and timing of hits:

- consider shower as point like
- require hits in 5 OMs in 3 lines
- distance shower OM_i:

$$d_i^2 = (x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2$$

= $c^2/n^2(t - t_i)^2$

• for all N hits: compare i and i + 1 $\Rightarrow N - 1$ linear equations in $\vec{x} = (x, y, z, t)$ \Rightarrow solve algebraically

Reconstruction of Position: Results

resolution of 9 ns in time, 4 m in space \Rightarrow size of shower sufficient for use in energy, direction reconstruction events at detector edge sometimes not reconstructed well

Bettina Hartmann, Universität Erlangen-Nürnberg

Prefit of Direction and Energy

Direction:

- muons: $\theta_C = \arccos(1/n) \approx 42^\circ$
- showers: transverse momenta of secondaries \Rightarrow broad distribution
- \bullet assume 42° as photon radiation angle for prefit
- calculate direction algebraically (as for position)

Energy:

- \bullet total photon number of shower \propto shower energy
- in the following: photon number as measure for energy
- from hit amplitude n_i in OM_i , estimate photon number N_i of event
- take median as prefit value

\Rightarrow start fit!

Reconstruction of Direction and Energy

Results for Direction

total angular error α :

$$\alpha = \arccos(\frac{\vec{d_{\text{Neutrino}}} \cdot \vec{d_{\text{reco}}}}{|\vec{d_{\text{Neutrino}}}| \cdot |\vec{d_{\text{reco}}}|})$$

- narrow peak of well reconstructed events!
- but also some misreconstructed events
- identify and discard with cuts or improve minimisation!

Results for Energy

Description of the Cuts

- prefit energy vs. fit energy: cut on $|\log(E_{\text{Prefit}}) - \log(E_{\text{Fit}})| < 0.5$ (0.5 = resolution of prefit)
- cut on likelihood value (see figure)
- select events reconstructed inside instrumented volume

Results after the Cuts

Bettina Hartmann, Universität Erlangen-Nürnberg

Likelihood Distribution: Remaining Problems

Summary and Outlook

- Neutrino astronomy important for astrophysics
- ANTARES experiment under construction, to be completed 2007
- reconstruction of showers:
 - first algorithm for ANTARES shower events
 - enhances ANTARES' sensitivity for cosmic neutrinos
 - algorithm for combined reconstruction of shower direction and energy developed
 - results after cuts: angular resolution 4.7°, factor 1.27 in energy
- problems of fit to be solved
- repeat reconstruction with more statistics (mass production)
- include effect of bursts
- investigate effect of atmospheric muon background

Shower / Muon Range

Correlation Energy - Angular Error

