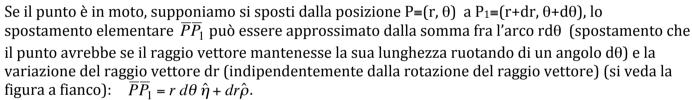
Moto piano in coordinate polari

Prendiamo in esame il moto di un punto materiale su un piano. In ogni istante la posizione può essere espressa tramite le sue coordinate cartesiane $P=(P_x, P_y)$ oppure tramite le coordinate polari $P=(r, \theta)$ dove:

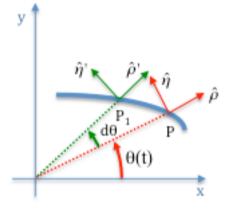
r = "raggio vettore" = distanza dall'origine del Sistema di Riferimento,

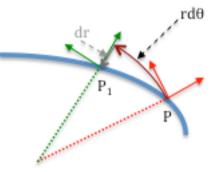
 θ = "anomalia" = angolo fra il raggio vettore e l'asse delle x. Tale angolo si considera crescente se durante il moto la rotazione del raggio vettore avviene in senso antiorario

Ovviamente è possibile passare dalle coordinate cartesiane a quelle polari, e viceversa, tramite semplici relazioni $x=r\cos\theta$, $y=r\sin\theta$



Ad un analogo risultato si può arrivare esprimendo la variazione della posizione $\overline{PP_1}$ mediante la $\overline{PP_1} = d(\overline{OP}) = \frac{d(\overline{OP})}{dt}dt = \frac{d\overline{r}}{dt}dt = \frac{d(r\hat{\rho})}{dt}dt = \left(\frac{dr}{dt}\hat{\rho} + r\frac{d\hat{\rho}}{dt}\right)dt$, quindi ricordando che $\frac{d\hat{\rho}}{dt} = \frac{d\theta}{dt}\hat{\eta}$ si ottiene $\overline{PP_1} = \left(\frac{dr}{dt}\hat{\rho} + r\frac{d\theta}{dt}\hat{\eta}\right)dt$.





La velocità del punto materiale quindi $\vec{v} = \frac{d\vec{r}}{dt} = \left(\frac{dr}{dt}\hat{\rho} + r\frac{d\theta}{dt}\hat{\eta}\right) = v_r\hat{\rho} + v_\theta\hat{\eta}$ è la somma di una "velocità radiale" $v_r = \frac{dr}{dt}\hat{\rho}$ ed una "velocità tangenziale" $v_\theta = r\frac{d\theta}{dt}\hat{\eta}$.

Meccanica - A. A. 2018-2019

In generale durante il moto possono variare tutte le quantità fino ad ora utilizzate per descrivere la posizione e la velocità: r=r(t), $\theta=\theta(t)$, ed anche $\hat{\rho}=\hat{\rho}(t)$, $\hat{\eta}=\hat{\eta}(t)$.

Possiamo ora esprimere l'accelerazione del punto materiale derivando l'espressione della velocità:

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} \left(\frac{dr}{dt} \hat{\rho} + r \frac{d\theta}{dt} \hat{\eta} \right) = \frac{d^2r}{dt^2} \hat{\rho} + \frac{dr}{dt} \frac{d\hat{\rho}}{dt} + \frac{dr}{dt} \frac{d\theta}{dt} \hat{\eta} + r \frac{d^2\theta}{dt^2} \hat{\eta} + r \frac{d\theta}{dt} \frac{d\hat{\eta}}{dt}$$

Ricordiamo ora che (si faccia riferimento alla figura a fianco):

$$\begin{cases} \frac{d\hat{\rho}}{dt} = \lim_{\Delta t \to 0} \frac{\Delta \hat{\rho}}{\Delta t} = \frac{d\theta}{dt} \hat{\eta} \\ \frac{d\hat{\eta}}{dt} = \lim_{\Delta t \to 0} \frac{\Delta \hat{\eta}}{\Delta t} = -\frac{d\theta}{dt} \hat{\rho} \end{cases}$$

per cui sostituendo nell'espressione dell'accelerazione abbiamo:

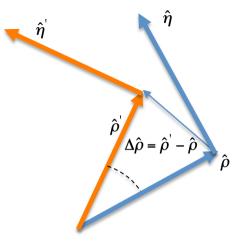
$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2r}{dt^2}\hat{\rho} + \frac{dr}{dt}\frac{d\theta}{dt}\hat{\eta} + \frac{dr}{dt}\frac{d\theta}{dt}\hat{\eta} + r\frac{d^2\theta}{dt^2}\hat{\eta} + r\left(\frac{d\theta}{dt}\right)^2(-\hat{\rho}) = \left(\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right)\hat{\rho} + \left(2\frac{dr}{dt}\frac{d\theta}{dt} + r\frac{d^2\theta}{dt^2}\right)\hat{\eta}$$

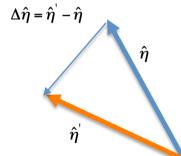
possiamo quindi riconoscere nel vettore accelerazione una componente "radiale":

$$\vec{a}_r = \left(\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right)\hat{\rho}, \quad \text{ che nel caso del moto circolare uniforme (r=cost) si riduce ad } \vec{a}_r\big|_{r=\cos t} = -r\left(\frac{d\theta}{dt}\right)^2\hat{\rho} = -r\omega^2\hat{\rho}$$

ed una componente "tangenziale":

$$\vec{a}_{\theta} = \left(2\frac{dr}{dt}\frac{d\theta}{dt} + r\frac{d^2\theta}{dt^2}\right)\hat{\eta}$$





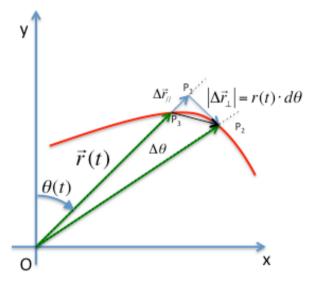
Meccanica - A. A. 2018-2019

Utilizziamo ora l'espressione ottenuta per l'accelerazione "tangenziale" per capire che caratteristiche ha un moto per il quale

$$\vec{a}_{\theta} = \left(2\frac{dr}{dt}\frac{d\theta}{dt} + r\frac{d^2\theta}{dt^2}\right)\hat{\eta} = 0$$

Abbiamo cioè $2\frac{dr}{dt}\frac{d\theta}{dt} + r\frac{d^2\theta}{dt^2} = 0$ $\frac{d\theta}{dt} = \omega$ e quindi

 $2\frac{dr}{dt}\omega+r\frac{d}{dt}\frac{d\theta}{dt}=0 \rightarrow 2\frac{dr}{dt}\omega+r\frac{d\omega}{dt}=0$ che comporta che la quantità $r^2\omega=$ costante. Infatti porre $\frac{d}{dt}(r^2\omega)=0$ implica $2r\frac{dr}{dt}\omega+r^2\frac{d\omega}{dt}=0=r(2\frac{dr}{dt}\omega+r\frac{d\omega}{dt})$. Scartando la soluzione banale r=0 si vede che assumere $a_\theta=0$ comporta $r^2\omega=cost$. Vediamo di interpretare ulteriormente tale risultato.



Dalla figura possiamo vedere che l'area contenuta fra i vettori $\vec{r}(t)$ ed $\vec{r}(t+\Delta t)$ e la traiettoria è approssimabile con l'area compresa nel triangolo OP_1P_2 . Tale area a meno di infinitesimi di ordine superiore¹ è data da $\frac{1}{2}2r(t)\sin\left(\frac{\Delta\theta}{2}\right)*r(t)=r^2(t)\frac{\Delta\theta}{2}$.

La velocità di variazione dell'area nel tempo Δt è data da $\frac{r^2(t)^{\frac{\Delta \theta}{2}}}{\Delta t}$. Possiamo calcolare la "velocità areolare istantanea" come

$$\lim_{\Delta t \to 0} \frac{r^2(t)^{\frac{\Delta \theta}{2}}}{\Delta t} = 2 \lim_{\Delta t \to 0} \frac{r^2(t)^{\frac{\Delta \theta}{2}}}{\frac{\Delta \theta}{2}} \frac{\Delta \theta}{\Delta t} = 2r^2(t)\omega.$$

Imponendo quindi la condizione di accelerazione tangenziale nulla si ottiene che la "velocità areolare" è costante.

¹ In effetti l'area cha abbiamo calcolato stima per eccesso l'area racchiusa fra r(t), $r(t + \Delta t)$ e l'arco di cerchio P_2P_3 , per una stima migliore dovremmo sottrarre l'area del triangolo $P_1P_2P_3$ che ha come lati $P_1P_2=2r(t)\sin\left(\frac{\Delta\theta}{2}\right)$ e $P_2P_3\sim P_1P_2\sin\Delta\theta$ ottenendo un infinitesimo di ordine superiore che al tendere di Δt a 0 tende a zero piu' rapidamente.