Lessons 19 and 20

- First results from High Energy Astrophysical Neutrino Telescope (like BAIKAL, AMANDA, ANTARES, IceCube, KM3NeT...)
- Multimessenger searches: the GW-v connection
- Other physics items of study for Neutrino Telescopes
 - Neutrino oscillations
 - Neutrino mass hyerarchy
 - Indirect search for Dark Matter
 - •
- New techniques for larger detectors for higher energies (acoustic detectors, radio detectors)

Multi-messenger approach: Gravitational Waves and ν

Joint collaboration with GW interferometers VIRGO (Italy) & LIGO (USA)

ANTARES KM3NeT SL DL 12L KM3NoT VIRGO VSR1 VSR1 VSR2 VSR3 Advanced VIRG LIGO S5 S5 Advanced LIGG Advanced LIGG	[2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
VIRGO VSR1 VSR2 VSR2 VSR3 Advanced VIRG LIGO S5 S5 Advanced LIGO	ſ	ANTARES KM3NeT	5L)L	1	2L					КМЗ	NoT
LIGO S5 S5 Advanced LIGO	İ	VIRGO	VSR1		VS R2	VS R3					Advance	d VIRGO
	ĺ	LIGO	S5			S6					Advance	ed LIGO

High Energy Neutrino Astrophysics

- Possible common sources: (GRB-core collapse into BH; SGR powerful magnetars; hidden sources)
- Sky regions in common
- Expected low signals, coincidences increase chances of detection
- GW & HEN is a must
- First analysis completed with 2007 concomitant dataset: no coincidence found -> exclusion distance on common GW/HEN possible sources: ANTARES & LIGO & VIRGO Coll., JCAP 06 (2013) 008
- Analysis of 2009-2010 dataset ongoing

Dal Cosmo ci aspettiamo anche le onde gravitazionali

Interferometro di Michelson: due fasci di luce laser, provenienti dai due bracci, vengono ricombinati in opposizione di fase su un rivelatore di luce in maniera che, normalmente, non arrivi luce sul rivelatore. Un'onda gravitazionale varia la lunghezza dei "bracci". La variazione del cammino ottico, causata dalla variazione della distanza tra gli specchi che varia, produce un piccolissimo sfasamento tra i fasci e quindi un'alterazione dell'intensità luminosa osservata, proporzionale all'ampiezza dell'onda gravitazionale.

Interferometro Virgo, costruito a Càscina, nei pressi di Pisa.

ANTARES sensitivity

For binary neutron star systems of (1.35-1.35) M_{Sun} and black hole-neutron star systems of (5-1.35) M_{Sun} typical distance limits are 5Mpc and 10Mpc respectively.

For the sine-Gaussian waveforms with $E_{GW} = 10^{-2} M_{sun} c^2$ we find typical distance limits between 5Mpc and 17Mpc in the low-frequency band and of order 1Mpc in the high-frequency band.

For other E_{GW} the limits scale as $D_{90\%} \propto (E_{GW}/10^{-2} M_{Sun} c^2)^{1/2}$. For example, for $E_{GW} = 10^{-8} M_{Sun} c^2$ (typical of core-collapse supernovae) a signal would only be observable from a Galactic source.

Febbraio 2016: annunciata la prima osservazione di onda gravitazionale, GW150914

Avvicinamento, e mescolamento di due "buchi neri": la rivelazione dell'onda gravitazionale così generata ha aperto la strada ad una nuova epoca di osservazioni astronomiche A.A. 2020-21 Prof. Antonio C

Il primo evento "GW" osservato

L'apparato LIGO è composto da due interferometri in due distanti località. GW150914 è stata osservata in contemporanea dai due interferometri.

ANTARES Multi-messenger program v follow-up of GW sources - 1

3 alerts sent by LIGO during the run 01 (2015/09 \rightarrow 2016/01):

GW150914: merging of 2 BHs (M= $36/29 M_{Sun} - 410 Mpc - 5.1\sigma$) LVT151012: merging of 2 BHs (M= $23/13 M_{Sun} -1000 Mpc - 1.7\sigma$) GW151226: merging of 2 BHs (M= $14/7 M_{sun} - 440 Mpc -> 5\sigma$)

No neutrino candidates were found within ± 500 s around the GW event time (result in <24h after the alert) nor any time clustering of events over an extended time window of ± 3 months.

ANTARES Multi-messenger program v follow-up of GW sources - 3

The search for neutrinos over ± 3 months around the GW170104 alert was performed by looking for time clustering of up-going neutrino events. No events observed. The non-detection is used to constrain isotropicequivalent high-energy neutrino emission from GW170104 to less than 4 10⁵⁴ erg for a E⁻²

spectrum.

The most wanted object: NS-NS (NS-BH)

- A rich variety of phenomena in the case of NS-NS merging
- Neutrinos
- EM counterpart
 - Fast emission (GRB)

- Beamed emission
- Afterglow (X-ray,...)
- Kilonova (*)
 - Isotropic emission
 - Neutron-rich ejecta
- Radio emission
- UHECR's acceleration?

(*) By radioactive decay of heavy elements produce via r-process nucleosynthesis in the neutron-rich merger ejecta

17 August 2017: NS-NS cohalescence

A joint ANTARES/IceCube/LigoSC/Virgo/Auger analysis performed as "Neutrino follow-up" of GW170817

The location of this source was nearly ideal for Auger. It was well above the horizon for IceCube and ANTARES for prompt observations. IceCube and ANTARES sensitivity is then limited for neutrinos with $E_v < 100$ TeV.

- A short gamma-ray burst (GRB) that followed the merger of this binary system was recorded by the Fermi-GBM (E_{iso} ~4·10⁴⁶ erg) and INTEGRAL.
- Advanced LIGO and Advanced Virgo observatories reported GW170817
- Optical observations allowed the precise localization of binary neutron star inspiral in NGC4993 at ~ 40Mpc.
- ANTARES, IceCube, and Pierre Auger Observatories searched for high-energy neutrinos from the merger in the 10¹¹ eV–10²⁰ eV energy range.
- IceCube detector is also sensitive to outbursts of MeV neutrinos via a simultaneous increase in all photomultiplier signal rates.

A joint ANTARES/IceCube/LigoSC/Virgo/Auger analysis performed as "Neutrino follow-up" of GW170817

- No neutrinos directionally coincident with the source were detected within ±500 s around the merger time.
- Additionally, no MeV neutrino burst signal was
 detected (in IceCube) coincident with the merger.
- In Pierre Auger Observatory no inclined showers passing the Earth-skimming selection (neutrino candidates) were found in the time window ±500 s around the trigger time of GW170817.
- No neutrino found in an extended search in the direction within the 14-day period following the merger.
- GRB170817A's observed prompt gamma-ray emission, as well as Fermi-GBM's luminosity constraints for extended gamma-ray emission, are significantly below typical values for observed short GRBs. One possible explanation for this is the off-axis observation of the GRB.

The non observation of neutrinos allow to put limits both extended emission (EE) and prompt emission (scaled to a distance of 40 Mpc): limits are shown for the case of on-axis viewing angle (0) and selected off-axis angles to indicate the dependence on this parameter.

... not only neutrino astrophysics...

... also open problems in particle physics ...

- Dark Matter searches:
 - Neutralino annihilation in Sun, Earth, Galactic Center
- Magnetic Monopoles
- Particle acceleration mechanisms
- Multi-messenger searches
- Neutrino Oscillations
- Search for Sterile Neutrinos

. . .

Neutrino oscillations

We have calculated the "oscillation probability" in the case of 2 mass-eighenstates neutrinos(v_1 and v_2) considering the neutrinos eighenstates of weak interactions (v_{α} and v_{β}) as their linear combination

$$\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix}$$
Interaction of the neutrino as a "weak interaction" state v_{β}

$$I_{\beta} \qquad Propagation in space-time of the superposition of state $v_{1} e v_{2}$

$$I_{\beta} \qquad \nu_{\beta} \qquad \nu_{\beta} \qquad U_{1} \qquad U_{2} \qquad U_{\alpha} \qquad U_{\alpha}$$

$$I_{\alpha} \qquad V_{\beta} \qquad V_{\beta} \qquad U_{\alpha} \rightarrow \nu_{\beta} = \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \qquad \begin{pmatrix} e^{-i(E_{1}t-p_{1}L)} & 0 \\ 0 & e^{-i(E_{2}t-p_{2}L)} \end{pmatrix} \qquad \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right|^{2}$$

$$= \sin^{2}(2\theta) \cdot \sin^{2}\left(\frac{\Delta m^{2} \cdot L}{4E}\right) \qquad \text{with } \lambda_{osz} = \frac{4\pi \cdot E}{\Delta m^{2}} = 2.5 \, km \cdot \frac{E[GeV]}{\Delta m^{2}[e^{1/2}]}$$
relative phase: $\Delta \Phi(L, t) = \Delta Et - \Delta pL = \frac{\Delta m^{2} \cdot t}{E_{1}+E_{2}} + \Delta p \cdot \left(\frac{p_{1}+p_{2}}{E_{1}+E_{2}}t - L\right) \approx \frac{\Delta m^{2} \cdot t}{2E}$$$

Prof. Antonio Capone - High Energy Neutrino Astrophysics

Neutrino oscillations

 $sin^2(2\theta)$

 $P_{ee} = 1 - \sin^2 2\theta \cdot \sin^2 k \Delta m^2 L/E$ $k = 1.27 \text{ MeV/(m \cdot eV^2)}$

Atmosferic Neutrinos

The expected value of the relationship between different types of atmospheric neutrinos is

 $\nu_{\mu}/\nu_{e} \sim 2$

- $-\pi$ production and decay responsible for this value
- k production and decay contribute mainly to v_e flux

Prof. Antonio Capone - High Energy Neutrino Astrophysics

Atmospheric neutrino "deficit" measured

ANTARES: atmospheric v: results

Measurement of atmospheric neutrino oscillations

Two-flavour mixing approximation:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\theta_{32}) \sin^2\left(\frac{1.27\Delta m_{32}^2 L}{E_{\nu}}\right) = 1 - \sin^2(2\theta_{32}) \sin^2\left(\frac{1.27\Delta m_{32}^2 P_{Earth}\cos\Theta}{E_{\nu}}\right)$$

unknown measurable

world data: first oscillation minimum at $\cos \Theta = 1$, $E_v = 24$ GeV (typical μ range ≈ 120 m)

> Dedicated low-energy data sample:
 2007-2010 (863 active days)
 20 GeV < E_v < 100 GeV
 median angular resolution 0.8° (multi-line) → 3° (single-line)

First measurement of neutrino oscillation parameters by neutrino telescope ! (now also measured by IceCube)

> Underlines the potential of low-energy extensions of the detector:

→ORCA feasibility study for the measurement of neutrino mass hierarchy (KM3NeT)

\mathbf{v} masses and \mathbf{v} oscillations

Illustration of the mass spectra compatible with the data from neutrino oscillations; *left* normal hierarchy; *right* inverted hierarchy

	Normal (inverted)	Error (%)	Units
Δm^2	2.50 (2.46)	1.8	$10^{-3} \mathrm{eV^2}$
δm^2	7.37 (7.37)	2.4	$10^{-5} \mathrm{eV^2}$
$\sin^2 \theta_{13}$	2.17 (2.19)	4.8	10 ⁻²
$\sin^2 \theta_{12}$	2.97 (2.97)	6.2	10 ⁻¹
$\sin^2\theta_{23}$	4.43 (5.75)	16	10^{-1}
δ	1.39 (1.39)	19	π

Results of the global analysis of oscillation data

The analysis strategy

Maximization of a likelihood function based on the knowledge of the probability density functions, for the contribution of a background event, $B(\Psi, N_{hit}, \beta)$, or a signal event, $S(\Psi, N_{hit}, \beta)$, to the observed distribution.

$$\mathcal{L}(n_s) = e^{-(n_s + N_{\text{bg}})} \prod_{i=1}^{N_{\text{tot}}} \left(n_s S(\psi_i, N_{hit,i}, \beta_i) + N_{\text{bg}} B(\psi_i, N_{hit,i}, \beta_i) \right)$$

 N_{hit} = number of hit used for the track reconstruction

- β = the angular error estimate for the reconstructed track
- *N_{tot}* = tot. Number of reconstructed events

 n_s and N_{bg} are the number of signal and background events in the maximization procedure

 $B(\Psi, N_{hit}, \beta)$ obtained by the collected data randomising the right ascension of the event $S(\Psi, N_{hit}, \beta)$ obtained from MC simulation using the *v* energy spectra given by WIMPSIM

High statistics Pseudo-MC experiments are performed for each combination of M_{WIMP} , annihilation channel:

- with only background $n_s = 0 \rightarrow allow$ to evaluate $\mathcal{L}(0)$
- with a given value of simulated signal-like events $n_s > 0$. For each one of these pseudo-MC experiment a maximum likelihood analysis is performed searching for the value of n_s that maximize the likelihood. We then get $\mathcal{L}(n_{max})$

We can now evaluate a Test Statistic $TS = log_{10} \frac{\mathcal{L}(0)}{\mathcal{L}(n_{max})}$ that gives us a measure of the probability to assume a fluctuation of the background as a distribution of events with $n_s \neq 0$.

ANTARES: indirect search for DM, Background estimation

- \circ The background is estimated by scrambling the data in time
- A fast algorithm is used for muon track reconstruction (Astrop. Phys. 34 (2011) 652-662)
- \circ The effect of the visibility of the Sun is taken into account

All upward-going events from 2007-2008 data

Example of Sun tracking in horizontal coordinates

Indirect search for Dark Matter in the Sun

No excess observed over the expected background: evaluate 90% C.L. upper limits for expected signal

Prof. Antonio Capone - High Energy Neutrino Astrophysics

Indirect search for Dark Matter in the Galactic Centre

9 years of ANTARES data: 2007-2015 - ANTARES "observes" the G.C > 66% time Search performed for:

- 50 GeV/ $c^2 < M_{WIMP} < 100 \text{ TeV}/c^2$
- $WIMP + WIMP \rightarrow b\overline{b}, W^+W^-, \tau^+\tau^-, \mu^+\mu^-, \nu\overline{\nu}$

Distribution of measured angles between reconstructed tracks and the Galactic Centre (crosses). The red line describes what is expected from background event.

The integrated J-Factor, ${\sf J}_{\rm int}$, for a cone-shaped region centred on the G.C. with an opening angle Ψ

A. A. 2020-21

Ψ [dea]

Indirect search for Dark Matter

from WIMP annihilations in the Milky Way.

Indirect search for Dark Matter in the Earth

- WIMPS can be gravitationally bound to the Earth if $v_{WIMP} < v_{escape}^{Earth}$
- $v_{escape}^{Earth} \sim 14 \frac{km}{s}$; $v_{WIMP} = \overline{v}_{270}$ following a Maxwell-Boltzmann distr. with r.m.s. velocity 270 km/s \rightarrow only a small fraction of WIMPS captured on the Earth.
- WIMPS-nucleons collision described by spin-independent cross section σ_p^{SI} .
- Fe and Ni most abundant in the Earth \rightarrow effective capture for $M_{WIMP} \sim 50 \ GeV$.
- In the Earth the capture $(\Gamma_{c}(t))$ and annihilation $(\Gamma_{A}(t))$ rates would reach the equilibrium in $\tau \sim 10^{11}$ y >> Earth age $(t_{Earth} = 4.5 \ 10^{9}$ y)
- In these conditions:

Indirect search for Dark Matter in the Earth 6 years of ANTARES data: 2007-2012 25 GeV/c² < M_{WIMP} < 1 TeV/c² *WIMP* + *WIMP* $\rightarrow b\overline{b}, W^+W^-, \tau^+\tau^-, v\overline{v}$

No excess found over the expected background Limits on the WIMP-WIMP annihilation rate in the Earth Limits on the spin independent WIMP-nucleon cross-section

KM3NeT - Collaboration

KM3NeT Neutrino Telescope science scopes

Low Energy Medium Energy High Energy $MeV < E_v < 100 GeV$ $MeV < E_v < 100 GeV$ E_v > 1 TeV

- Neutrino Oscillations
- Neut. Mass Hierarchy
- Sterile neutrinos
- Neut. From Supernovae

ANTARES

- Monopoles

- Nuclearites

- Neutrinos from extraterrestrial sources
- Origin and production mechanism of HE CR

KM3NeT-ORCA

- Dark Matter search

KM3NeT-ARCA

KM3NeT Building Blocks

	ARCA	ORCA
Location	Italy – Capo Passero	France - Toulon
Detector Lines distance	90m	20m
DOM spacing	36m	9m
Instrumented mass	500Mton	5,7 Mton

KM3NeT phased implementation

Phase	Building Blocks		Number of DUs		Phisics Goals		
	ARCA	ORCA	ARCA	ORCA	ARCA	ORCA	
1	0.2	0.06	24	7	Proof of feasibility and first science results. Joined analysis with ANTARES.		
2.0	2	1	230	115	Study of the IceCube signal.	Determination of neutrino mass hyerarchy.	
3	6	1	690	115	All flavour neutrino astronomy.		

L.O.I. KM3NeT ARCA and ORCA:

- J. Phys. G43 (2016) n. 8, 084001
- arXiv: 1601.07459

KM3NeT-ARCA

ARCA detector

- ARCA: 2 blocks
- 115 strings/block
- 90m horizontal spacing
- 18 Optical Modules/strings
- 36m vertical spacing

ARCA (Phase 2) discovery potential for v diffuse fluxes

Tracks:

- up-going tracks θ_{zenit} >80°
- analysis based on Maximum Likelihood
- cuts on reconstruction quality parameter Λ
- cuts on N_{hits} (\rightarrow muon energy)

Cascades:

Containment cut on reconstructed vertex to remove atmospheric muons

Discovery at 5σ significance (50% probability) in less than one year (combined analysis)

ARCA (Phase 2) search for point-like Galactic sources

Hypothesis:

- Neutrino fluxes/spectra inferred from gamma-rays data
- S.R. Kelner, et al. PRD 74 (2006) 034018
- F.L. Villante and F. Vissani, PRD 78 (2008) 103007
- 100% hadronic source
- transparent source

ARCA (Phase 2) discovery potential for point-like sources

- Hypothesis:
- Neutrino spectra ~ E_v^{-2} .
- 3 years observation time

The Detector Unit deployment

Launcher vehicle

- rapid deployment
- autonomous unfurling
- recoverable

Deployment of the new Junction Box

The Detector Unit deployment

The Detector Unit deployment

The unfurling mechanism

374 ns 1: https://www.cppm.in2p3.fr/-coyle/EventFiles/New.Sel3.Run9332.2021.20.04.23.42.44.200.js Tue, 20 Apr 2021 23:42:44

EMINET

The future of Neutrino Astronomy in the Mediterranean Sea

Measurement of v Mass Hierarchy with atmospheric neutrinos

- Broad range of baselines (50 \rightarrow 12800 km) and energies (GeV \div 100 TeV)
- Oscillation signal enhanced, by MSW effect, at resonance energy in matter

We have seen before: "fast" oscillation due to Δm_{13} has first maximum for L/E~500 km/GeV

 \rightarrow for atmospheric v with $\langle E_{\nu} \rangle \sim 20$ GeV the maximum at L~10.000 km, the Earth diameter

Method - 1

- Proposed by Smirnov at Neutrino 2012 Conference JHEP 02, 082 (2013)
- Measuring the neutrino Mass Hierarchy with atmospheric neutrinos in a M-ton scale ice(PINGU)/deep sea(ORCA) Cherenkov detector at GeV energy
- MSW effect on up-going neutrinos passing through the Earth modify the oscillation pattern allowing to disentangle NMH-IMH
- Exploit v_{μ} , v_{e} oscillation $P_{\mu e} \leftrightarrow P_{e\mu}$ in atmospheric up-going events

Method – 2

Proposed by A. Yu. Smirnov at Neutrino 2012 Conference JHEP 02, 082 (2013)

Assuming oscillation with 3 neutrinos the $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\mu}$ transition probabilities, in vacuum ad assuming L=oscillation baseline, E_{ν} neutrino energy, can be written as:

$$P_{3\nu}(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E_{\nu}}\right)$$

$$P_{3\nu}(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - 4\cos^2\theta_{13} \sin^2\theta_{23}(1 - \cos^2\theta_{13} \sin^2\theta_{23}) \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right)$$

These transitions are functions of θ_{13} and Δm_{31}^2 but are not affected by the sign of Δm_{31}^2 . If we take into account matter effect (MSW) then the sign of Δm_{31}^2 plays a role. We know that the v_e can interact, via CC elastic scattering interactions with the electrons in matter and consequently acquire an effective potential $V_e = \pm \sqrt{2}G_F N_e$ where the +(-) sign is for v_e (\bar{v}_e).

$$\begin{split} P_{3\nu}^{m} \big(\nu_{\mu} \to \nu_{\mu} \big) &\approx 1 - \sin^{2} 2\theta_{23} \, \cos^{2} \theta_{13}^{m} \sin^{2} \left(\frac{(\Delta m_{31}^{2} + \Delta^{m} m^{2})L}{8E_{\nu}} + \frac{V_{e}L}{4} \right) \\ -\sin^{2} 2\theta_{23} \, \sin^{2} \theta_{13}^{m} \sin^{2} \left(\frac{(\Delta m_{31}^{2} - \Delta^{m} m^{2})L}{8E_{\nu}} + \frac{V_{e}L}{4} \right) - \sin^{4} \theta_{23} \, \sin^{2} 2\theta_{13}^{m} \sin^{2} \left(\frac{\Delta^{m} m^{2}L}{4E_{\nu}} \right) \end{split}$$

In the formula above appear the "effective neutrino mixing parameters in matter": $sin^2\theta_{13}^m \equiv sin^22\theta_{13} \left(\frac{\Delta m_{31}^2}{\Delta^m m^2}\right)^2 \text{ and } \Delta^m m^2 \equiv \sqrt{(\Delta m_{31}^2 cos 2\theta_{13} - 2E_\nu V_e)^2 + (\Delta m_{31}^2 sin 2\theta_{13})^2}$

Method - 3

$$\sin^2 \theta_{13}^m \equiv \sin^2 2\theta_{13} \left(\frac{\Delta m_{31}^2}{\Delta^m m^2} \right)^2 ; \ \Delta^m m^2 \equiv \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - 2E_\nu \mathbf{V}_e)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$$

In this formula V_e is positive for neutrinos and negative for antineutrinos. A resonance condition is met when the effective mixing is maximal, i.e $\Delta^m m^2$ is minimal.

This happens for the case of the NH (IH) in the neutrino (antineutrino) channel at the energy:

$$E_{res} \equiv \frac{\Delta m_{31}^2 \cos 2\theta_{13}}{2\sqrt{2}G_F N_e} \sim 7 GeV\left(\frac{4.5g \ cm^{-3}}{\rho}\right) \left(\frac{\Delta m_{31}^2}{2.4 \cdot 10^{-3} eV^2}\right) \cos 2\theta_{13}$$

For neutrinos passing trough the Earth mantle \rightarrow resonance at 7 GeV

For neutrinos passing trough the Earth core \rightarrow resonance at 3 GeV

\rightarrow ATMOSPHERIC NEUTRINOS WITH LONG-BASELINE EXPERIMENT ARE SENSIBLE TO ν MASS HIERARCHY

Density profile of neutrino path through the Earth

Experimentally will be determined by the zenith angle θ_{v}

Earth Model - colors show density in kg/dm^3

Method – 4 (the oscillogram)

The differences due to NH or IH are visible only for $E_v < 15$ GeV, this make the experiment very difficult in a Cherenkov neutrino detector

Oscillation probabilities $v_{\mu} \rightarrow v_{\mu}$ (blue lines) and $v_e \rightarrow v_{\mu}$ (red lines) as a function of the E_v for several values of the zenith angle (corresponding to different baselines). The solid (dashed) lines are for NH (IH). For neutrinos (left) and for antineutrinos (right).

Can a Cherenkov detector perform this measurement ?

What really matter is the capability to detect, and measure, low energy neutrino interactions: this is function of the "detector granularity"

Measurement of v Mass Hierarchy with atmospheric neutrinos

Cherenkov detectors like PINGU-ORCA have no magnetic field, no way to distinguish neutrino-antineutrino CC interactions. Neutrinos and antineutrinos are affected differently by the MSW effect but, since what is visible is the sum of μ^+ and μ^- , the effect risks to vanish ...

Measurement of v Mass Hierarchy with atmospheric neutrinos

Fortunately v_{atm} and \vec{v}_{atm} fluxes are different and the CC interaction cross sections for v and \vec{v} are also different: some effect of the passage into the Earth

10

40

What can be measured

Neutrino "oscillograms": the colour code gives the $v_{\mu} + \bar{v}_{\mu}$ event rate (in units of $\text{GeV}^{-1} \cdot \text{y}^{-1} \cdot \text{sr}^{-1}$ in log scale) as a function of the neutrino energy and cosine of the zenith angle, for a 1 Mton target volume. The left (right) plot shows the distribution for the normal (inverted) mass hierarchy. To extract the information about "which hierarchy" corresponds to reality the asymmetry variable can be defined as: $\mathcal{A} = \frac{N_{IH} - N_{NH}}{N_{NH}}$. But these "oscillograms" are built with MC variables. What is the effect of experimental resolutions ??

- Both muon & electron channel contribute to MH asymmetry
- Electron channel more robust against resolution effects

What probably will be seen

KM3NeT/ORCA Detector

Digital Optical Module (DOM)

- 31 x 3" PMTs (19 ↓, 12 ↑)
- Uniform angular coverage
- Directional information
- Single photon counting

Instrumentation density driven by main physics goal: neutrino mass hierarchy

- → ~few GeV neutrinos
- (\rightarrow ~80x denser than ARCA)

ORCA detector

ORCA is part of the KM3NeT research infrastructure

- A different detector with same technology, but Mton instead of Gton scale
- Few GeV signal => more compact detector (75 times denser!)

- 115 detection units, 20m spacing
- 18 Optical Modules (DOMs) per detection unit
- 6m vertical distance between DOMs
- 31 3" PMTs/DOM
- Instrumented volume 3.75 Mtons
- Estimated cost 40 M€
- (conservative)
- Geometry optimisation study ongoing

Motivations for a future Neutrino Acoustic and Radio Detector: detection techniques

- Predicted neutrino fluxes are very LOW
- → Cubic kilometer scale Cherenkov Detectors required for 10¹²<E_v<10¹⁷ eV
 - NATURAL TARGET (ice, water, rock ...), light attenuation (60m)
 - It will be very difficult to exceed $V_{eff} > 10 \text{ km}^3$
- Remember N_v ≈ N₀ E⁻², increasing the energy by a decade, the neutrino flux decreases by a factor ≈ 100 !!!
 - The detection of neutrinos with E_v>10¹⁷ eV will be possible with signal propagating in water/ice with attenuation lengths of scale O(1km)

Acoustic & Radio signals detection: a possible candidate

High Energy Neutrino Detection

(1-4 and 6) AGN models; *(5)* GZK; *(7)* GRB; *(8)* topological defects [adapted from Learned and Mannheim, Annu. Rev. Nucl. Part. Sci. 50 (2000)]

Prof. Antonio Capone - High Energy Neutrino Astrophysics

Acoustic detection principle/features

- Typical cylindrical volume over which the hadronic energy is deposited is ~10m long by a few centimetres wide
- The energy deposition is instantaneous with respect to the signal propagation
- Hence the acoustic signal propagates in a narrow "pancake" perpendicular to the shower direction in analogy with light diffraction through a slit

Basics of thermo-acoustic mechanism

A pressure wave is generated instantaneous following a sudden deposition of energy in the medium (neglecting absorption: O(10 km) at 10 kHz) Istantaneous deposition of heat through ionization $t_{denosition} \approx D/c \approx 10^{-7}$;10⁻⁸ sec Thermo-acoustic process: increase of temperature (specific heat capacity C_p), expansion (expansion coeff β) $t_{expansion} \approx 10^{-5} \text{ sec } >> t_{deposition}$ $\nabla^{2} \mathbf{p} - \frac{1}{\mathbf{c_{s}}^{2}} \ddot{\mathbf{p}} = -\frac{\beta}{\mathbf{c_{p}}} \cdot \frac{\partial \epsilon(\mathbf{r,t})}{\partial t}$ For a point like source (micropulse): Learned $p(r,t) \propto \frac{E_{0}\beta}{4\pi c_{0}} \frac{\partial}{\partial t} \frac{\delta\left(t - \frac{r}{c_{s}}\right)}{r}$ Bipolar pulse spherical expansion Inches For a shower heating a volume of matter (macropulse): Sum of pointlike sources: $\mathbf{p(r,t)} \propto \frac{\beta}{4\pi c_n} \frac{\partial}{\partial t} \int \frac{1}{\mathbf{r}} \varepsilon \, d\mathbf{V}$ wavefront and signal shape depend on the energy density distribution

Acoustic pulse amplitude in Salt, Water and Ice

Conversion of ionization energy into acoustic energy

	Med Sea	S.P. ice	NaCl
T [°C]	14°	-51°	30 °
<i>c_s</i> [m s ⁻¹]	1545	3920	4560
β [Κ-1]	25.5x10 ⁻⁵	12.5x10 ⁻⁵	11.6x10 ⁻⁵
C _P [J kg ⁻¹ K ⁻¹]	3900	1720	839
$\gamma = c_s^2 \frac{\beta}{C_p}$ Gruneisen coefficient	0.12:0.13	1.12	2.87

$$\boldsymbol{p}_{\text{max}} \approx \boldsymbol{E}_{\boldsymbol{v}} \times \frac{1}{4} \times \boldsymbol{\gamma} \approx 6 \cdot 10^{-21} \boldsymbol{E}_{\boldsymbol{v}} \left[\frac{\boldsymbol{Pa}}{\boldsymbol{eV}} \right]$$

The acoustic detection principle

- Fast thermal energy deposition (followed by slow heat diffusion)
- Results in a near-instantaneous temperature increase and material expansion giving rise to an "acoustic shock" sound pulse
- This pressure pulse is related to the double derivative of the Heaviside step function of the temperature rise and leads to a characteristic expected bipolar pulse shape
- h is defined by the properties of the medium:
 - *h*∞β/C_p where β is the co-efficient of thermal expansivity and C_p is the specific heat capacity
- ▲t is defined by the transverse spread of the shower

Acoustic Signal Detection

Particles Interaction in Water - the Acoustic Signal

Thermo-Acoustic (Hydrodynamic) Mechanism of Energy Dissipation

A. A. 2020-21

Acoustic Signal Detection

The acoustic signals change polarity close to $t \sim 4 \circ C$

β, the volume expansion coefficient, depends on temperature (data in water)

Largest Signal in Mediterranean (~14 °C)

Acoustic Signal from Neutrinos

Underwater Noise

other marine sources of sound: wind, waves, ships, animals

Signal and Noise Spectrum in the Sea

- noise depends on wind speed
- at high frequencies dominated by thermal noise
- Expected signal maximum between 10 and 50kHz, where noise is minimal (at sea state zero)

⇒ look for signal in frequency band ~10 to ~50kHz **Acoustic Signal Detection**

Acoustic Sensors Development

The Piezoelectric Effect

Piezoelectric effect consists on voltage produced between surfaces of a solid dielectric (non - conducting substance) when a mechanical stress is applied to it

Acoustic Sensors Development

Hydrophones

Commercial hydrophones Self-made hydrophones

Requirements

Hydrophones to be used in an underwater neutrino telescope must be:

- pressure resistant (very deep ocean sites)
- Very sensitive (expected pressure signals from neutrino events ~10mPa peak-to-peak for 10¹⁸ eV in 400m distance)
- *low cost* (large number of sensors)

Acoustic Sensors Calibration

Test at ITEP (Moscow) Proton Beam

Dimensions 50.8 cm \times 52.3 cm \times 94.5 cm

The 90% of the basin's volume is filled with fresh water. NO control on temperature.

Piezo-Electric Hydrophones previously calibrated at the IDAC O.M. Corbino facilities

Test at ITEP (Moscow) Proton Beam

Calibration with Proton and Laser Beams

Proton & laser beam experiments confirm thermo – acoustic sound generation is primary effect

- Simulation and model predictions in good agreement with measured signals
- Some minor effect (around 4 ° C) need to be clarified

Existing acoustic detection sites: Lake Baikal

Existing acoustic detection sites: SAUND

SAUND

Study of Acoustic Ultra-high-energy Neutrino Detection

The Atlantic Undersea Test and Evaluation Center (AUTEC) hydrophones

SAUND – 1

→SAUND – 2 AUTEC array improvment increased BW, gain, stability

SAUND - Flux Limits

A/B represent 1-year limits from hypothetical large arrays (367 1.5-km strings, spaced 0.5/5 km apart)

Acoustic detection sites: RONA

- Rona hydrophone array, a military array in Scotland used by the ACORNE collaboration
- 2 weeks of <u>unfiltered</u> data taking in December 2005, continuous since September 2006
- 8 hydrophones read out continuously at 16bits,140kHz - a total of (~15Tb)
- Data are passed through a number of triggers including a matched filter prior to analysis
- Average spectra show hydrophones are well-balanced

Acoustic detection by INFN/NEMO site: OvDE

Neutrino Mediterrean Observatory

ONDE – Ocean Noise Detection Experiment

OvDE: Ocean Noise Detection Experiment

4 hydrophones (10 Hz-40 kHz bandwidth) synchronized. Acoustic signal digitization (24bit@96 kHz) at 2000m depth. Data transmission on optical fibres over 28 km to the Catania lab on shore. On-line monitoring and data recording on shore. Recording 5' every hour. Data taking from Jan. 2005 to Nov. 2006 (NEMO Phase 1 deployed).

In collaboration with Uni-Pavia CIBRA

Cable from shore

OvDE: Acoustic Noise measurement in the deep Sea

Ambient noise is generally made up of three constituent types:

- •Impulsive noise: transient, wide bandwidth and short duration. Characterised by peak amplitude and repetition rate.
- •Continuous wideband noise: Characterised by the SPD [dB re 1µPa²/Hz]
- •Tonals: narrowband signals, characterised as amplitude [dB re 1µPa] and frequency.

Major surces of noise

Diffuse noise: Seismic, surface waves (wind), rain, thermal noise

Impulisve Noise: Cetaceans, man made shipping (also diffuse!) and instrumentation

Man made noise is increasing (1 dB/year in densely inhabitated seas)

Knudsen' s Formula

 $P(f_{Hz}, SS) = 10 \log f^{-5/3} + 94.5 + 30 \log(SS + 1)$

High Frequency Noise : Biological sources

Bioacoustics: Sperm Whale detection in the Gulf of Catania

OvDE sensitivity allowed cetaceans detection over >40 km range.

The results indicate presence of sperm whales more frequent than previously

observed.

Long term observation and source tracking is used to determine marine mammals presence and seasonal routes.

INFN and CIBRA

Science, March 2, 2007

Bioacoustics: Sperm-whale click analysis (a funny example)

Acoustic - limits on UHE neutrino flux

Strategies:

- use standalone acoustic arrays (not always open science).
- Equip existing neutrino telescopes with test arrays:
 - Coincidences with conventional (optics) detection may help to study acoustic signal.
 - Particularly fits well with water Cherenkov – positioning system is acoustic-based.
 - Future hybrid detectors? Narrow "pan-cake" – great angular resolution for cascades.

Currently only KM3NeT is active in this topic

Proposed/planned PeV-EeV radio neutrino detectors

~10 cosmogenic neutrino per km² per year + nu interaction length O(1000)km at 10^{18} eV

- ⇒ 0.005 detected neutrinos / km3 / year (considering half sky visibility since Earth is not transparent anymore).
- \Rightarrow We need 100's of km3 detection volumes

A. Connolly @ ARENA2018

Air showers		In-ice showers	running, planned
• Radio (interferome	etric)	• Radio	
- ANITA	PoS(ICRC2019)867	- ARA , ARA5	PoS(ICRC2019)858
- TAROGE	PoS(ICRC2019)967	- ARIANNA, ARIA	PoS(ICRC2019)980
- BEACON	PoS(ICRC2019)1033	- RNO	PoS(ICRC2019)913
- GRAND	PoS(ICRC2019)233	• Radar	PoS(ICRC2019)986
 Particles 			
- Auger	PoS(ICRC2019)979	Moon observations	
 Cherenkov 		Radio	
 Ashra-1, NTA (also fluorescence) 	PoS(ICRC2019)976	 NuMoon (WSRT, LOFAR) LUNASKA (ATCA, Parkes, SKA) 	
- TRINITY	PoS(ICRC2019)970	- RESUN (EVL/	A)
- POEMMA	PoS(ICRC2019)378		

Radio detection principle: the Askaryan effect

- EM shower in dielectric (ice) \rightarrow moving negative charge excess
- Coherent radio Cherenkov radiation (P ~ E^2) if λ > Moliere radius

Typical Dimensions: L ~ 10 m $R_{moliere} \sim 10 \text{ cm}$

e⁺,e⁻,γ

G. Askaryan

→ Radio Emission is much stronger than optical for UHE showers

A. A. 2020-21

Prof. Antonio Capone - High Energy Neutrino Astrophysics

Radio signals from neutrino induced shower in ice

Any electromagnetic shower (component) creates radio emission.

- shower front accumulates negative charge from surrounding material
- macroscopically a changing current is induced (moving and changing net charge), this results in emission:
- emission is not caused by index of refraction, but
- emission is added up coherently for all observer angles at which the emission arrives simultaneously: emission strongest at the Cherenkov angle Threshold: few PeVs.

Attenuation length: O(1 km).

Askaryan radio emission properties in ice

- Threshold: few PeV
- Attenuation length: O(1 km)
 - →Cost-effective instrumentation for ultrahigh energy (UHE) neutrinos (10¹⁶-10²⁰ eV)

C. Glazer @ ICRC20

Cone up to 56° (B. Price' webpage).

Detection volume ~O(km³) per modul

interferometric

Prof. Antonio Capone - High Energy Neutrino Astrophysics

ANITA-I & ANITA-II: best limit > 10¹⁹ eV

NASA Long Duration Balloon, launched from Antarctica ANITA-I: 35 day flight 2006-07 ANITA-I: 30 day flight 2008-09

Instrument Overview:

- 40 horn antennas, 200-1200 MHz
- Direction calculated from timing delay between antennas
- In-flight calibration from ground
- Threshold limited by thermal noise

A. A. 2020-21

UHE Neutrino Search Results:

	ANITA-I	ANITA-II
Neutrino Candidate Events	1	1
Expected Background	1.1	0.97 +/- 0.42

ANITA- 2014

- Flight scheduled 2014
- More antennas
- Digitize longer traces
- New: interferometric trigger
- Lower noise front-end RF
 system
- → Factor of 5 improvement in neutrino sensitivity compared to ANITA-II

Result: arXiv:2010.02869v2: »..there is no significant evidence for any source-associated neutrinos with ANITA- III ...»