

FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI Corso di Laurea Triennale in Fisica

Flussi di neutrini da sorgenti di Gamma-Ray Burst

Relatore: Professor Antonio Capone

Correlatore: Dott.ssa Silvia Celli Candidato: Eleonora Loiacono matricola 1540437

Anno Accademico 2017-2018 Dipartimento di Fisica A Nicola e Diana, sperando di averli resi fieri, Alla mia famiglia, Ai miei tre Fisici preferiti, E a Te. "Looking to the stars always makes me dream, as simply as I dream over the black dots representing towns and villages on a map. Why, I ask myself, shouldn't the shining dots of the sky be as accessible as the black dots on the map of France?" Vincent van Gogh iv

Indice

1	Introduzione	1									
2	2 Neutrini										
	2.1 Fisica dei neutrini	3									
	2.2 Astronomia multi-messenger	5									
	2.3 ANTARES	6									
	2.3.1 Struttura del rivelatore	6									
	2.3.2 Strategia di rivelazione di neutrini	7									
3	Gamma-Ray Burst	11									
	3.1 Modello "Fireball"	12									
	3.1.1 Struttura della fireball	12									
	3.2 Accelerazione di Fermi nei GRB	13									
4	Modelli per emissione di neutrini	15									
5	Ricerca di sorgenti	19									
	5.1 Cataloghi di GRB	19									
	5.1.1 <i>Swift</i>	19									
	5.1.2 Fermi	21									
	5.1.3 <i>Konus-Wind</i>	22									
	5.2 Informazioni raccolte sui GRB	22									
6	Stima del flusso di neutrini da GRB160625B	29									
7	Conclusione	37									
Bi	bliografia	49									

INDICE

Elenco delle figure

1.1	Flusso differenziale dei raggi cosmici. 1
 2.1 2.2 2.3 2.4 2.5 	Sezione d'urto dei neutrini (per nucleone) [1].4Flusso di neutrini [2].4Mappa degli osservatori astrofisici nel mondo [3].5Vista schematica delle varie parti del rilevatore [4].6Uno dei moduli ottici che compongono le stringhe [5].©L. Fabre/CEA,20067
2.6 2.7	Meccanismo di rivelazione di neutrini muonici da tracce di muoni.8Fronte d'onda Cherenkov [6].9
3.1	Ricostruzione di un <i>Gamma-Ray Burst</i> ad opera del <i>NASA's Goddard Space</i>
3.2	Schema del Modello fireball ad opera del NASA's Goddard Space Flight Center [7]. 13
5.1	Schema di funzionamento del telescopio <i>Swift</i> [8]
5.2	Schema di funzionamento del telescopio Fermi [9]
5.3	Indice spettrale α
5.4	Indice spettrale β
5.5	T90
5.6	Errore angolare Δ_{err}
5.7	Energia di picco E_{peak}
5.8	Fluenza F_{γ}
5.9	Redshift z. 28
5.10	Zenit
6.1	Curva di luce del GRB160625 [10]
6.2	Spettro dei γ
6.3	In alto lo spettro per ν_{μ} , in basso lo spettro per $\overline{\nu}_{\mu}$, ricostruiti con il metodo descritto pel pergeranto sourcetanto
6.1	Spottro commo dei due constrii di neutrini $u = \frac{1}{2}$
0. 4 6.5	Area offettiva di ANTARES modiata sul tempo in funzione dell'energia
0.0	di bande di declinazione differenti

6.6	Numero di eventi aspettati in funzione dell'energia.	35
-----	--	----

Elenco delle tabelle

5.1	Uso dei satelliti <i>Swift, Fermi</i> e <i>Konus - Wind</i> per il campione selezionato di 436 GRB. I numeri nelle parantesi quadre indicano la priorità assegnata rispetto al parametro considerato.	23
5.2	Valori standard assegnati ai Gamma-Ray Burst, come descritti nel para- grafo sovrastante	24
6.1	Parametri del GRB160625 [11].	30
1	GRB selezionati dai cataloghi <i>Swift</i> , <i>Fermi</i> e <i>Konus-Wind</i> per gli anni tra 2013 ed il 2016: la prima colonna rappresenta il nome GRB nella nota- zione Fermi; quindi l'ascensione retta RA e declinazione DEC, in gradi, seguita dall'errore radiale in arcosecondi; in seguito, la durata del burst T90 in secondi, dagli indici spettrali dei fotoni con la loro energia E_{peak} ; infine la fluenza ed il redshift z. In rosso il GRB selezionato per lo studio del flusso.	39

ELENCO DELLE TABELLE

Capitolo 1

Introduzione

L'investigazione riguardante il flusso di particelle cariche provenienti dall'Universo, i raggi cosmici (RC), mostra che la radiazione proveniente dallo spazio si estende fino ad altissime energie ($\sim 10^{21} \, {\rm eV}$), non compatibili con le sorgenti note galattiche (si veda lo spettro dei RC in 1.1), è inoltre composta da particelle di diversa natura (p, He, nuclei pesanti..)

Figura 1.1: Flusso differenziale dei raggi cosmici.

Si cerca di identificare le caratteristiche dei raggi cosmici e dei fotoni, per studiare l'Universo anche attraverso messaggeri astrofisici come le onde gravitazionali e i neutrini, per avere informazioni sull'Universo anche più lontano. Data la loro bassa probabilità di interazione, i neutrini, non sono perturbati nel tragitto fra il loro sito di produzione e la Terra. In analogia a quanto è possibile ottenere con l'astronomia con fotoni, anche con i neutrini possiamo quindi identificare sorgenti di particelle ed eventualmente studiarne le proprietà.

La scoperta di sorgenti astrofisiche di neutrini attraverso un solo messaggero può essere difficile, se è piccolo il numero di eventi aspettati ed la grande contaminazione da parte del background. Un sistema per ovviare a questo problema è combinare la rivelazione di diversi messaggeri, ottenendo così un approccio *multimessenger*.

Ci sono due telescopi per neutrini operativi nel mondo: ANTARES (*Astronomy with a Neutrino Telescope and Abyss environmental RE- Search*), localizzato nel Mar Mediterraneo, ed IceCube, al polo Sud. Questi telescopi sono disegnati per la ricerca di neutrini cosmici ad alta energia (con E > 100 GeV). I due esperimenti sono complementari, essendo in diversi emisferi la loro visibilità permette di coprire tutto il cielo.

In questa dissertazione si discuterà la ricerca di coincidenza fra osservazioni di fotoni da sorgenti di alta energia (GeV) di *Gamma-Ray Bursts* (GRB) e neutrini osservati con i dati di ANTARES. Come vedremo ciò sarà possibile solo quando la sorgente di GRB si trova al di sotto dell'orizzonte di ANTARES al tempo di trigger, dato l'elevato fondo di eventi di natura atmosferica presente nel rivelatore.

Nel Capitolo 2 verrà illustrata la fisica dei neutrini e il loro metodo di rivelazione in AN-TARES. In seguito, nel Capitolo 3 verranno discussi i *Gamma-Ray Burst*. Nel Capitolo 4 saranno introdotti i modelli per l'emissione di neutrini, nel Capitolo 5 descriverò i metodi per la ricerca di sorgenti e nel Capitolo 6 presenterò la stima dei flussi di neutrini. Infine nel Capitolo 7 verranno discusse le conclusioni.

Capitolo 2

Neutrini

2.1 Fisica dei neutrini

Un neutrino è una particella elementare neutra, di spin 1/2, massa non superiore ai 2 eV; essendo un leptone neutro interagisce soltanto tramite interazione debole, per questo ha una piccolissima probabilità di interagire con la materia ($\sigma \sim 10^{-38}$ cm² per nucleone). Esistono tre tipi differenti di neutrini: ν_e , ν_μ e ν_τ , i quali sono rispettivamente in diretta relazione con i leptoni carichi del Modello Standard (e, $\mu e \tau$) [1].

Le interazioni con la materia sono classificabili in due categorie:

Corrente carica (CC), mediata dai bosoni W[±]. Nella materia sono possibili processi del tipo:

$$\nu_{\ell}(\bar{\nu_{\ell}}) + N \to \ell^{-}(\ell^{+}) + X$$

• Corrente neutra (NC), mediata dal bosone neutro Z. Nella materia sono possibili processi come:

$$\nu_{\ell}(\bar{\nu}_{\ell}) + N \to \nu_{\ell}(\bar{\nu}_{\ell}) + X$$
$$\nu_{\ell} + e^{-} \to \nu_{\ell} + e^{-}$$

dove ℓ indica il sapore del neutrino, N il nucleone che funge da bersaglio ed X la cascata adronica originata dell'interazione. In figura 2.1 è mostrata la sezione d'urto per le interazioni νN ad alte energie [12].

Le ipotesi sul flusso di neutrini, sia astrofisici che atmosferici, prevedono un numero sempre più piccolo di particelle al crescere dell'energia, come mostrato in figura 2.2. Sia le piccole sezioni d'urto d'interazione che l'esiguo flusso di particelle, fanno si che i neutrini siano molto difficili da rivelare e i neutrini cosmici ad alta energia ancor di più.

Figura 2.1: Sezione d'urto dei neutrini (per nucleone) [1].

Figura 2.2: Flusso di neutrini [2].

2.2 Astronomia multi-messenger

La piccola sezione d'urto dei neutrini, è la proprietà grazie alla quale i neutrini astrofisici arrivano sulla Terra, ed è la stessa che rende difficile la loro rivelazione. Per osservarli è necessario che interagiscano, per ottenere ciò è richiesto un bersaglio con una grande massa tale da compensare la piccola σ . Se poi, come avviene oggi, per la rivelazione degli eventi si ricorre all'effetto Cherenkov, occorre che il mezzo sia trasparente alla radiazione Cherenkov affinchè sia possibile osservare la luce proveniente dalle particelle secondarie: dunque acqua e ghiaccio si configurano come mezzi ideali per la loro rivelazione.

La prima osservazione di neutrini extra-galattici di alta energia, fatta da IceCube nel 2013 [13], ha aperto una nuova finestra nella ricerca. Molte classi di sorgenti possono essere candidate per la produzione di neutrini ad alta energia. Le sorgenti più promettenti sono: galassie con formazioni di stelle (*Star Formin Galaxies*), *Gamma-Ray Burst* (GRB) e *blazars* (*"blazing quasi-stellar objects"*, sorgenti altamente energetiche associate ad un buco nero) [14].

La ricerca delle sorgenti di neutrini beneficia dell'aumento di sensibilità dato da un approccio *multimessenger*; cioè un tipo di ricerca che copre differenti campi, connettendo la fisica delle particelle con l'astrofisica e la cosmologia.

Figura 2.3: Mappa degli osservatori astrofisici nel mondo [3].

Negli ultimi anni sono stati acquisiti dei dati da una rete di osservatori astrofisici intorno al mondo (come indicato in figura 2.3), i quali sono stati usati per studiare connessioni tra i neutrini ed altri segnali. In questa dissertazione verranno analizzati soltanto i GRB come fonte possibile di neutrini.

2.3 ANTARES

Il telescopio ANTARES [15] è operativo dal 2008. Consiste in un rivelatore Cherenkov, ottimizzato per la rivelazione di muoni da neutrini astrofisici ad alte energie, situato nei fondali del Mar Mediterraneo, a 40 km dalla costa di Toulon (FR).

Uno degli obiettivi primari dell'esperimento è quello di usare i neutrini come mezzo per studiare i meccanismi di accelerazione di particelle in oggetti astrofisici molto energetici (come nuclei galattici attivi e GRB), che potrebbero anche far luce sull'origine dei raggi cosmici ultra energetici [16] [17].

2.3.1 Struttura del rivelatore

Il detector consiste in un insieme di circa 1000 fotomoltiplicatori disposti in 12 stringhe verticali, distribuite su un'area di 0.1 km^2 e lunghe circa 350 m (figura 2.4) [18].

Figura 2.4: Vista schematica delle varie parti del rilevatore [4].

L'elemento sensibile del detector è un modulo ottico, il quale consiste in un tubo fotomoltiplicatore, vari sensori e l'elettronica associata, posizionati in una sfera di vetro resistente alla pressione (figura 2.5).

I moduli ottici sono organizzati in gruppi di tre, connessi su una struttura meccanica assieme ad un cilindro centrale in cui risiede l'elettronica necessaria. Ogni stringa ha

Figura 2.5: Uno dei moduli ottici che compongono le stringhe [5]. ©L. Fabre/CEA, 2006

un'altezza di circa $350\,{\rm m}$ e consiste in 25piani spaziati verticalmente di $14.5\,{\rm m}.\,$ Le stringhe sono distanti $70\,{\rm m}$ l'una dall'altra.

2.3.2 Strategia di rivelazione di neutrini

Tutte le particelle, tranne i neutrini, possono attraversare la Terra. Un telescopio per neutrini fa uso della rivelazione di muoni μ , che si muovono verso l'alto, come una traccia di un'interazione di un neutrino muonico ν_{μ} (astrofisico o atmosferico) con la materia al di sotto del detector. Il mezzo per rivelare muoni può essere acqua o ghiaccio; attraversandolo i muoni inducono l'emissione di luce Cherenkov.

La rivelazione della luce consente di determinare la traiettoria dei muoni (in figura 2.6 è illustrato il meccanismo di rivelazione di ν_{μ} dalla traccia del μ). La tecnica di tale rivelazione richiede una discriminazione tra muoni che si muovono verso l'alto da quelli che si muovono verso il basso (muoni atmosferici). Per semplificare tale distinzione il detector è installato in un sito sormontato da uno strato d'acqua o ghiaccio.

Il telescopio ANTARES è stato costruito per la rivelazione di ν_{μ} interagenti con corrente carica, questa interazione produce leptoni μ^{\pm} ed uno sciame adronico, in un processo di questo tipo l'energia dei neutrini può essere stimata dalla misura dell'energia dei μ^{\pm} . In queste interazioni la frazione di energia trasportata dal μ^{-} è pari alla metà di quelle del ν_{μ} incidente, mentre la media per un μ^{+} è 3/4 dell'energia del $\bar{\nu}_{\mu}$.

Figura 2.6: Meccanismo di rivelazione di neutrini muonici da tracce di muoni.

Emissione di luce Cherenkov

Le particelle cariche emettono radiazioni un angolo caratteristico (θ) quando attraversano un mezzo trasparente, se la loro velocità è maggiore di quella della luce nel mezzo. Tale luce si forma sulla superficie di un cono (si veda Figura2.7) il cui asse coincide con la direzione della particella ed il cui angolo di apertura, l'angolo Cherenkov, θ , è legato alla velocità della particella β e all'indice di rifrazione n tramite:

$$\cos(\theta) = \frac{1}{n\beta}$$

Nel range energetico di interesse per ANTARES (E > 10 GeV), le particelle sono generalmente ultra-relativistiche con $\beta = 1$. L'indice di rifrazione dell'acqua è n = 1.35per una lunghezza d'onda di $\lambda = 450 \text{ nm}$, dunque l'angolo Cherenkov è pari a 42° per questa λ . La particolare geometria della luce emessa permette una precisa ricostruzione delle tracce.

Il numero di γ prodotti dopo un cammino dx, in un intervallo di lunghezze d'onda $d\lambda$, per una particella di carica unitaria è:

$$\frac{d^2N}{d\lambda dx} = \frac{2\pi\alpha\sin^2\theta}{\lambda^2}$$

Figura 2.7: Fronte d'onda Cherenkov [6].

CAPITOLO 2. NEUTRINI

Capitolo 3

Gamma-Ray Burst

I *Gamma-Ray Burst (GRB)* sono dei brevi ed intensi lampi luminosi di raggi gamma. Quando il progenitore di un GRB esplode, esso diventa la fonte più brillante di fotoni cosmici dell'Universo (nella figura 3.1 una ricostruzione di un GRB).

Figura 3.1: Ricostruzione di un *Gamma-Ray Burst* ad opera del *NASA's Goddard Space Flight Center* [7].

I GRB, fino a tempi recenti, sono stati uno dei più grandi misteri nell'astrofisica delle alte energie. Scoperti nei tardi anni '60, sono stati riportati alla comunità scientifica nei primi anni '70. Recenti osservazioni, da satelliti come *Swift* [19] e *Fermi* [20], indicano che l'energia di un GRB proviene dal collasso di materia in un buco nero o dalla fusione di due stelle di neutroni in un sistema binario.

Guardando al numero di *burst* in funzione della loro durata, i GRB sono classificabili in due diverse categorie: lunghi e brevi.

I GRB lunghi hanno una durata variabile da due secondi a diversi minuti, con una media di 30 s; e sono emessi alla fine della combustione nucleare di stelle massicce con conseguente esplosione in *supernovae*. I GRB corti hanno una durata variabile da pochi millisecondi a circa due secondi, con una durata media di 0.3 s; sono per lo più associati alla fusione di due stelle di neutroni in un un buco nero [21]. La separazione in due popolazioni è visibile anche dall'energia tipica dei fotoni emessi (maggiore nel caso di GRB corti).

Dopo che il lampo gamma si è esaurito, al termine della cosiddetta fase *prompt*, i GRB sono ancora osservabili a lunghezze d'onda più basse; questa radiazione può essere visibile per giorni dopo la fase *prompt* e ci si riferisce ad essa come *afterglow* [22].

3.1 Modello "Fireball"

L'energia che deriva dall'esplosione di GRB è enorme. L'equilibrio che si raggiunge, tra la materia e la radiazione, non è termico; durante la creazione dell'equilibrio si formano coppie $e^+ e^-$ accelerate a velocità relativistiche dalla pressione interna. Questa è una *fireball* [23], una grande concentrazione di radiazione e materia in una piccola porzione di spazio.

Shemi, Piran e Paczynski [24] [25] hanno studiato l'effetto di una quantità molto alta di barioni nella *fireball*. In una *fireball* con presenza barionica, nella maggior parte dei casi, tutta l'energia contenuta verrà trasferita ai barioni. Se la frazione di barioni è abbastanza piccola essi saranno accelerati a velocità relativistica con fattore di Lorentz $\gamma \approx E/m$; se è molto grande il risultato sarà un flusso con velocità $v \simeq \sqrt{2E/m}$. In figura 3.2 si riporta un'illustrazione dello modello a shock "Interno/Esterno" per i GRB.

3.1.1 Struttura della fireball

Non è chiaro come il motore interno dei GRB acceleri e collimi il flusso relativistico. Gli shock interni avvengono a circa 10^{15} cm dal centro e convertono $2\% \div 20\%$ dell'energia cinetica in energia termica. Per produrre gli shock interni il meccanismo centrale deve produrre un flusso lungo e variabile. Ciò porta a concludere che i GRB variabili non possono essere prodotti da una singola esplosione. Non è possibile stimare l'energia totale rilasciata da questo meccanismo interno.

Ci sono però due possibili estimatori: E_{γ} , l'energia rilasciata in forma di raggi γ , ed E_K , l'energia cinetica durante la fase dell'*afterglow*. Quest'ultima osservazione implica che l'efficienza della conversione tra l'energia cinetica relativistica iniziale in raggi γ deve

3.2. ACCELERAZIONE DI FERMI NEI GRB

Figura 3.2: Schema del *Modello fireball* ad opera del NASA's Goddard Space Flight Center [7].

essere molto alta.

Gli *shock* interni continuano fino a che la sorgente è attiva, essa può esserlo da pochi fino a centinaia di secondi (in accordo con la durata del *burst*) e variabile su una scala temporale di secondi [26].

Se la *shell* è circondata dal mezzo interstellare, allora la *shell* relativistica dissiperà anch'essa via *shock* esterno. Questo produce un altro *burst*, con un'energia comparabile (o anche più grande) con quella del GRB iniziale. Questa è molto probabilmente l'origine degli *afterglow*, visti come controparte in alcuni GRB [27].

3.2 Accelerazione di Fermi nei GRB

Lo spettro di un GRB non è termico, ma segue un andamento che varia con una legge di potenza.

Gli spettri dei GRB sono descritti, a seconda dei casi, attraverso varie relazioni:

• Power Law (PL):

$$\frac{dN}{dE} \propto E^{-\alpha} \left(\cos \alpha > 0 \right) \tag{3.1}$$

• *Smoothly broken power law* (SBPL):

$$\frac{dN}{dE} \propto \begin{cases} E^{-\alpha} & \text{se } E < E_{\gamma} \\ E^{-\beta} & \text{se } E \ge E_{\gamma} \end{cases}$$
(3.2)

dove E_{γ} è l'energia che separa le due dipendenze spettrali;

• *Cut-off power law* (CPL):

$$\frac{dN}{dE} \propto E^{-\alpha} e^{-E/E_{\gamma}} \tag{3.3}$$

• Band:

$$\frac{dN}{dE} \propto \begin{cases} E^{-\alpha} e^{-E/E_{\gamma}} & \text{se}E < (\beta - \alpha)E_{\gamma} \\ E^{-\beta} & \text{se}E \ge (\beta - \alpha)E_{\gamma} \end{cases}$$
(3.4)

La forma della legge di potenza è associata al meccanismo di accelerazione, conosciuto come "*accelerazione shock*" o "*Meccanismo di Fermi al I ordine*" [28]. Valori caratteristici degli indici spettrali sono $\alpha = 1$, $\beta = 2$ e $E_{\gamma} = 200$ keV.

Il meccanismo di Fermi è applicato agli *shock* che avvengono senza collisioni, ovvero *shock* nei quali l'energia trasferita tra particelle è mediata solamente dal plasma circostante; queste condizioni sono presenti nella maggior parte degli eventi astrofisici [29].

Capitolo 4

Modelli per emissione di neutrini

Waxman e Bahcall [30] sono stati i primi a calcolare lo spettro di emissione di neutrini in coincidenza con un GRB nello scenario del modello *fireball*. Il calcolo è basato sull'assunzione che i protoni accelerati nel getto relativistico interagiscano con fotoni presenti attorno alla sorgente per produrre pioni attraverso la risonanza $p + \gamma \rightarrow \Delta^+$. Viene assunto che i protoni sono caratterizzati da una distribuzione in energia che segue una legge di potenza, mentre i fotoni seguono lo spettro elettromagnetico misurato a Terra.

Ci sono due possibili canali di decadimento della risonanza Δ^+ , con produzione di mesoni neutri e carichi. Tali mesoni possono poi originare rispettivamente gamma, muoni e neutrini. Ciò avviene secondo la reazione:

$$p + \gamma \xrightarrow{\Delta^+} \begin{cases} p + \pi^0 \\ n + \pi^+ \end{cases} \xrightarrow{} \begin{cases} \pi^0 \to \gamma + \gamma \\ n \to p + e^- + \overline{\nu}_e \\ \pi^+ \to \mu^+ + \nu_\mu \\ \mu^+ \to e^+ + \nu_e + \overline{\nu}_\mu \end{cases}$$

Questa interazione è dominante, con $\sigma_{p\gamma}$ al picco della risonanza pari a 10^{-25} cm².

Alcuni dei protoni coinvolti nell'interazione potrebbero però sfuggire a questa reazione, portando alla produzione di raggi cosmici. In generale i protoni sono deviati (dai campi magnetici galattici ed extragalattici); i neutroni, invece, non risentono di questo effetto essendo elettricamente neutri. La dipendenza in energia del flusso di neutrini viene dunque determinata dagli spettri di protoni proiettili e dei fotoni bersaglio.

Guetta et al. [31] hanno modificato il modello di Waxman e Bahcall per derivare flussi di neutrini dei *burst*: uno per ogni famiglia di neutrini e per ogni carica debole. Introdussero, in aggiunta ai parametri di ogni GRB, una normalizzazione per il *burst* del neutrino basata sulla misura della fluenza di fotoni.

Lo spettro di neutrino è dato da una "double broken power-law":

$$F_{\nu} = \frac{dN(E_{nu})}{dE_{\nu}} = f_{\nu} \begin{cases} \left(\frac{E_1}{GeV}\right)^{\alpha_{\nu}} \left(\frac{E_{\nu}}{GeV}\right)^{-\alpha_{\nu}}, & \text{se } E_{\nu} < E_1\\ \left(\frac{E_1}{GeV}\right)^{\beta_{\nu}} \left(\frac{E_{\nu}}{GeV}\right)^{-\beta_{\nu}}, & \text{se } E_1 \le E_{\nu} < E_2\\ \left(\frac{E_1}{GeV}\right)^{\beta_{\nu}} \left(\frac{E_2}{GeV}\right)^2 \left(\frac{E_{\nu}}{GeV}\right)^{-\gamma_{\nu}}, & \text{se } E_{\nu} \ge E_2 \end{cases}$$

dove gli indici dei neutrini sono relazionati agli indici dei fotoni tramite le seguenti relazioni:

$$\alpha_{\nu} = 3 + \beta$$
$$\beta_{\nu} = 3 + \alpha$$
$$\gamma_{\nu} = 2 + \beta_{\nu}$$

Le energie (nel caso si tratti di $\overline{\nu}_{\mu} e \nu_{e}$ o ν_{μ}) risultano pari a:

$$\begin{split} E_1 &= 7 \cdot \ 10^5 GeV \ (\frac{1}{1+z})^2 \ (\frac{\Gamma}{10^{2.5}})^2 \ (\frac{MeV}{E_{Peak}}) \\ E_2^{(\overline{\nu}_{\mu};\nu_e)} &= 10^7 GeV \ \frac{1}{1+z} \ \sqrt{\frac{e_e}{e_B}} \ (\frac{\Gamma}{10^{2.5}})^2 \ (\frac{t_{var}}{0.01 \ s}) \ \sqrt{\frac{10^{52} \ erg}{L^{iso}}} \\ E_2^{\nu_{\mu}} &= 10^8 GeV \ \frac{1}{1+z} \ \sqrt{\frac{e_e}{e_B}} \ (\frac{\Gamma}{10^{2.5}})^2 \ (\frac{t_{var}}{0.01 \ s}) \ \sqrt{\frac{10^{52} \ erg}{L^{iso}}} \end{split}$$

La prima energia viene introdotta dalla ripidezza dello spettro di fotoni ad energia E_{γ} (è dovuto pertanto al raffreddamento degli elettroni nel campo magnetico), lo stesso meccanismo porta ad una perdita di energia dei muoni secondari, facendo diventare di nuovo ripido lo spettro in corrispondenza dell'energia E_2 , che a sua volta dipende dalla frazione totale di elettroni e_e e dal campo magnetico e_B .

Il parametro e_e misura la frazione dell'energia interna che va in movimenti casuali degli elettroni:

$$e_e = \frac{\epsilon_e}{e}$$

 e_B è invece il rapporto tra la densità di energia del campo magnetico e l'energia termica totale:

$$e_B = \frac{\epsilon_B}{e} = \frac{B^2}{8\pi e}$$

La normalizzazione dipende dall'intensità del flusso di fotoni così come dalla frazione totale di energia trasferita dai protoni ai pioni, quest'ultima è in media il 20% [31] [32] in ogni interazione, in modo che $\langle x_{p\to\pi} \rangle = 0.2$.

Il totale $(1 - (1 - \langle x_{p \to \pi} \rangle)^{\Delta R \setminus \lambda_{p\gamma}})$ dell'energia è convertita, dove ΔR è la grandezza della regione di shock e $\lambda_{p\gamma}$ è il cammino libero medio di un protone.

Il loro rapporto è dato da:

$$\frac{\Delta R}{\lambda_{p\gamma}} = \frac{L_{\gamma}^{iso}}{10^{52} erg s^{-1}} \frac{10^{2.5}}{\Gamma}^4 \frac{0.01 \,\mathrm{s}}{t_v ar} \frac{\mathrm{MeV}}{E_{\gamma}}$$

Questo porta alla normalizzazione dello spettro di neutrini:

$$\int_0^\infty dE_\nu \ E_\nu \ F_\nu(E_\nu) = \frac{1}{8} \ f_P (1 - (1 - \langle x_{p \to \pi} \rangle)^{\Delta R \setminus \lambda_{p\gamma}}) \int_{E_{min}}^{E_{max}} dE_\gamma \ E_\gamma \ F_\gamma(E_\gamma)$$
(4.1)

In tale espressione la fluenza è misurata dal satellite, $f_P = 1/e_E$ è chiamato "carico barionico". Il fattore 1/8 tiene conto del fatto che pioni carichi e neutro sono prodotti con la stessa probabilità ed ogni neutrino porta con se' 1/4 dell'energia del pione.

Per i parametri dell'emissione quali il fattore di boost, l'energia ripartita e la scala di variabilità temporale sono utilizzati dei valori standard, come mostrato in Tabella 5.2 nel Capitolo 5.

Capitolo 5

Ricerca di sorgenti

In questo capitolo verrà presentata la tecnica per la ricerca di neutrini provenienti da Gamma Ray-Burst. E' illustrato il criterio di selezione per una collezione di *burst* dal 2013 al 2016, rivelati dai satelliti *Swift*, *Fermi* e *Konus-Wind*. Durante questo lasso temporale sono stati selezionati GRB candidati per una ricerca di neutrini in ANTARES. In questa dissertazione sarà presentata l'analisi dello spettro del GRB più promettente della lista.

5.1 Cataloghi di GRB

5.1.1 Swift

Il satellite *Swift* [33] è stato lanciato il 20 Novembre 2004 per risolvere il mistero dell'origine dei GRB ed il loro legame con i buchi neri. *Swift* comprende tre telescopi, i quali collaborano per provvedere ad una rapida identificazione dei GRB e dei loro afterglow [34].

Gli strumenti (*Burst Alert Telescope, X-ray Telescope, UV/Optical Telescope*) sono stati sviluppati da un team internazionale con membri provenienti da Stati Uniti, Inghilterra ed Italia [35]; in figura 5.1 è mostrato il funzionamento.

Il *Burst Alert Telescope* (BAT) è uno strumento particolarmente sensibile costruito per fornire trigger. Entro pochi secondi dalla rivelazione del burst, BAT calcola la posizione iniziale, decide se far ruotare la navicella ed in tal caso, manda la posizione a quest'ultima. BAT esegue misure spettrali in un range di energia di $15 \div 150 \text{ keV}$ [36].

L' *X-Ray Telescope* (XRT) è stato progettato per misurare i flussi, gli spettri e le curve di luce dei GRB. Può localizzare un GRB con la precisione di 5^{*''*} in 10 s di acquisizione [37].

Osservazioni sperimentali hanno mostrato che gli *afterglow* ottici usualmente decadono in luminosità molto rapidamente. Occorre, dunque, uno strumento in grado di de-

Figura 5.1: Schema di funzionamento del telescopio Swift [8].

5.1. CATALOGHI DI GRB

terminare il redshift quando sono ancora molto brillanti. *UVOT* è stato unicamente costruito per studi sugli *afterglow*. L'uso di questo telescopio consente di ottimizzare le osservazioni basate sul suolo fornendo immagini ottiche rapide del campo del GRB, in modo che qualsiasi controparte ottica o infrarossa possa essere velocemente identificata e studiata [38].

Dal 2013 al 2016, *Swift* ha rilevato 367 GRB.

5.1.2 *Fermi*

Il telescopio *Fermi* [39], lanciato l'11 Giugno 2008, porta due strumenti: il *Large Area Telescope* (LAT) ed il *Gamma-ray Burst Monitor* (GBM) [40]; in figura 5.2 sono mostrati i due satelliti.

Figura 5.2: Schema di funzionamento del telescopio Fermi [9].

LAT [41] ha quattro sottosistemi che lavorano insieme per rivelare i raggi gamma e per rigettare segnali provenienti dall'intensa attività dei raggi cosmici. LAT vede, in ogni istante, circa il 20% del cielo completando l'osservazione dell'intera volta celeste ogni tre ore. Questo strumento è circa 30 volte più sensibile di qualsiasi altro strumento pre-

cedentemente costruito per i raggi gamma e mandato nello spazio.

GBM [42] è costituito da 12 detector fatti di ioduro di sodio per rilevare raggi X e raggi gamma a bassa energia e due detector di germanato di bismuto per raggi gamma ad alta energia. Insieme a LAT copre un range di energia che va da 8 keV a 30 MeV [43].

I cataloghi di GBM e LAT comprendono 929 GRB.

5.1.3 Konus-Wind

Konus-Wind [44] è un satellite russo lanciato nel 1994, il cui obiettivo primario è studiare il vento solare.

Non esiste un catalogo on-line di *Konus-Wind*, per cui le informazioni devono essere prese separatamente dall'archivio *Gamma-ray bursts Coordinate Network* (GCN) [45]. Viene utilizzato solamente nel caso in cui un burst o un'informazione siano mancanti negli altri cataloghi.

Gli spettri di questo satellite sono in un range di energia di $20 \text{ keV} \div 10 \text{ MeV}$.

5.2 Informazioni raccolte sui GRB

Unendo le informazioni raccolte dai tre satelliti si ottiene un campione completo di 942 GRB.

Per selezionare le sorgenti di GRB da utilizzare per stimare un eventuale flusso di neutrini da osservare in ANTARES, sono state utilizzate, fra tutte le informazioni disponibili.

In particolare:

- RA and DEC: ascensione retta e declinazione sono state prese dal satellite con minore errore angolare, Δ_{err};
- F_{γ} , la fluenza, è scelta dal satellite con la banda spettrale più ampia;
- E_{min} ed E_{max} : le energie massime e minime della banda in cui la fluenza è misurata, dipendono dallo strumento di misura: sono usualmente $E_{min} = 0.015$ MeV and $E_{max} = 0.150$ MeV per *Swift*, $E_{min} = 0.01$ MeV ed $E_{max}1$ MeV per *Fermi*, $E_{min} = 0.02$ MeV ed $E_{max} = 10$ MeV per Konus-Wind;
- α , β ed E_{peak} , i parametri spettrali, sono scelti dal satellite con la banda spettrale più ampia, e che quindi garantiscono una migliore determinazione dei parametri;

5.2. INFORMAZIONI RACCOLTE SUI GRB

- T90 è il tempo nel quale il 90% della fluenza è rilasciato. E' assunto essere una stima della durata del burst ed è scelto dal satellite con la banda spettrale più ampia;
- z, il redshift, è misurato solo da *Swift* e da rivelatori con base a terra

Da questo campione sono stati selezionati solo quei GRB per i quali sono disponibili le informazioni che permettono di stimare il flusso di neutrini aspettato nell'esperimento ANTARES.

In particolare si richiede:

- Che T90 sia misurato;
- Che lo spettro sia sempre ottenuto da un "*fit*" ai dati (α non è mai assunto);
- Che il "*fit*" spettrale è differente da una legge di potenza, dal momento che questo tipo di fit è tipicamente un risultato di un finto burst;
- Che almeno una quantità tra fluenza e redshift sia misurata;
- Che $\Theta > \pi/2$, così che il burst si trovi sotto l'orizzonte di ANTARES

Satellite	Posizione	Durata	Fluenza	Spettro	Redshift
Swift BAT	4.59% [4]	17.20% [3]	17.20% [3]	16.97% [3]	5.96% [1]
Swift XRT	23.62% [2]				
Swift UVOT	8.03% [3]				
Fermi GBM	61.93% [1]	64.22% [1]	64.22% [1]	63.76% [1]	
Fermi LAT	1.83% [5]				
Konus - Wind		18.58 [2]%	18.58 [2]%	18.58 [2]%	5.05 [2]%
Mancante				0.69%	88.99%

Tabella 5.1: Uso dei satelliti *Swift, Fermi* e *Konus - Wind* per il campione selezionato di 436 GRB. I numeri nelle parantesi quadre indicano la priorità assegnata rispetto al parametro considerato.

In tal modo sono stati selezionati, per il campione finale, 436 GRB (riportati nella Tabella 1) fra tutti gli eventi registrati tra il 2013 ed il 2016.

Per questi GRB, l'uso di ogni catalogo e le rispettive priorità assegnate ad ogni strumento sono mostrate nella tabella 5.1; i grafici corrispondenti ai parametri studiati sono mostrati nella figura **??**. Alcuni parametri non sono misurabili per ogni singolo GRB; per tali parametri sono stati assegnati dei valori standard, come indicato nella tabella 5.2. Sono riportati i valori standard assunti per i già citati α , β , E_{peak} e per altri parametri importanti, come il redshift z, la luminosità isotropica L_{iso} , la scala temporale di variabilità t_{var} , il fattore di boost di Lorentz Γ , la frazione di energia jet negli elettroni e_E e nel campo magnetico e_B , il carico barionico f_P e la frazione media di energia dei protoni trasferita in un pione $\langle x_{p \to \pi} \rangle$. Queste ultime cinque quantità sono sempre assunte come valori standard. I valori di default per il redshift sono assegnati a seconda della loro durata: se il GRB è lungo si assume z = 2.15, mentre si pone z = 0.5 se il GRB è corto. Per t_{var} , se non misurato, si assumono come valori standard $t_{var} = 0.001$ s per i GRB corti e $t_{var} = 0.01$ s per GRB lunghi.

Valori standard							
$\alpha = 1$	$\beta = \alpha - 1$						
$E_{peak} = 200 \; keV$	$F_{\gamma} = 10^{-5} \ erg \ cm^{-2}$						
$E_{max} = 10 \; MeV$	$E_{min} = 0.01 \; MeV$						
$\Gamma = 316$	$\langle x_{p \to \pi} \rangle = 0.2$						
$f_{P} = 10$	$e_E = e_B = 0.1$						
$z^{LONG} = 2.15$	$z^{SHORT} = 0.5$						
$t_{var}^{LONG} = 0.01 \ s$	$t_{var}^{SHORT} = 0.001 \ s$						
$L_{iso}^{LONG} = 10^{52} \ erg$	$L_{iso}^{\breve{SHORT}} = 10^{51} \ erg$						

Tabella 5.2: Valori standard assegnati ai Gamma-Ray Burst, come descritti nel paragrafo sovrastante.

La luminosità isotropica L_{iso} è legata al T90 e alla fluenza totale misurata nei raggi gamma, F_{γ} , tramite il redshift z:

$$L_{iso} = \frac{F_{\gamma} \ 4\pi \ d_L^2}{T90}$$

dove la distanza di luminosità, d_L , è una funzione del redshift attraverso l'assunzione del Modello Cosmologico Standard.

Da questo campione sono stati selezionati solo quei GRB per i quali sono disponibili le informazioni che permettono di stimare il flusso di neutrini aspettato nell'esperimento ANTARES.

Lo scopo finale della dissertazione sarà la stima del numero di neutrini, associati a GRB160625945, misurabili in ANTARES.

Figura 5.3: Indice spettrale α .

Figura 5.4: Indice spettrale β .

Figura 5.5: T90.

Figura 5.6: Errore angolare Δ_{err}

Figura 5.8: Fluenza F_{γ} .

Figura 5.9: Redshift z.

Figura 5.10: Zenit.

Capitolo 6

Stima del flusso di neutrini da GRB160625B

Il GRB [46] [11] è stato visto dai satelliti *Fermi* e *Konus-Wind*. Fluence, T90, α , β , E_{Peak} , E_{max} ed E_{min} dello spettro e tipo di fit sono stati presi da *Konus-Wind*; in figura 6.1 la curva di luce del GRB.

Figura 6.1: Curva di luce del GRB160625 [10].

Parametro	Valore
α	-0.79
β	-2.25
T90	$43.265 \ s$
E_{Peak}	$0.554\;MeV$
Fluence	$944 \times 10^{-6} \ erg \ cm^{-2}$
z	1.406
Fit	Band
L_{iso}	$1.60 \times 10^{54} \ erg \ s^{-1}$
E_{min}	20~keV
E_{max}	20~MeV

I parametri che caratterizzano il GRB sono mostrati nella tabella 6.1:

Tabella 6.1: Parametri del GRB160625 [11].

Si ha dunque:

Per calcolare lo spettro del neutrino:

$$\alpha_{\nu} = 3 + \beta = 0.75$$

 $\beta_{\nu} = 3 + \alpha = 2.21$
 $\gamma_{\nu} = 2 + \beta_{\nu} = 4.21$

$$\begin{split} E_1 &= 7 \times 10^5 GeV \left(\frac{1}{1+z}\right)^2 \left(\frac{\Gamma}{10^{2.5}}\right)^2 \left(\frac{MeV}{E_{Peak}}\right) \\ E_2^{\overline{\nu}_{\mu},\nu_e} &= 10^7 GeV \frac{1}{1+z} \sqrt{\frac{e_E}{e_B}} \left(\frac{\Gamma}{10^{2.5}}\right)^2 \left(\frac{t_{var}}{0.01 \ s}\right) \sqrt{\frac{10^{52} \ erg}{L^{iso}}} \\ E_2^{\nu_{\mu}} &= 10^8 GeV \ \frac{1}{1+z} \sqrt{\frac{e_E}{e_B}} \left(\frac{\Gamma}{10^{2.5}}\right)^2 \left(\frac{t_{var}}{0.01 \ s}\right) \sqrt{\frac{10^{52} \ erg}{L^{iso}}} \end{split}$$

Sostituendo i parametri del GRB:

$$E_1 = 2.2 \times 10^5 \,\text{GeV}$$
$$E_2^{(\bar{\nu}_{\mu}, \nu_e)} = 3.3 \times 10^5 \,\text{GeV}$$
$$E_2^{\nu_{\mu}} = 3.3 \times 10^6 \,\text{GeV}$$

La normalizzazione del flusso di neutrini è trovata tramite quella di fotoni attraverso:

$$\int_0^\infty dE_\nu \ E_\nu \ F_\nu(E_\nu) \ = \frac{1}{8} \ f_P (1 - (1 - \langle x_{p \to \pi} \rangle)^{\Delta R \setminus \lambda_{p\gamma}}) \int_{E_{min}}^{E_{max}} dE_\gamma \ E_\gamma \ F_\gamma(E_\gamma)$$

dove F_{ν} :

$$F_{\nu} = \frac{dN(E_{\nu})}{dE_{\nu}} = f_{\nu} \begin{cases} \left(\frac{E_1}{GeV}\right)^{\alpha_{\nu}} \left(\frac{E_{\nu}}{GeV}\right)^{-\alpha_{\nu}}, & \text{se } E_{\nu} < E_1 \\ \left(\frac{E_1}{GeV}\right)^{\beta_{\nu}} \left(\frac{E_{\nu}}{GeV}\right)^{-\beta_{\nu}}, & \text{se } E_1 \le E_{\nu} < E_2 \\ \left(\frac{E_1}{GeV}\right)^{\beta_{\nu}} \left(\frac{E_2}{GeV}\right)^2 \left(\frac{E_{\nu}}{GeV}\right)^{-\gamma_{\nu}}, & \text{se } E_{\nu} \ge E_2 \end{cases}$$

Prima di poter trovare lo spettro dei neutrini è necessario calcolare la quantità f_{γ} , che è data da:

$$F_{\gamma} = f_{\gamma} \frac{dN}{dE_{\gamma}}$$

$$\int_{20keV}^{20MeV} dE_{\gamma} E_{\gamma} F_{\gamma} = \int_{20keV}^{20MeV} dE_{\gamma} E_{\gamma} f_{\gamma} \frac{dN}{dE_{\gamma}}$$

Conoscendo $\frac{dN}{dE_{\gamma}}\,f_{\gamma},f_{\gamma}=452.52\ cm^{-2},$ si ottiene F_{γ} che ha dimensioni:

$$\begin{split} F_{\gamma} &= f_{\gamma} \frac{dN}{dE_{\gamma}} \\ &= f_{\gamma} \begin{cases} E_{\gamma}^{-\alpha} e^{-E_{\gamma}/E_{Peak}}, & \text{se } E_{\gamma} < (\beta - \alpha)E_{Peak} \\ E_{\gamma}^{-\beta}, & \text{se } E_{\gamma} \ge (\beta - \alpha)E_{Peak} \end{cases} \\ &= 452.52 \ cm^{-2} \ keV^{-1} \begin{cases} E_{\gamma}^{-0.79} e^{-\frac{E_{\gamma}}{554 \ keV}}, & \text{se } E_{\gamma} < 808.84 \ keV \\ E_{\gamma}^{-2.25}, & \text{se } E_{\gamma} \ge 808.84 \ keV \end{cases} \end{split}$$

Tornando alla formula per lo spettro di neutrini e risolvendo analiticamente, lo spettro per i diversi neutrini:

• $\overline{\nu}_{\mu}, \nu_e$:

$$1.7552 \times 10^{-8} \{ \left[\int_{0}^{2.2 \times 10^{5}} \left(\frac{2.2 \times 10^{5}}{GeV} \right)^{-0.75} \left(\frac{E_{\nu}}{GeV} \right)^{-0.75} E_{\nu} dE_{\nu} \right] + \left[\int_{2.2 \times 10^{5}}^{3.3 \times 10^{5}} \left(\frac{2.2 \times 10^{5}}{GeV} \right)^{-2.21} \left(\frac{E_{\nu}}{GeV} \right)^{-2.21} E_{\nu} dE_{\nu} \right] + \left[\int_{3.3 \times 10^{5}}^{\infty} \left(\frac{2.2 \times 10^{5}}{GeV} \right)^{-2.21} \left(\frac{3.3 \times 10^{5}}{GeV} \right)^{2} \left(\frac{E_{\nu}}{GeV} \right)^{-4.21} E_{\nu} dE_{\nu} \right] \}$$

• ν_{μ} :

$$1.5355 \times 10^{-8} \{ \left[\int_{0}^{2.2 \times 10^{5}} \left(\frac{2.2 \times 10^{5}}{GeV} \right)^{-0.75} \left(\frac{E_{\nu}}{GeV} \right)^{-0.75} E_{\nu} dE_{\nu} \right] \\ + \left[\int_{2.2 \times 10^{5}}^{3.3 \times 10^{6}} \left(\frac{2.2 \times 10^{5}}{GeV} \right)^{-2.21} \left(\frac{E_{\nu}}{GeV} \right)^{-2.21} E_{\nu} dE_{\nu} \right] + \left[\int_{3.3 \times 10^{6}}^{\infty} \left(\frac{2.2 \times 10^{5}}{GeV} \right)^{-2.21} \left(\frac{3.3 \times 10^{6}}{GeV} \right)^{2} \left(\frac{E_{\nu}}{GeV} \right)^{-4.21} E_{\nu} dE_{\nu} \right] \}$$

Dunque si ottiene, per $\bar{\nu}_{\mu}$ e ν_e : $f_{\nu}^{\bar{\nu}_{\mu},\nu_e} = 1.7552 \times 10^{-8} m^{-2}$ Invece per ν_{μ} : $f_{\nu}^{\nu_{\mu}} = 1.5355 \times 10^{-8} m^{-2}$

Figura 6.3: In alto lo spettro per ν_{μ} , in basso lo spettro per $\overline{\nu}_{\mu}$, ricostruiti con il metodo descritto nel paragrafo sovrastante.

Figura 6.4: Spettro somma dei due spettri di neutrini, $\nu_{\mu} + \overline{\nu}_{\mu}$.

Infine:

$$N_{eventi} = \int \left(F_{\nu_{\mu}}(E) + F_{\overline{\nu}_{\mu}}(E) \right) A_{eff}(E) dE$$

Il parametro "area efficace" è la capacità del rivelatore di identificare una traccia di un muone, è diversa a seconda dell'inclinazione della traccia del muone rispetto alla verticale [47]. Il rivelatore ANTARES ha la migliore visibilità per sorgenti nell'intervallo di declinazione da $-90^{\circ} \div -45^{\circ}$ (come visibile in figura 6.5), mentre le altre bande di declinazione sono meno favorevoli.

L'andamento in energia del numero di eventi di neutrini muonici attesi (anche detto funzione parente) in ANTARES da GRB160625B è riportato in figura 6.6. Integrando questa funzione numericamente si ottiene che questo numero risulta pari a:

$$N_{eventi} = 6.2 \times 10^{-2} \nu_{\mu + \overline{\nu}_{mu}}$$

Figura 6.5: Area effettiva di ANTARES, mediata sul tempo, in funzione dell'energia di bande di declinazione differenti.

Figura 6.6: Numero di eventi aspettati in funzione dell'energia.

Capitolo 7 Conclusione

Lo scopo di questa dissertazione era quello di studiare flussi da possibili sorgenti di neutrini, quali i Gamma-Ray Burst. Attraverso lo studio di parametri provenienti dai satelliti *Fermi, Swift* e *Konus-Wind* è stata costruita una tabella contenente informazioni dal 1 Gennaio 2013 al 31 Dicembre 2016, per un totale di 942 GRB.

Effettuando diverse selezioni sui parametri, è stato possibile ridurre il campione finale a 436 GRB.

Sfruttando la relazione tra lo spettro di fotoni e lo spettro di neutrini, è stato possibile fare una stima del flusso di neutrini proveniente dal GRB selezionato (Capitolo 6), attraverso il metodo illustrato nel Capitolo 5. Infine dopo aver stimato il flusso è stato anche possibile calcolare il numero di eventi aspettati ($N_{eventi} = 0.062086$).

CAPITOLO 7. CONCLUSIONE

Appendice

Tabella 1: GRB selezionati dai cataloghi *Swift*, *Fermi* e *Konus-Wind* per gli anni tra 2013 ed il 2016: la prima colonna rappresenta il nome GRB nella notazione Fermi; quindi l'ascensione retta RA e declinazione DEC, in gradi, seguita dall'errore radiale in arcosecondi; in seguito, la durata del burst T90 in secondi, dagli indici spettrali dei fotoni con la loro energia E_{peak} ; infine la fluenza ed il redshift z. In rosso il GRB selezionato per lo studio del flusso.

GRB name [aammgghh]	RA [°]	DEC [°]	Δ_{err} [arcsec]	T90 [s]	α	β	E_{peak} [keV]	Fluence [erg cm-2]	z
13010472	174.09	25.92	8784	26.368	1.4	2.4	137.73	5.6683	2.15
13010920	17.45	19.24	13392	8.96	0.95	1.95	88.5249	2.5352	2.15
13011401	310.19	-15.32	39096	8.704	1.98	2.98	200	1.1132	2.15
13011571	171.09	22.62	10008	13.568	0.78	1.78	224.407	2.7183	2.15
13011708	341.24	02.81	22212	78.848	0.78	1.78	343.5435	2.8491	2.15
13012183	211.31	-49.49	4104	178.691	0.93	2.17	164.9206	43.448	2.15
13012729	301.21	-57.21	36036	19.456	1.7	2.7	200	1.0219	2.15
13013151	189.63	-14.48	3600	147.459	0.78	2.45	156.0196	39.205	2.15
13013179	173.96	15.04	1.6	4.3	1.15	1	200	0.34	2.539
13020681	140.38	-58.19	4.6	91.585	1.56	2.56	200	2.5681	2.15
13020996	33.59	-27.58	3600	9.79	0.674	1.67	176.4415	6.1237	2.15
13021115	147.54	-42.34	3.6	25.1	1.81	2.81	200	0.64	2.15
13021413	325.02	-01.83	45972	96.768	1.64	2.64	200	1.5855	2.15
13021506	43.49	13.39	90	143.746	1.4	2.4	3368.082	18.583	0.597
13021826	69.31	-69.13	8208	37.121	1.46	2.46	368.7243	9.4331	2.15
13022096	306.20	31.74	4104	6.4	0.84	1.84	69.8971	7.235	2.15
13022821	240.75	-55.21	4608	15.421	1	2	200	17.485	2.15
13040628	157.78	-62.05	7524	7.936	0.64	1.64	84.8069	2.924	2.15
13040633	109.66	-27.86	27576	88.832	1.25	2.25	157.6663	3.211	2.15
13040635	138.21	42.83	53424	2.56	1.45	2.45	200	0.2976	2.15
13042532	17.78	-72.85	5220	73.216	1.29	2.46	167	59	2.15
13042732	173.14	27.70	3.5	18.688	0.96	4.17	1028	2680	0.34
13042755	314.90	-22.55	1.1	27	1.64	2.64	200	1.5	2.78
13050497	91.63	03.83	3.59964	105.216	1.32	2.15	452	200	2.15
13050534	137.06	17.48	0.5	21.248	0.69	2.03	631	313	2.27
13050595	344.47	-70.47	5400	50.241	0.77	1.77	1043.96	9.873	2.15
13051087	105.71	-09.87	17928	29.44	1.47	2.47	133.5008	3.2106	2.15
13051148	196.65	18.71	0.64	5.43	1.36	2.36	200	0.22	1.303
13051855	289.72	-04.15	9720	4.096	0.83	1.83	980.5331	3.728	2.15
13052195	87.57	14.47	96	11	2.11	3.11	200	0.42	2.15
13052319	39.49	-63.07	7668	5.376	0.3	1.3	55.2161	2.7096	2.15
13052759	309.28	-24.73	1.4	38.656	1.04	2.04	1380	110	2.15
13052946	24.28	-64.15	1.4	128	1.56	2.56	200	1.4	2.15

La tabella continua dalla pagina precedente									
GRB name [aammgghh]	RA [°]	DEC [°]	Δ_{err} [arcsec]	T90 [s]	α	β	E_{peak} [keV]	Fluence [erg cm-2]	z
13061499	324.18	-33.89	4392	9.28	1.43	2.43	99.4249	6.7209	2.15
13061540	274.83	-68.16	2	304	0.87	1.87	200	2.1	2.15
13062348	20.85	-77.77	4.5	22.272	1.64	2.64	36.7009	2.4645	2.15
13062369	284.68	10.67	94572	7.68	1.49	2.49	200	0.7039	2.15
13062659	24.89	04.93	14508	28.16	1.04	2.04	106.7983	4.8195	2.15
13062737	184.42	-37.09	1.5	30.8	1.84	2.84	200	0.91	2.15
13062750	181.91	-55.70	4.2	28.6	0.13	1.13	200	0.61	2.15
13062853	06.29	-05.07	6156	21.504	1.38	2.38	180.2415	8.8681	2.15
13072058	338.03	-09.40	3600	199.172	1.06	2.06	200	99.969	2.15
13072234	260.65	-02.97	0.7	61.854	0.92	1.92	179	23.5	2.15
13072309	217.77	-16.86	29376	8.192	1.85	2.85	200	0.8708	2.15
13072548	230.03	00.63	1.8	101.8	1.6	2.6	200	0.97	2.15
13072769	330.80	-65.54	0.7	8.448	1.23	2.21	113	9	2.15
13073024	133.75	-60.36	12384	27.904	1.12	2.12	60.1717	2.1151	2.15
13080341	220.25	-02.49	1.4	7.616	1.06	2.06	143.3329	2.8228	2.15
13081118	192.89	-17.04	12096	44.801	1.25	2.25	127.3436	6.3819	2.15
13081293	92.40	-13.29	1.5	7.6	2.52	3.52	200	0.59	2.15
13081566	112.37	-02.15	3600	37.889	0.9	2.36	82.17	11.752	2.15
13081607	197.14	-58.95	1.5	29.97	1.86	2.86	200	0.43	2.15
13081620	170.02	-57.56	1.9	10	0.45	1.45	200	0.27	2.15
13082167	314.10	-12.00	2.3004	78.08	1.33	2.25	260	99	2.15
13082830	259.80	28.22	7.9992	136.45	0.58	1.58	200	37.167	2.15
13083092	350.97	-51.57	37764	36.352	1.54	2.54	200	1.4411	2.15
13083154	358.62	29.43	0.74	24.832	1.61	3.3	55	7.6	0.479
13090622	194.11	04.20	44604	11.264	1.53	2.53	200	0.6274	2.15
13090643	279.39	-53.38	27360	8.192	0.24	1.24	294.7623	0.8243	2.15
13090981	198.18	-20.79	62064	33.792	1.8	2.8	200	1.977	2.15
13091998	242.22	-48.29	32688	17.408	0.83	1.83	1315.258	3.3617	2.15
13092853	306.91	-44.19	11736	132.994	0.64	1.64	139.1501	19.528	2.15
13100245	75.12	-75.70	2.2	39.1	0.36	1.36	200	0.62	2.15
13100684	139.36	00.87	21096	41.984	0.78	1.78	423.3591	1.841	2.15
13101174	32.53	-04.41	3.6	77.057	0.96	1.96	274.1895	8.8767	2.15
13101451	15.05	21.43	24984	30.208	1.14	2.14	157.173	1.9481	2.15
13101855	98.47	-19.90	1.4	13.22	2.24	3.24	200	1.1	2.15
13102135	329.12	-25.35	23004	17.664	1.00	2.80	200	1.397	2.15
13102431	290.48	-64.60	1.4	112	1.85	2.60	200	1.Z 1.4E6E	2.15
13102009	555.40 61.45	-30.94 62.80	23904	14.330 52.248	1.75	2.75	200	1.4365	2.15
12102070	186 20	-02.00	15408	27 202	1.12	2.12	200	2 5072	2.15
13103079	20.61	-03.34	13408	8 1 18	2.00	2.02	200	3.3072	2.15
13110262	29.01 74.10	-01.50	53352	62 976	2.09	2.64	200	1 422	2.15
13110202	348.92	-44 64	0.6	17.3	1.04	2.04	200	0.82	0 599
13110508	70.97	-63.00	1.4	90 368	0.88	2.27	156	23	1 686
13110886	156 50	-05.00	0 50004	23.04	1 11	2.33	340	41 5	2.4
13111037	09.81	08.16	14256	27.328	07	17	138 5049	3 2678	2.1
13111049	69.27	-17.26	48	100	1.61	2.61	200	3 53	2.15
13111348	157.99	-41 52	4356	60 545	0.56	1.56	160 5536	23.036	2.10
13111776	213 27	-02 47	7668	93 954	0.30	1.50	162 8356	14.376	2.15
13111895	349.86	-66.83	410.04	139.52	0.88	2.83	230	84	2.15
13112354	53.24	-20.88	30024	3.136	0.77	1.77	374.0597	0.4084	2.15
13112748	49.40	-05.67	14652	59,648	0.91	1.91	131,9741	4.2417	2.15
13120290	169.66	21.25	8064	86.017	0.93	1.93	200	12.43	2.15
13120493	309.67	-69.67	15912	29.952	0.38	1.38	234,5848	1.6482	2.15
13120538	131.63	-60.16	1.9	37.5	1.57	2.57	200	0.29	2.15
13120954	136.50	-33.20	3240	16.64	0.49	2.68	235	14	2.15
13121470	183.94	-06.34	3600	80.065	1.68	2.68	200	72,171	2.15
13122624	301.31	-64.94	60	8.448	0.9	1.9	264	10.1	2.15
13122927	85.23	-04.40	1.4	13.056	0.65	1.65	352	24.5	2.15

GRB name	RA	DEC	Δ_{err}	 T90	α	β	E_{peak}	Fluence	z
[aanninggini]	[]	11	[alcsec]	[5]			[Kev]	[eig til-2]	
13123119	10.59	-01.65	0.2988	34.303	1.28	2.47	163	163	0.644
14010288	211.92	01.33	0.5	10.496	1.05	2.68	185	20	2.15
14010473	218.81	-08.90	792	188.417	1.43	2.43	725.9484	33.261	2.15
14010634	02.34	-08.75	56916	33.024	0.91	1.91	173.8494	2.4567	2.15
14011026	28.90	-36.26	1800	9.472	0.71	1.71	1768.574	5.426	2.15
14011206	08.44	11.99	25704	12.032	1.18	2.18	399.1264	1.5961	2.15
14011318	75.63	03.18	35964	68.864	1.39	2.39	104.9609	2.6523	2.15
14011586	210.03	-61.41	7920	14.909	1.11	2.11	355.7813	3.9525	2.15
14011589	94.86	-48.86	18648	10.496	1.56	2.56	51.2546	3.2559	2.15
14011806	331.00	-17.94	90	90.112	2	3	200	3.9593	2.15
14012681	208.70	31.28	21024	75.776	0.85	1.85	126.1182	5.3456	2.15
14012914	37.89	-01.60	0.5	2.99	2.08	3.08	200	0.13	2.15
14021151	124.22	20.24	4.4	89.4	2.1	3.1	200	1.8	2.15
14021380	105.15	-73.14	0.51	16.64	1.39	3.55	100	15.7	1.208
14022349	141.12	-30.40	19980	17.408	0.61	1.61	541.762	1.9792	2.15
14022773	235.31	31.55	29484	17.152	1.7	2.7	200	0.7138	2.15
14030484	354.18	-27.03	1.6	232.708	0.97	1.97	133.9857	8.3213	5.283
14032242	250.30	-69.45	4.9	10.496	1.01	2.01	44.1396	2.0052	2.15
14032343	356.96	-79.90	1.4	106.752	1.09	3	127	31	2.15
14032929	145.70	-32.23	720	33.024	1.04	2.3	238	85	2.15
14033018	328.07	-57.75	1303.2	16.64	0.6	1.6	158	3.9	2.15
14033124	134.86	02.72	1.7	209	2.01	3.01	200	0.67	2.15
14040503	119.10	-26.89	14112	39.936	1.02	2.02	171.9118	2.5992	2.15
14040612	357.55	05.63	9360	109.312	1.53	2.53	117.8732	11.454	2.15
14040855	290.72	-12.60	1.8	4	1.49	2.49	200	0.31	2.15
14041293	144.97	-65.82	1.8	39.6	1.95	2.95	200	0.72	2.15
14041300	65.45	-51.18	1.6	181	1.37	2.37	228	29	2.15
14041606	35.41	43.91	3600	32.768	1.43	2.95	97	69	2.15
14042219	164.54	-62.62	24660	361.472	1.83	2.83	200	4.7774	2.15
14042651	174.49	-13.95	45072	37.568	1.42	2.42	200	2.2827	2.15
14050688	276.78	-55.64	0.43	8.448	1.3	2.3	187	6.6	0.889
14050817	350.53	-63.78	17928	19.456	1.66	2.66	200	3.3351	2.15
14050909	46.59	-62.64	0.42	23.2	1.59	2.59	200	1.2	2.15
14051199	26.25	-24.91	12888	59.136	0.77	1.77	234.1039	6.746	2.15
14051281	289.37	-15.09	0.61	8.448	0.85	3.24	279	48	0.752
14051372	248.36	-19.50	14148	17.152	0.99	1.99	83.879	4.1056	0.752
14051538	186.06	15.10	1.5	23.4	0.98	1.98	200	0.59	6.32
14051838	227.25	42.42	1.5	60.5	0.92	1.92	200	1	4.707
14052312	133.30	24.95	1440	27.648	1.22	2.7	212	55	2.15
14052883	280.73	-59.08	1440	16.64	0.59	2.8	202	24	2.15
14052939	228.78	-41.05	3.3	8.448	1.5	2.5	52	2.6	2.15
14060347	217.45	25.91	7668	138.242	0.92	1.92	153.5136	18.618	2.15
14060815	151.22	-50.26	4536	71.681	0.96	1.96	200	12.302	2.15
14061068	286.27	03.91	3.1	134.144	1.48	2.48	313.4481	13.801	2.15
14061229	267.38	-64.11	16884	38.913	0.33	1.33	138.6757	4.1045	2.15
14061404	231.17	-79.13	1.4	720	1.5	2.5	200	1.3	4.233
14061948	27.11	-39.26	1	339	1.3	2.3	236	54	2.15
14062182	25.08	22.42	2592	8.448	1.11	4.17	740	7.8	2.15
14062602	77.38	-82.63	2.3	16.4	0.61	1.61	200	0.36	2.15
14062862	226.03	-25.83	46944	12.544	1.08	2.08	101.8929	1.4664	2.15
14062870	359.15	31.56	32544	75.52	1.01	2.01	176,5918	1.8195	2.15
14070156	351.45	-28.66	13752	25.088	0.91	1.91	387,5949	2.6478	2.15
14070183	285.44	-32.59	15588	6.912	1.11	2.11	199.036	2.609	2.15
14070681	49 29	-38.05	0.45	43,776	1.05	2.05	83,1158	2.4869	2 15
14071090	204.65	-58 59	100.8	11 52	1.00	2.00	200	1.3982	2.15
14071270	319.28	-10 72	33228	26 624	1.50	2.50	200	2 1141	2.15
14071297	83 48	-73.62	6048	28.024	0.93	1 93	247 8262	5 0997	2.15
14071426	220.99	40 31	4104	132 098	0.93	1.90	87 0761	18 523	2.15
110/ 11/20		10.01	TUT	102.070	0.74	1.74	07.0701	10.020	2.15

La tabella continua dalla pagina precedente									
GRB name [aammgghh]	RA [°]	DEC [°]	Δ_{err} [arcsec]	T90 [s]	α	β	E_{peak} [keV]	Fluence [erg cm-2]	z
14071643	108.17	-60.18	2.4	114.944	1.09	2.28	157	9.4	2.15
14071924	171.60	-50.14	1.5	48	1.9	2.9	200	0.43	2.15
14071986	39.73	-02.38	102	53	1.8	2.8	200	1.3	2.15
14072133	175.71	-41.21	3600	98.56	1.31	2.27	153	47	2.15
14072306	210.63	-03.73	1260	33.024	1.1	2.46	1142	23	2.15
14072349	24.63	11.19	8028	45.056	0.88	1.88	200	23.46	2.15
14072902	193.95	15.35	1224	16.64	0.65	1.65	592	20	2.15
14073082	56.40	-66.55	1.5	41.3	2.5	3.5	200	0.28	2.15
14080179	44.07	30.94	3.6	7.68	0.44	3.93	108	11	1.32
14081078	119.04	27.55	432	93.696	1.05	2.35	239	150	2.15
14081822	199.56	06.92	2.16	41.216	1.11	2.21	219	36.8	2.15
14082199	174.72	13.53	3600	32.513	0.97	1.97	200	55.145	2.15
14082454	55.63	04.35	7416	4.096	0.31	1.31	55.3246	2.6866	2.15
14090545	340.50	-25.94	10152	110.082	0.65	2.46	130.43	27.462	2.15
14090767	48.15	46.60	0.75	79.2	1.72	2.72	200	4.3	1.21
14091101	128.39	-36.56	11088	116.736	0.86	1.86	594.2236	6.7844	1.21
14091644	40.40	-39.69	1.4	80.1	2.15	3.15	200	1.7	2.15
14091837	356.18	00.54	62100	165.632	1.15	2.15	109.3297	2.12	2.15
14092721	291.79	-65.39	1.8	6.26	1.82	2.82	200	0.27	2.15
14092843	43.70	-55.93	0.50004	57.856	1.17	2.09	304	86	2.15
14092967	177.45	-58.64	31644	37.12	1.8	2.8	200	1.8724	2.15
14100356	321.77	-36.89	25200	8.704	1.39	2.39	200	1.8542	2.15
14100378	137.64	-02.21	25272	7.424	0.84	1.84	200	1.3441	2.15
14100415	30.44	-77.30	7452	9.472	0.18	1.18	200	4.0962	2.15
14100521	291.09	35.10	1.5	8.448	0.34	2.83	104	2.3	0.573
14101146	259.38	-43.00	14868	12.029	0.72	1.72	767.2368	2.8852	2.15
14101277	286.82	-49.88	11016	37.633	0.93	1.93	1055.371	6.6405	2.15
14101380	315.06	-61.89	13608	82.432	0.84	1.84	268.3707	8.8092	2.15
14101689	221.45	-62.49	5436	17.405	0.98	1.98	155.7313	3.579	2.15
14101776	93.63	-58.58	1.4	8.448	0.89	1.89	97	4	2.15
14102206	241.87	-72.13	2.1	8.72	1.31	2.31	200	0.48	2.15
14102208	119.39	-75.17	3600	9.216	0.8	2.83	470.6	89.994	2.15
14102845	322.60	00.23	0.50004	31.489	0.84	1.97	294.17	34.781	2.15
14103074	101.37	33.40	23940	8.96	0.2	1.2	92.0522	2.3058	2.15
14103130	128.61	-59.17	1.4	19.456	1.17	2.17	458.3125	4.9279	2.15
14110277	114.22 252.12	24.00	46044	25.088	0.75	1.75	130.2417	0.8437	2.15
14111023	255.15	-34.09 45.01	13680	30.008	1.23	2.23	287.3087	2.4307	2.15
14111235	17.40	-45.61	13000	555.676 9.449	1.11	2.11	330.0769 14E	21.555	2.15
14111007	100.12 280.61	19.70 52.52	20808	0.440 20.72	1.14	1.19	200	2.3 4.0272	2.15
14112207	200.01	97.52	20000	12 056	0.20	1 20	200	4.0273	2.15
14120501	294.01	-07.50	33444	13.030	1.67	2.67	222.0372	0.5366	2.15
14120025	150.00	02.42	1 806	24 822	0.5	2.07	200	48.7	2.15
14120700	230 16	10.91	3/16/	14.002	1.8	2.00	200	1 7730	2.15
14122189	126.02	-74 21	0.43	32 513	0.71	1 71	164 9837	7 4393	1 452
14122107	178.04	-57 35	360	8 4 4 8	15	2 29	858	11	2 15
14122222	72 43	-19.23	47	8 4 4 8	1.03	1.2	254	47	2.15
14123014	56.98	01 59	13896	9.856	1.05	2.56	188 2253	1 7987	2.15
14123083	181 47	11.65	15228	28 928	0.87	1.87	101 7995	3 1557	2.15
15010525	124.32	-14 78	3600	73 729	0.07	1.07	200	32 433	2.15
15011092	289.37	32 52	180	2 56	1 78	2 78	200	0 5805	2.15
15012030	39.29	08.08	14	24.3	22	32	200	0.5005	2.15
15012686	350 50	-12.37	1836	24.832	1.04	2.02	208	85.6	2.15
15012000	142 41	-03 14	3600	82,176	0.98	3.17	197	54.3	2.10
15012793	300.68	32.66	34776	84,224	1.66	2.66	200	1.7689	2.10
15013133	16.12	11.36	20916	8,192	1.04	2.04	336,2156	1.4525	2.15
15020296	39.23	-33.15	1.7	25.7	1.5	2.5	200	0.61	2.15
15020317	98.40	06.95	1.5	25.8	1.9	2.9	200	0.91	2.15

La tabella continua dalla pagina precedente

GRB name [aammgghh]	RA [°]	DEC [°]	Δ_{err} [arcsec]	T90 [s]	α	β	E_{peak} [keV]	Fluence [erg cm-2]	z
15020354	156.88	-21.81	9612	23.808	0.53	1.53	100.9087	3.6398	2.15
15020427	160.24	-64.04	4.8	12	1.62	2.62	200	0.8	2.087
15020628	357.94	-61.61	13320	23.296	0.82	1.82	230.4756	2.983	2.15
15020660	10.07	-63.18	0.78	32.256	0.73	2.2	228	55.2	2.087
15021641	120.68	-09.52	36288	33.792	0.47	1.47	71.3748	2.2936	2.15
15021952	271.27	-41.59	1188	36.097	0.77	1.77	203.5844	7.7158	2.15
15022059	135.50	-01.60	1800	147.712	0.86	2.25	211	30	2.15
15022245	170.30	-46.20	4644	65.281	0.8	1.8	200	19.539	2.15
15022283	294.54	-40.94	40752	74.752	0.23	1.23	85.6944	3.842	2.15
15022770	198.79	-12.15	1.7	17.408	2.07	3.07	200	2.4563	2.15
15022884	231.32	-41.87	7308	4.125	0.82	1.82	1184.364	6.5931	2.15
15022898	07.55	-61.73	9108	36.609	1.15	2.15	173.9147	11.531	2.15
15030181	89.17	-57.97	0.42	13.312	1.12	2.12	225.6019	3.0852	1.517
15030351	114.81	-05.54	18432	4.864	1.93	2.93	200	0.625	2.15
15030572	225.12	-44.74	40896	16.128	1.24	2.24	200	1.7217	2.15
15030699	00.63	-58.55	3600	18.944	0.76	1.76	212.3506	27.014	2.15
15031365	237.86	-47.85	30312	5.12	1.43	2.43	96.1763	0.8673	2.15
15031829	325.01	-61.46	1.6	83.88	2	3	200	2.5	2.15
15031852	269.05	-30.22	7884	94.72	1.28	2.28	142.1572	4.3291	2.15
15032206	125.84	-48.05	10080	15.613	0.77	1.77	449.3167	3.6315	2.15
15032416	180.81	-42.72	15084	4.608	0.59	1.59	757.3281	4.8485	2.15
15032928	163.00	-12.32	42228	28.928	1.19	2.19	237.6197	1.7166	2.15
15040391	311.50	-62.71	0.4176	27.136	0.93	2.06	373	100	2.06
15042270	215.10	-20.86	3852	36.865	1.1	2.3	90.64	29.897	2.15
15042440	182.76	-16.21	468	36.096	1.17	2.17	81.6633	3.8455	2.15
15043001	326.48	-27.90	1.4	114.944	0.79	2.21	157	29.5	2.15
15050101	50.00	-15.57	11700	9.728	1.21	2.21	187.6121	1.461	2.15
15050639	176.25	07.56	5256	6.784	0.73	1.73	198.3926	3.5555	2.15
15050702	19.13	-03.80	4860	63.489	0.89	1.75	200	15.185	2.15
15050894	45.93	-52.45	36288	113.92	1.19	2.19	70.37	2.8856	2.15
15051013	16.16	04.79	1029	39.168	0.99	2.81	1253	190	2.15
15051136	91.18	-30.35	18180	31.232	1.27	2.27	177.1988	3.3516	2.15
15051385	49.04	-22.87	60	158.978	0.62	1.78	99.33	7.5426	2.15
15051477	74.85	-60.91	432	8.448	1.44	2.43	60	3.7	0.807
15052243	289.32	-39.67	13716	43.776	1.52	2.52	200	2.29	2.15
15052339	115.29	-45.42	3.6	41.216	0.31	2.66	399	44.4	2.15
15052369	202.27	-39.20	20664	114.69	1.64	2.64	200	5.729	2.15
15052766	10.80	-35.60	10908	63.233	1.33	2.33	295.9367	5.0398	2.15
15052865	350.95	-20.09	1.5	13.056	0.93	1.93	302.5714	4.7587	2.15
15060284	289.87	-74.21	8820	10.496	0.07	1.07	217.6678	4.7133	2.15
15060310	74.77	-3/.8/	9864	67.328	1.01	2.01	49.8379	2.1035	2.15
15060382	274.45	-18./1	21276	102.144	1.0	2.6	200	4.712	2.15
15060428	02.22	-46.72	2/9/2	52.750 68.2E2	1.38	2.38	200	1.4645	2.15
15061270	02.28 107.56	25.09	0408	08.333	1.10	2.10	241.8172	19.794	2.15
15061519	214 72	-22.43	1.3	27.0 500.5	1.04	2.04	200	10	2.15
15061095	210.60	-55.59	1.4 5194	57 080	1.57	2.57	200	16 280	2.15
15062609	111 34	-37 78	18	144	2 11	2.55	239.0323	10.209	2.15
15062718	117.04	-51.76	1.0	81 408	0.08	2.11	200	1.0	2.15
15063022	117.49	-21 31	5256	22 784	1.88	2.23	200	10 775	2.15
15063095	358 16	-47 39	9072	39 169	1.00	2.00	320 0258	2 3007	2.15
15070299	52 78	-57.00	1296	65 984	1.21	2.21	2059	2.5007	2.15
15070314	135.80	-11 19	18468	50 176	1 19	2 19	94 038	5 0155	2.15
15070500	102 49	20.86	10692	20.992	1.06	2.06	135,1887	3.8183	2.15
15070833	308 56	-39.36	11268	95 234	1.00	$\frac{2.00}{2.00}$	198 4681	17 087	2.15
15071033	83 22	-46 94	2.6	8.448	0.81	2.27	154	11	2.15
15071284	20.25	-38.46	15480	59,648	0.78	1.78	230,3295	2,4535	2.15
15071865	124.75	-51.04	22284	19.456	0.46	1.46	136,9315	1.1114	2.15
100, 1000		01.01	01	17.100	0.10	1.10	100.0010		0

La tabella continua dalla pagina precedente									
GRB name [aammgghh]	RA [°]	DEC [°]	Δ_{err} [arcsec]	T90 [s]	α	β	E_{peak} [keV]	Fluence [erg cm-2]	Z
15072173	282.88	-49.41	25092	11.52	1.04	2.04	149.2107	1.3508	2.15
15072241	218.28	-35.20	1.4	67	1.79	2.79	200	0.61	2.15
15072478	351.92	03.67	828	8.448	0.65	2.65	663	36.3	2.15
15080194	82.97	-05.39	1.4	426	1.84	2.84	200	3.1	2.15
15080212	151.53	-62.08	15048	313.093	0.76	1.76	205.1242	14.592	2.15
15080220	201.54	17.18	16344	9.984	0.72	1.72	79.5425	1.8974	2.15
15080951	351.03	-16.59	7740	47.361	0.44	1.44	200	6.0928	2.15
15081117	291.34	-15.43	0.6	34	2.13	3.13	200	0.49	2.15
15081560	289.92	-25.54	25236	24.576	1.04	2.04	234.5178	2.2456	2.15
15081708	249.63	-12.05	1.4	35.584	0.95	1.95	108.6151	11.668	2.15
15082088	258.65	-48.33	55260	5.888	1.46	2.46	200	0.3428	2.15
15082140	341.91	-57.89	0.61	164.096	1.47	2.21	350	91.6	0.755
15082217	144.46	00.85	19440	13.312	1.31	2.31	98.1556	2.5751	2.15
15082407	167.55	-56.77	540	16.384	0.96	3.11	197	18	2.15
15082778	68.30	-60.00	18504	10.496	0.74	1.74	216.0913	1.6786	2.15
15083012	207.25	-47.78	10764	44.801	1.5	2.5	110.4293	4.1294	2.15
15090273	214.93	-69.36	457.2	25.6	0.58	2.3	322	121	2.15
15090447	67.08	-20.38	39204	23.296	1.52	2.52	200	1.0272	2.15
15090797	255.30	-63.79	1.8	62	0.17	1.17	200	1.1	2.15
15090840	157.13	-46.43	21996	60.928	1.27	2.27	427.9741	3.4871	2.15
15091131	355.28	-02.90	26352	41.728	1.36	2.36	155.0577	2.8023	2.15
15091158	33.11	-16.94	13680	46.081	0.65	1.65	200	9.0896	2.15
15091177	07.43	05.74	1.4	9	2.32	3.3Z	200	3.13	2.15
15091244	240.44	-21.05 21.01	27512	15 872	1.27	2.27	205.1550	5.4525 1 1922	2.15
15092271	90.30 274 14	-50.47	44604	2 816	1.50	2.30	200	0.6484	2.15
15092200	274.14	-10.63	15	121	2 10	2.04	200	1 /	2.15
15100134	246 74	-19.03	6084	377 862	1 1 3	2.08	128.28	20 203	2.15
15100134	60 34	-66 37	45216	44 032	1.15	2.00	200	1 3475	2.15
15100072	258.35	-09.64	9828	25 344	1.05	2.03	153 812	7 5527	2.15
15102106	337.64	-33.20	0.42	131 328	1.27	2.27	170	76.6	2.10
15102179	104.34	-10.96	4320	7 229	0.67	1.10	269 0389	12 258	2.00
15102310	359.74	-17.15	2.2	10.24	0.76	1.76	79.2066	1.3359	2.15
15102417	232.86	22.95	39996	4.608	1.52	2.52	200	0.2788	2.15
15102616	228.04	-06.13	19512	53.248	1.41	2.41	200	1.7974	2.15
15102652	107.39	-73.32	12852	63.232	0.74	1.74	212.8987	4.3163	2.15
15102932	38.53	-35.39	0.42	8.95	0.49	1.49	200	0.39	1.423
15103124	83.20	-39.12	1.5	5	2.41	3.41	200	0.32	1.167
15111135	56.84	-44.16	1.5	46.336	0.08	1.08	118.5023	2.2064	2.15
15111257	02.05	-61.66	1.5	19.32	1.77	2.77	200	0.94	4.1
15111441	120.94	-61.03	0.45	4.86	2.14	3.14	200	0.37	2.15
15111464	62.14	-47.90	20916	34.816	1.42	2.42	200	2.2018	2.15
15111744	19.64	-64.10	7596	58.561	1.31	2.31	167.6073	8.7776	3.5
15112629	338.61	30.88	36288	8.448	1.33	2.33	89.268	0.961	2.15
15112933	60.82	-11.49	20412	52.224	0.93	1.93	289.9431	3.9498	2.15
15121013	65.12	-71.25	1.5	94.9	0.82	1.82	200	1.3	2.15
15122894	344.42	08.08	0.58	28.672	0.51	1.51	91.9519	3.781	2.15
15122928	329.37	-20.73	1.4	3.456	1.29	2.29	101.8024	1.1088	2.15
15123144	65.63	-61.54	3600	77.056	0.81	2.57	163	90.3	2.15
16010103	219.65	-13.82	2.88	8.448	1.19	2.86	143	14.7	2.15
16010447	76.80	11.32	0.64	16.2	1.76	2.76	200	0.4	2.15
16010491	280.43	-08.34	21600	44.288	0.76	1.76	65.6416	2.728	2.15
16010793	299.67	06.41	612	106.752	1.75	2.75	131	24.8	2.15
16011111	310.24	-32.78	20448	26.88	1.85	2.85	200	2.627	2.15
16011742	20.37	00.66	1.9	118.58	2.14	3.14	200	3.1	2.15
16012157	109.09	-23.59	1.5	12	1.77	2.77	200	0.61	1.96
16012309	314.22	-22.18	38700	37.632	1.76	2.76	200	0.896	2.15
16012337	150.31	-33.78	1.5	3.95	1.51	2.51	200	0.35	2.15

La tabella continua dalla pagina precedente

GRB name [aammgghh]	RA [°]	DEC [°]	Δ_{err} [arcsec]	T90 [s]	α	β	E_{peak} [keV]	Fluence [erg cm-2]	z
16012536	76.78	13.01	39060	16.896	2.18	3.18	200	1.211	2.15
16013111	333.69	-41.44	32976	34.816	0.95	1.95	128.292	1.7721	2.15
16013134	78.17	-07.05	0.43	162.048	0.97	1.56	586	326	0.972
16021680	311.68	-71.55	1.4	8.448	0.66	1.66	140	3.05	2.15
16021967	238.03	33.67	9216	145.922	0.87	1.87	547.6274	10.468	2.15
16022086	326.89	06.05	56808	22.528	0.66	1.66	214.1491	1.214	2.15
16022199	232.08	-28.43	144	11.52	1.42	2.42	200	1.752	2.15
16022207	309.58	-23.77	34452	18.176	1.24	2.24	64.8364	1.2666	2.15
16022341	94.99	33.41	132.12	17.92	0.87	1.87	242.3148	3.614	2.15
16022367	18.11	-48.54	17532	288.005	0.9	1.9	617.6619	12.17	2.15
16022580	150.19	-34.71	3600	64.257	1.06	2.06	112.7414	17.953	2.15
16022783	123.43	-48.27	4644	7.68	0.86	1.86	229.8755	16.614	2.15
16030121	114.40	02.29	12528	29.697	1.97	2.97	200	5.9349	2.15
16030345	168.70	22.74	1.5	5	1.01	2.01	200	0.15	2.15
16030397	302.20	-65.68	28800	27.136	1.19	2.19	167.2142	1.377	2.15
16031448	112.79	17.00	0.63	8.73	1.53	2.53	200	0.28	0.726
16031573	319.91	-22.11	82980	3.328	1.15	2.15	716.5984	0.305	2.15
16031613	355.33	-52.38	41724	17.152	1.55	2.55	200	1.911	2.15
16032529	15.65	-72.70	0.61	49.408	0.93	2.33	214	17.3	2.15
16032606	188.15	-82.69	36792	19.456	0.75	2.33	237.7986	1.852	2.15
16040106	290.19	-28.90	9828	20.992	1	2	200	9.3138	2.15
16040657	208.48	-76.37	23220	66.56	0.71	1.71	712.4708	4.658	2.15
16040767	226.77	35.53	11268	7.104	1.41	2.41	165.9197	3.2957	2.15
16041218	33.05	-67.63	1.6	31.6	1.88	2.88	200	1.9	2.15
16041602	176.62	-49.48	18504	26.621	1.56	2.56	200	5.0656	2.15
16041718	120.26	07.66	0.46	15	1.93	2.93	200	0.59	2.15
16041963	16.42	-27.34	60	24.32	1.2	2.2	78.337	1.515	2.15
16042249	41.26	-58.22	3600	12.288	1.26	2.26	618.5549	88.021	2.15
16042306	355.81	17.50	24912	11.968	1.05	2.29	227.8	0.8131	2.15
16042449	319.49	-60.41	3.8	8.448	1.24	2.24	133	1.59	2.15
16042597	280.33	-54.36	0.53	304.58	2.2	3.2	200	2.1	0.555
16050614	265.85	-46.13	1.7	254.5	2.09	3.09	200	1.5	2.15
16051219	240.68	-33.09	7380	82.433	1.02	2.23	355.1802	9.8904	2.15
16051581	80.57	-16.31	12348	84.481	1.59	2.59	200	5.9999	2.15
16051623	310.83	-55.33	8460	2.432	1.33	2.33	232.3226	1.953	2.15
16051901	71.12	31.25	132	98.56	1.01	2.01	132.1474	2.4648	2.15
16051906	138.12	-33.03	11232	17.664	1.16	2.16	68.0452	3.173	2.15
16051967	276.88	21.46	24480	19.2	1.15	2.15	53.5184	1.278	2.15
16052183	72.51	-13.70	15984	15.872	0.5	2.46	149.2852	2.6183	2.15
16052827	114.50	-62.11	23508	7.168	1.15	2.15	334.5165	0.743	2.15
16060584	110.98	-19.83	17820	5.504	0.49	1.49	493.4194	2.73	2.15
16060994	70.29	-51.13	30420	60.16	1.14	2.95	119.3309	2.1305	2.15
16061190	164.42	-70.39	1.5	34.1	1.67	2.67	200	1.7	2.15
16062149	307.54	-09.48	32760	251.136	0.66	1.66	1315.607	4.6507	2.15
16062523	314.53	-73.26	12204	43.265	1.31	2.31	200	3.3536	2.15
16062524	127.13	-30.26	19764	10.752	0.79	1.73	179.0708	1.2778	2.15
16062594	176.92	-65.14	2.2	49.152	0.79	2.25	554	944	1.406
16062857	278.32	16.09	14976	23.04	1.38	2.38	200	3.8891	2.15
16063017	198.26	-56.04	1.4	29.5	1.32	2.32	200	1.2	1.5
16070350	287.42	36.92	3.9	41.216	1.01	2.01	327	27	2.15
16071282	304.16	-26.96	1.5	16.64	0.17	2.18	460	6.5	2.15
16071604	190.44	-61.35	2	6.39	2.29	3.29	200	0.18	2.15
16071614	189.61	-68.04	15876	28.928	1.44	2.44	200	2.878	2.15
16072180	38.15	34.52	11880	9.984	0.93	1.93	269.718	2.423	2.15
16072797	145.99	16.40	13896	3.136	0.87	1.87	365.0328	0.713	2.15
16072833	337.04	05.77	48276	18.688	1.36	2.36	45.6024	0.951	2.15
16073102	118.71	06.15	35568	28.672	1.62	2.62	200	2.8821	2.15
16080139	212.76	13.49	1.7	2.85	1.85	2.85	200	0.17	2.15

GRB name	RA	DEC	Δ_{err}	T90	α.	β	Encah	Fluence	z
[aammgghh]	[°]	[°]	[arcsec]	[s]	c.	Ρ	[keV]	[erg cm-2]	2
16080406	221.63	10.00	0.44	131.586	0.71	2.47	275.0134	16.155	0.736
16080477	72.17	41.28	6912	151.808	0.52	1.52	695.5443	8.815	2.15
16081985	114.14	-22.35	180	33.536	0.4	1.4	256.7397	16.877	2.15
16082625	183.11	-67.66	3.5	52.6	1.54	2.54	200	0.49	2.15
16082758	155.16	-55.91	8424	51.2	1.65	2.65	200	6.019	2.15
16083141	302.92	24.09	9036	50.689	0.19	1.19	584.2841	6.2148	2.15
16090547	162.25	-50.80	0.61	42.24	0.7	2.39	594	150	2.15
16090813	241.51	02.39	24696	156.672	0.77	1.77	200	2.8305	2.15
16090906	242.68	-51.16	9684	18.432	0.96	1.96	203.9423	1.917	2.15
16091235	183.29	-60.04	19116	32.705	0.81	2.17	321.9077	4.0972	2.15
16091252	342.51	24.74	12852	84.481	1.2	2.2	200.2371	22.945	2.15
16091792	145.68	22.95	70344	10.752	1	2	1287.01	0.479	2.15
16091961	266.15	-80.21	17532	62.465	0.51	1.51	256.7348	5.5262	2.15
16092024	326.14	01.35	15984	15.616	0.81	1.81	129.2206	1.45	2.15
16092108	256.95	-22.68	22860	48.384	1.71	2.71	200	3.1887	2.15
16092522	348.37	-20.42	19620	50.944	1.35	2.35	200	2.3202	2.15
16092882	130.39	08.14	11484	6.141	0.59	1.59	171.8936	5.4354	2.15
16092952	340.23	22.79	33336	4.864	0.91	1.91	158.4183	0.865	2.15
16100496	112.15	-39.90	1.4	15.616	1.05	2.39	175	17.1	2.15
16100597	239.36	11.10	15624	19.456	0.81	2.39	135.5809	1.2365	2.15
16100700	129.61	07.81	41112	30.72	1.73	2.73	200	1.124	2.15
16100789	103.41	23.31	1.5	201.7	1.46	2.46	200	1.3	2.15
16100965	111.83	12.55	15660	92.16	0.94	2.67	71.9999	6.0674	2.15
16101124	245.73	08.31	1.4	4.3	1.15	2.15	200	0.23	2.15
16101221	330.32	17.56	45684	11.008	1.03	2.03	79.2855	1	2.15
16101241	00.27	13.58	25704	44.288	1.77	2.77	200	1.5811	2.15
16101263	160.43	-74.28	29448	6.4	1.45	2.45	200	0.614	2.15
16101394	109.31	-07.86	18072	34.816	1.68	2.68	200	1.155	2.15
16101452	332.65	07.47	0.9	16.64	1.15	2.15	226	4.7	2.823
16101774	142.77	43.13	0.42	38	1.25	2.37	289	8.5	2.013
16102002	161.03	-54.77	118.8	12.288	1.09	2.09	277.1774	0.808	2.15
16102075	66.09	-75.65	4320	37.888	1.03	2.63	186	51.2	2.15
16102076	32.56	-58.23	12996	22.078	0.95	2.26	163.059	4.9986	2.013
16110541	249.25	-65.22	20580.12	41.473	0.78	1.78	284.2669	9.5415	2.15
16110678	284.53	-60.65	23724	12.544	0.68	1.68	128.2678	1.229	2.15
16111372	179.79	-05.31	1.5	42.6	1.73	2.73	200	1.5	2.15
16111706	322.05	-29.61	0.44	123.136	0.86	3.02	69	24.1	1.549
16111741	298.83	-67.70	1.5	152.51	1.39	2.39	200	6	2.15
16111963	47.19	-47.21	11772	77.824	0.87	1.87	85.0355	6.8453	2.15
16112821	262.43	-46.05	36108	6.912	1.14	2.14	155.028	0.723	2.15
16112930	316.23	32.13	0.6	36.096	1.14	2.14	155.028	6.5385	0.645
16120134	348.73	-17.11	14544	12.8	1.16	2.16	214.0376	1.767	2.15
16120606	00.94	-34.02	3600	33.537	1.61	2.61	200	37.214	2.15
16120722	294 81	-09.93	64836	8 192	0.85	2.01	243 1477	0 294	2.15
16121329	238.61	-40.07	10584	23 296	1.52	2.52	200	1 195	2.15
16121815	245.25	-04 11	60	10.496	0.28	34	128	12.4	2.15
16121835	358.64	-16.95	3600	34 56	0.42	3.37	203	85	2.15
16121000	91 71	-26 79	0.42	8.832	1.59	2.59	91	31	0.148
16122035	350.85	-47 50	37	6	2.01	3.01	200	0.17	2 15
16122000	138.00	-29 16	7524	41 729	0.48	2 93	200	8 948	2.15
16122400	204 57	-18.03	41	47 04	0.10	1 21	200	0.82	2.15
16122729	79 50	39 15	17568	2 56	0.21 0.77	2.21	136 2242	1 0216	2.15
16122838	260.67	-56.06	41508	72 704	0.8	2.20	341 7116	3 6017	2.15
16122840	358 42	-24 60	20268	49,152	1.08	18	115,9557	3.1234	2 15
16122855	129 29	43.67	8064	47 105	1 29	2 48	232 9617	4 6841	2 15

La tabella continua dalla pagina precedente

Bibliografia

- [1] C. Patrignani et al. Review of Particle Physics. Chin. Phys., C40(10):100001, 2016.
- [2] U. F. Katz and Ch. Spiering. High-Energy Neutrino Astrophysics: Status and Perspectives. Prog. Part. Nucl. Phys., 67:651–704, 2012.
- [3] Marcos Santander. The Dawn of Multi-Messenger Astronomy. 2016.
- [4] Juan de Dios Zornoza and Juan Zuniga. The ANTARES neutrino telescope. In 10th Scientific Meeting of the Spanish Astronomical Society (SEA 2012) Valencia Spain, July 9-13, 2012, 2012.
- [5] Thierry Stolarczyk. Gallery. http://antares.in2p3.fr/Gallery/index.html.
- [6] Sheng Xi, Hongsheng Chen, Tao Jiang, Lixin Ran, Jiangtao Huangfu, Bae-Ian Wu, Jin Au Kong, and Min Chen. Experimental Verification of Reversed Cherenkov Radiation in Left-Handed Metamaterial. *Phys. Rev. Lett.*, 103:194801, Nov 2009.
- [7] Rob Garner. Nasa sees 'watershed' cosmic blast in unique detail. https://www.nasa.gov/content/ goddard/nasa-sees-watershed-cosmic-blast-in-unique-detail.
- [8] High Energy Astrophysics Science Archive Research Center (HEASARC). Swift. https://imagine.gsfc. nasa.gov/features/satellites/archive/swift_exhibit.html.
- [9] P F Michelson, W B Atwood, and S Ritz. Fermi gamma-ray space telescope: high-energy results from the first year. *Reports on Progress in Physics*, 73(7):074901, 2010.
- [10] Dmitry Frederiks at Ioffe Institute. Grb 160625b konus-wind trigger time t0=81619.875 s ut (22:40:19.875). http: //www.ioffe.ru/LEA/GRBs/GRB160625_T81619/.
- [11] Dmitry Frederiks at Ioffe Institute. Gcn circular 19604, konus-wind observation of grb 160625b. https://gcn.gsfc.nasa.gov/gcn3/19604.gcn3.
- [12] Paolo Bagnaia. High energy ν interactions. http://www.romal.infn.it/people/bagnaia/fnsn2/07_ nu_dis.pdf, 2016/2017.
- [13] M. G. Aartsen et al. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 342:1242856, 2013.
- [14] Anna Franckowiak. Multimessenger Astronomy with Neutrinos. J. Phys. Conf. Ser., 888(1):012009, 2017.
- [15] J. Aguilar. Antares. http://antares.in2p3.fr/.
- [16] Thierry Stolarczyk. Antares overview. http://antares.in2p3.fr/Overview/.
- [17] B. Theodore Zhang, Kohta Murase, Shigeo S. Kimura, Shunsaku Horiuchi, and Peter Mészáros. Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei. 2017.
- [18] Thierry Stolarczyk. Detector design. http://antares.in2p3.fr/Overview/detector.html.
- [19] N. Gehrels et al. The Swift Gamma-Ray Burst Mission. Astrophys. J., 611:1005–1020, 2004. [Erratum: Astrophys. J.621,558(2005)].

BIBLIOGRAFIA

- [20] Meegan, C. and Lichti et al. ApJ, 702:791-804, September 2009.
- [21] National Aeronautics and Space Administration. Gamma-ray bursts. https://imagine.gsfc.nasa.gov/ science/objects/bursts1.html.
- [22] Swinburne University of Technology. Gamma ray burst afterglow. http://astronomy.swin.edu.au/ cosmos/G/Gamma+Ray+Burst+Afterglow.
- [23] G. Ghisellini. Gamma-ray bursts: some facts and ideas. 2001.
- [24] A. Shemi and T. Piran. The appearance of cosmic fireballs. Astrophys. J., 365:L55–L58, December 1990.
- [25] B. Paczynski. Super-Eddington winds from neutron stars. Astrophys. J., 363:218–226, November 1990.
- [26] Tsvi Piran and Ehud Nakar. How to construct a grb engine? 2002.
- [27] Piran. Internal shocks. https://ned.ipac.caltech.edu/level5/March04/Piran2/Piran8_6.html.
- [28] Silvia Celli. Search for high energy neutrinos from. Master's thesis, Università di Roma "La Sapienza", 2014/2015.
- [29] Matthew G. Baring. Diffusive shock acceleration: The Fermi mechanism. In Very high-energy phenomena in the universe. Proceedings, 32nd Rencontres de Moriond, Les Arcs, France, January 18-25, 1997, pages 97–106, 1997.
- [30] Eli Waxman and John N. Bahcall. High-energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett., 78:2292–2295, 1997.
- [31] Dafne Guetta, D. Hooper, J. Alvarez-Muniz, F. Halzen, and E. Reuveni. Neutrinos from individual gamma-ray bursts in the BATSE catalog. *Astropart. Phys.*, 20:429–455, 2004.
- [32] Eli Waxman and John Bahcall. High energy neutrinos from cosmological gamma-ray burst fireballs. *Phys. Rev. Lett.*, 78:2292–2295, Mar 1997.
- [33] J.D. Myers. Swift overview. https://swift.gsfc.nasa.gov/.
- [34] Karl Hille. Swift overview. https://www.nasa.gov/mission_pages/swift/overview/index.html.
- [35] J.D. Myers. About the swift gamma-ray burst mission. https://swift.gsfc.nasa.gov/about_swift/.
- [36] J.D. Myers. Swift's burst alert telescope (bat). https://swift.gsfc.nasa.gov/about_swift/bat_desc. html.
- [37] J.D. Myers. Swift's x-ray telescope (xrt). https://swift.gsfc.nasa.gov/about_swift/xrt_desc.html.
- [38] J.D. Myers. Swift's ultraviolet/optical telescope (uvot). https://swift.gsfc.nasa.gov/about_swift/ uvot_desc.html.
- [39] J.D. Myers. Fermi gamma-ray space telescope. https://fermi.gsfc.nasa.gov/.
- [40] J.D. Myers. About fermi. https://fermi.gsfc.nasa.gov/science/eteu/about/.
- [41] http://www.glast.stanford.edu/. The fermi large area telescope. http://www-glast.stanford.edu/.
- [42] Narayana Bhat. Fermi gbm. https://gammaray.nsstc.nasa.gov/gbm/.
- [43] Lynn Jenner. Spacecraft and instruments. https://www.nasa.gov/mission_pages/GLAST/spacecraft/ index.html.
- [44] Teresa Sheets. Konus, a gamma-ray burst experiment from russia on the istp/wind spacecraft. https://asd.gsfc.nasa.gov/konus/.
- [45] GCN Observation Report Circulars. Gcn circulars archive. https://gcn.gsfc.nasa.gov/gcn3_archive. html.

BIBLIOGRAFIA

- [46] Hou-Jun Lü, Jing Lü, Shu-Qing Zhong, Xiao-Li Huang, Hai-Ming Zhang, Wei Xie, Rui-Jing Lu, and En-Wei Liang. Extremely bright GRB 160625B with multi-episodes emission: Evidences for long-term ejecta evolution. *Astrophys.* J., 849:71, 2017.
- [47] Irene Di Palma. L'esperimento antares. http://www.romal.infn.it/exp/nemo/AHEN/Thesis/ IreneDiPalma/Capitolo3.pdf.

BIBLIOGRAFIA

Ringraziamenti

Ringrazio il Professor Antonio Capone e la Dottoressa Silvia Celli per l'attenzione e il tempo dedicatomi in questo percorso. Ringrazio inoltre la mia famiglia e i miei compagni di corso per l'incoraggiamento ed il sostegno che mi hanno dato.