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Introduction

The scientific research is inspired by the unknown and unresolved, by the need
to unravel and explain the physical reality. In the present time one of the most
intriguing issue of physics is the evidence that a massive, non-interacting and non-
baryonic form of matter constitutes about the 26% of the Universe. The nature of
this matter, usually referred as Dark Matter, is unknown. This enormous blank in
the knowledge of the physical reality is embarrassing and the necessity to provide an
explanation is becoming more and more impelling. As a consequence several efforts
led by the scientific community are dedicated to the dark matter search. In the last
years many experiments are focusing on the solution of the missing mass problem.
The main branches of physics involved in this challenge are cosmology, astrophysics
and particle physics. Cosmology and astrophysics can boast the unique certain dark
matter evidence at the present time, therefore are favoured tools. However parti-
cle physics actively contributes to this search through the elaboration of several
hypotheses and experimental probes. Starting from theories beyond the Standard
Model, elaborated to answer to the issues that afflict the affirmed theory, possible
dark matter candidates are proposed, supported by the existence of plausible cos-
mological production processes. From these theoretical suggestions, experiments
focusing on the different frameworks are realised. In this picture the deep ignorance
on the dark matter nature causes the proliferation of hypothesis, models and con-
victions that are usually misleading and counter-productive. Scope of this thesis
is to clarify what are the confirmed data and what are the proposals, to establish
what are the conditions under which a comparison between the available results is
allowed and in addition to contribute to the reconciliation among the apparent con-
trasting data, published by several research groups in the last years. To deal with
this vast field, an accurate analysis of the available models is required, to reach an
aware approach to the theoretical and experimental search. For this reason the ini-
tial part of this work is devoted to the theoretical study of some of the dark matter
particle candidates. For a criterion of simplicity, the attention has been focused on
minimal models, chosen also according to the strength of the arguments supporting
the relative theories. The simple accommodation in the cosmological framework
is another motivation. After this horizontal analysis, the popular model, relative
to a dark matter mass in the electroweak mass range, is discussed. A particular
attention is addressed to the different type of experimental searches carried out so
far, that is to direct and indirect detection experiments. Usually the popular cross
section plots are shown considering several sets of results, in order to compare the
available data. However the conditions under which the comparisons are allowed are
often not illustrated and the confusion that can arise from this omission invalidates



Introduction

the comparison. One of the aims of this work is to clarify these assumptions. The
last section is devoted to the evaluation of the typical behaviour of the counting
rate relative to the dark matter interaction occurring within the detectors. The
simulation of the differential counting rate in different detectors, together with the
evaluation of the nuclear form factors contribution, allows to predict the expected
signal. A final challenge is to assess which are the reasons of tension among the
experiments that claim a dark matter signature detection and the experiments that
would exclude the same signal. The demonstration of the agreement between the
results would play the fundamental role to strengthen the hypothesis that the signal
detected by some experiments corresponds really to the first dark matter signature.

2
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Chapter 1

Cosmological and Astrophysical
Evidences of Dark Matter

The literature dealing with the dark matter problem starts off by listing the
astrophysical and cosmological proofs of the dark matter existence, because it needs
to demonstrate, or remember, that the dark matter, in any of the possible shapes,
does exist.

1.1 Galaxy rotation curves
The main and oldest astrophysical proof of the dark matter existence originates

from the measure of the galaxy rotation velocity within the galaxy clusters. In the
routh approximation of spheric and self-gravitating galaxies, of equal mass m and
orbital velocity v, the cluster is considered a virially bound system, described by:

2K + U = 0→ v(r) =

√
GM(r)

2r (1.1)

where K is the kinetics energy, U is the potential energy and v(r) is the orbital
velocity of a galaxy at a distance r from the center. G is the gravitational constant
while M(r) =

∫ r
0 d

3r′ρ(r′) is the mass contained within the distance r, where ρ is
the mass density. From the measure of the galaxy orbital velocity an estimation of
the total mass content can be inferred regardless of the luminous matter content,
making possible a comparison.
The first observation that let to a similar calculation dates back to F. Zwicky (1993),
who studied the galaxy velocity in the Coma cluster [1]. The two contributions in
the Coma cluster results in a ratio of O(102). This estimation leads to the conclu-
sion that a dark missing mass component must exist.

A similar estimation holds to smaller scales, such as at the galactic scale. The
measure of the orbital velocity as a function of the radius allows the construction
of the rotation curve of the objects in a galaxy, whose behaviour is expected to be
decreasing for greater distances from the center according to:



1.2 Gravitational lensing: the Bullet Cluster

m
v2(r)
r

= GmM(r)
r2 → v ∝ 1√

r
(1.2)

Indeed the experimental results provide flat rotation curve up to large radii that
does not fit the expected threshold, that is the curve obtained considering only the
galactic disk and the gas contribution, as shown for example in fig. (1.1).

Fig. 1.1: Rotation curve for the dwarf spiral galaxy NGC 6503, located in the Local Void. The dashed
and pointed line are the expected curve for the disk and gas contribution, while the data are fitted

considering the dark matter contribution. Taken from K.Freese, (2009), Review of Observational Evidence
for Dark Matter in the Universe and in upcoming searches for Dark Stars.

1.2 Gravitational lensing: the Bullet Cluster
The gravitational lensing is the fascinating phenomenon of deviation of the light

path as a consequence of the distortion of the spacetime geometry, due to the
presence of a large gravitational field. Since the spacetime curvature modifies the
null geodesic, the light emitted by sources behind the massive object are deviated
and the source images appear projected around the massive object. Indeed this is
the rare strong lensing, that occurs when the light source is close to a very massive
object and the emitted light is projected into multiple images. It is called weak
lensing instead the common streaching of the light source image, that occurs almost
to all the astrophysical observed objects.
The lensing phenomenon, since it is related only to gravity, allows to identify matter
whose unique detectable interaction is gravitational. An example is the observed
gravitational lensing around the so called Bullet cluster, evidence that confirmed
the existence of a dark matter component of our universe.

4



1.3 Structure formation

The Bullet cluster (1E0657-56) was observed by the NASA Chandra X-ray tele-
scope in 2006 and it is the most energetic event known from the Big Bang. It is the
result of the two galaxy cluster merge and its popularity is due to its contribution
as proof of the dark matter existence.

Fig. 1.2: NASA X-ray Chandra composite image of the galaxy cluster 1E0657-56, also known as Bullet
cluster. The pink clouds represent baryonic gas, while the blue regions represent the dark matter content,

estimated from measures of gravitational lensing.

The pink shadows represents the baryonic gas content; the right pink cloud shape
suggests a friction effect. The blue clouds represents instead the two cluster matter
content that does not interact neither with the gas or with itself and that, therefore,
passes undisturbed through the gas. The signature of this non-interactive mass
content is only the gravitational lensing of the light source nearby. As a consequence
of this observation, the two blue regions are identified as dark matter.

1.3 Structure formation
The cosmology branch that studies the structure formation mechanisms parteci-

pates to a great extent to the dark matter nature identification. The Jeans theory
on cosmological perturbations asserts that a local inhomogeneity δρ can evolve to-
wards a structure formation if the ratio with the average background density ρ̄ is
δρ/ρ̄� 1. The first baryonic density fluctuations, that survive against the radiation
pressure, are impressed on the Cosmic Microwave Background (CMB), which is the
surface of last scattering originated by the photon decoupling age. Since then, the
density fluctuations have been growing as the cosmic scale factor a, such that:

δρ0
ρ̄

= a(t0)
a(tdec)

δρdec
ρ̄

= (1 + zdec)
δρdec
ρ̄

(1.3)

where ’dec’ refers to the decoupling age, zdec ∼ 103 is the redshift at recombina-
tion and δρdec

ρ̄ ' 10−4 from CMB experimental data. From the simple estimation

5



1.3 Structure formation

of eqs. (1.3), we conclude that today the ratio between the baryonic density fluctu-
ations and the background density would be equal to δρ/ρ̄ ∼ 10−1 < 1, that clearly
implies that the luminous baryonic content alone would not allow the reaching of the
observed galaxy distribution. Since the washing out of the previous-CMB baryonic
density fluctuations is due to the coupling with photons (it is the radiation pressure
content that contrasts the gravitational collapse), then a matter content that does
not couple with photons, i.e. a dark matter content, is required [5].

Since the dark matter nature is unknow, its couplings with ordinary matter are
mysterious as well. No information about its production mechanism is available,
therefore, as a matter of principle, the dark content of the universe could be hot
(relativistic), cold (non-relativistic) or warm. But again the matching with the
structure formation theory contributes to constrain the field.

• The hot dark matter hypothesis would require that larger structures form
before smaller structures. The reason is that the relativistic particles free
streaming, that is the particle displacement between different density regions of
the fluid, smoothes the bumped inhomogenities that are below a characteristic
lenght. For this reason structure with intial density fluctuations below this
characteristic lenght are avoided. This ordering, called ’top-down’ process,
is excluded by the experiments and, as a consequence, the hot dark matter
hypothesis is excluded as well(1).

• The cold dark matter paradigm is instead related to the ordering called
’bottom-up’, that assumes a natural hierarchical structure formation starting
from the smallest to the largest objects. This scheme is confirmed by exper-
iments that figure out that small structures are older than large structures.
Many of the dark matter particle candidates belong to this framework, such
as axions and WIMPs.

• Between this two limits there is the intermediate case of warm dark matter.
The hypothesis is that the dark matter decouples when it is still relativistic
but before the decoupling of the neutrino species, such that its temperature is
now below that of neutrinos. In this condition the dark matter free streaming
is compatible with the structure formation observed today and both the top-
down and the bottom-up schemes are possible. The main candidate that can
be described as warm dark matter is the keV sterile neutrino.

Hence the theory of the structure formation provides a determining proof of
the dark matter existence and furthermore contributes to the dark matter nature
identification, for istance excluding the hot dark matter candidates. However the
possibility that a smaller fraction of the dark matter content is hot is not excluded:
these are called dark matter mixed models.

1As we will discuss later, this is the reason of the standard neutrino exclusion from the possible
dark matter candidates.

6



1.4 CMB anisotropy and ΛCDM model

1.4 CMB anisotropy and ΛCDM model
The baryon matter density fluctuations are impressed on the CMB, due to the

baryon coupling with photons, that for istance allows indirect conclusions about the
dark matter existence, as discussed before. The dark matter density fluctuations
are not directly observable on the CMB because dark matter does not emit any
signal.
Indeed through the gravitational attraction that exerts, the escaping matter di-
rectly leaves a mark on the CMB. The CMB temperature fluctuations carry the
information about the gravitational redshift experienced by photons; such redshift
is a consequence of the gravitational field orginated by the whole present matter
content. Thanks to this effect, studied by Sachs and Wolfe in 1967 [6], the dark
matter content can be inferred by the CMB study. Indeed the most compelling
constraints on the dark matter properties are imposed exactly by the CMB study.

Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2015 temperature power spectrum. At multipoles ` ≥ 30 we show the maximum likelihood frequency-averaged
temperature spectrum computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters de-
termined from the MCMC analysis of the base ΛCDM cosmology. In the multipole range 2 ≤ ` ≤ 29, we plot the power spectrum
estimates from the Commander component-separation algorithm, computed over 94 % of the sky. The best-fit base ΛCDM theoreti-
cal spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown
in the lower panel. The error bars show ±1σ uncertainties.

The large upward shift in Ase−2τ reflects the change in the abso-
lute calibration of the HFI. As noted in Sect. 2.3, the 2013 analy-
sis did not propagate an error on the Planck absolute calibration
through to cosmological parameters. Coincidentally, the changes
to the absolute calibration compensate for the downward change
in τ and variations in the other cosmological parameters to keep
the parameter σ8 largely unchanged from the 2013 value. This
will be important when we come to discuss possible tensions
between the amplitude of the matter fluctuations at low redshift
estimated from various astrophysical data sets and the Planck
CMB values for the base ΛCDM cosmology (see Sect. 5.6).

(4) Likelihoods. Constructing a high-multipole likelihood for
Planck, particularly with T E and EE spectra, is complicated
and difficult to check at the sub-σ level against numerical
simulations because the simulations cannot model the fore-
grounds, noise properties, and low-level data processing of
the real Planck data to sufficiently high accuracy. Within the
Planck collaboration, we have tested the sensitivity of the re-
sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2016). The most highly developed of

them are the CamSpec and revised Plik pipelines. For the 2015
Planck papers, the Plik pipeline was chosen as the baseline.
Column 6 of Table 1 lists the cosmological parameters for base
ΛCDM determined from the Plik cross-half-mission likeli-
hood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods differ in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations,
and multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2σ, except for ns, which
differs by nearly 0.5σ. The difference in ns is perhaps not sur-
prising, since this parameter is sensitive to small differences in
the foreground modelling. Differences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ΛCDM models discussed in Sect. 6. We emphasize that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on
the full “TT,TE,EE” likelihoods) would differ in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015

8

Fig. 1.3: The Planck 2015 temperature power spectrum. The ΛCDM is the best-fit of the experimental
data. In the lower panel the residuals with respect this model are shown [4].

The so called ΛCDM (Λ Cold Dark Matter) model, is the minimal model of cos-
mology corrected for the dark matter contribution, involving also the inflationary
mechanism and the dark energy. Λ is the historic cosmological constant, the scalar
field that was proposed wrongly by Einstein to preserve the Universe stationarity
and that, after the evidence of the universe expansion, was again introduced as pos-
sible explanation of the present universe expansion acceleration. The ΛCDM model
fortune is due to its capability to describe the experimental results, as recently con-
firmed by the Planck collaboration [4]. They affirms that the data are so consistent
with the ΛCDM model that if there is new physics beyond the standard cosmology,
it is very difficult to detect it. The power spectrum describing the coefficients of the
temperature anisotropy multipole expansion shows clearly the perfect consistency
between the CMB data and the ΛCDM expectation.

1.4.1 Dark energy
The ΛCDM model is characterized by six parameters: the Hubble constant H0,

two of the three density parameters (the third is fixed by the equation Ωb+Ωc+ΩΛ =

7



1.5 Thermal and non-thermal cosmologic relics

1), the reionization optical depth τ , the scalar density fluctuation amplitude As and
the spectral index ns [3]. The experiments constrain the density parameters and
the result is that about the 69% of our universe is made of dark energy.
Dark energy is the unknown form of energy that is responsible for the universe
acceleration. Consider standard cosmology acceleration equation:(

ä

a

)
= −k6 (ρ+ 3p) = −k6ρ(1 + 3w) (1.4)

where a is the expansion scale parameter, k is a positive constant, ρ is the energy
density and p is the pressure and w derives from the equation of state p = wρ. This
equation in order to describe the expansion acceleration requires the presence of a
negative pressure component p ≤ ρ

3 , such that ä > 0.

There two main candidate for the solution of the dark energy problem:

• the cosmological constant Λ, that is the most popular;

• the dynamical scalar field φ(t), named quintessence.

The cosmological constant belong to the standard cosmology framework. The ex-
perimental results are consistent with the hypothesis that there is a costant energy
component in our Universe and this is the reason of the popularity of the ΛCDM
model. However, from the theoretical point of view, the matching between cos-
mology and quantum field theory fails. The cosmological constant is commonly
associated to the quantum vacuum energy, whose order of magnitude is computed
as ρvac 'M4

P ' (10112eV4), where MP is the Planck mass; instead the dark energy
density is ρde ' (10−11eV4). This absurd discrepancy between the two order of
magnitude is the so called "cosmological constant problem".

The quintessence is instead a scalar field φ, that is time-dependent. The hy-
pothesis is that at the beginning or at the end of its time evolution it recovers the
behaviour of the cosmological constant. As the cosmological constant, this proposal
encounters a difficulty when compared with quantum field theory. Cosmology would
fix a scalar mass mφ ' 10−33eV, while the expectation value φ is ∼MP .

1.5 Thermal and non-thermal cosmologic relics
- This section refers to [2].

A particle is defined as a thermal relic if it was produced by the decoupling from
the primordial thermal bath with which it was previously in equilibrium. At the
beginning all the known particles were merged in this primordial plasma. What
is named as the thermal hystory of our Universe is marked by epochs associated
to the different time of particle decoupling from the equilibrium. The equilibrium
holds until the different species density number is conserved, i.e. until the high
temperature allows "bilateral" interactions. Each particle destroyed is restored by

8



1.5 Thermal and non-thermal cosmologic relics

the inverse reaction. In a static Universe this ideal condition would hold in any time
and the thermal relics would have never produced. The evidence of an expanding
Universe, described by a time dependent spacetime geometry, implies instead that
many physical quantities, such as the distances, the energy density, the tempera-
ture, are time-dependent and, as a consequence, the interaction amplitude as well.
The decoupling condition occurs when the thermal bath temperature T drops with
respect the particle mass m, i.e. when:

T � m (1.5)

When the mass is greater than the temperature, its production is forbidden and
its number density drops due to its annihilation or decay into lighter particles.
But the thermal relic number density depends also on the relation between the par-
ticle interaction amplitude Γ and the expansion rate H = ȧ

a . When the interaction
amplitude Γ drops with respect to the expansion rate H = ȧ

a as much that:

Γ� H (1.6)

then the particle number density "freezes-out", because also the annihilation or decay
interactions are now forbidden. The species that experience these two mechanisms
are what is defined thermal relics.
The difference between relativistic and non-relativistic thermal relics orginates from
the balance between the decoupling and the freeze-out mechanisms:

• if the particle decoupling occurs before the freeze-out than the resulting species
is non-relativistic(2);

• if the freeze-out occurs when the particle is in equilibrium with the thermal
bath then the resulting species is relativistic.

From the dark matter problem point of view, under the assumption that it is a
thermal relic, its distinction in hot, cold or warm depends on the temporal order
between decoupling and freeze-out.
An example of hot thermal relic is the neutrino. Since it is light and coupled to
ordinary matter only through the weak interactions, it freezes out before the tem-
perature becomes smaller than its mass, therefore it is a relativistic, hot, thermal
relic. For the reasons discussed above, regarding the structure formation, it is ex-
cluded from the list of possible dark matter candidates.
An example of thermal warm dark matter is instead the sterile neutrino with keV
mass range. The sterile neutrino is assumed to be not coupled with ordinary matter,
expect for a small mixing with active neutrinos. Hence its interaction amplitude
is smaller than that associated to the weak interactions and as a consequence it
decouples before active neutrino decouple. The departure from the thermal bath
allows their temperature drop and the possibility that the sterile neutrino today
can be considered warm.
Finally the thermal cold dark matter is associated to the hypothesis that the dark
particle is so massive that the thermal bath temperature becomes smaller than

2For more details see the Appendix A.1.1
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1.6 Primordial black holes

the mass before the freeze-out occurs. As a consequence the thermal relic is non-
relativistic and therefore cold. This is the case of the Weakly Interactive Massive
Particles.

During its thermal hystory, the Universe experiences also phase transitions, due to
mechanisms similar to the quantum field theory Spontaneous Symmetry Breaking
(SSB). These phase transitions could contribute to the cosmologic production of
massive scalar fields, that today are among the possible solutions of the missing
mass problem, for istance the axions(3). The axions could be thermically produced
as the other particles, but the condition of Universe closing imposes for them a
mass of 130 eV; such axions would decay very quickly and astrophysical constraints
(concerning for example the star energy loss) exclude this possibility. The conclusion
is that thermal axions are ruled out from the dark matter candidates.
Let us briefly illustrate how the SSB process introduces the axion non-thermal
production. Given a scalar field φ, its potential is:

Vφ(T ) = 1
2m

2
φ(T )φ2 + λ

4!φ
4 (1.7)

where λ > 0 is the self-interaction coupling. The mass mφ dependens on temper-
ature in such a way that when the temperature drops and reaches a characteristic
value, the squard mass changes sign (the mass becomes complex). Then the poten-
tial assumes the typical "wine bottle" behaviour. The minimum potential point does
not depends on the Θ ≡ arg〈|φ|〉 and the free choice of one of the possible minima
is the cause of the symmetry breaking. Θ is the massless scalar field produced by
the SSB. For the axion the experiments suggest that the chosen minimum is Θ̄ = 0,
as we will discuss later.

A non-thermal relic can be produced by the coherent oscillations that the massless
scalar field experiences when roll toward the minimum; in fact at high temperature
there is no reason for Θ to be in the minimum. This process is called misalignment
production because deals with the displacement of the ’misaligned’ Θ from its high
temperature generic value Θ1 towards the minimum Θ̄. The equations that rule the
misalignment production are beyond the purposes of this work; the relevant aspect
of this non-thermal process is that for low temperatures, as that of today, the axion
produced is estimated to be cold. In the dark matter optic this is a favorable point
for the axion candidate, since the cold dark matter is the framework suggested by
the cosmologic observations. Furthermore among the allowed windows of mass that
can account for the dark matter density there is the 10−5 − 10−3 eV mass range,
that so far has not been ruled out by any experiments.

1.6 Primordial black holes
Primordial Black Holes (PBH) are the gravitational collapse of overdensity region

of the primordial Universe. Since they are expected to form before the Big Bang
3The axion arises by the spontaneous symmetry breaking of the Peccei and Quinn new gauge

symmetry, the U(1)PQ, proposed to provide an explanation to the strong-CP problem. We shall
talk about this topic in the next chapter.

10



Appendix A.1

Nucleosynthesis (BBN) they are not constrained by the baryon-to-photon ratio η '
10−10. For this reason they are considered to partecipate to the non-baryonic and
non-luminous matter content. Furthermore PHB should be collisionless and non-
relativistic, therefore they could account for cold dark matter or at least for a
fraction of it[6]:

fpbh = Ωpbh

Ωc
(1.8)

where Ωpbh is the hypothesized PBH parameter density and Ωc is the dark matter
parameter density. The abundance of PBH is estimated to be in four allowed mass
windows:

• the intermediate mass range with M� < M < 103M�;

• the sublunar between 1020 − 1024g;

• the subatomic-size(4) between 1016 − 1017g;

• the last, less popular, of 10−5g;

where M� ' 1033g is the solar mass and M is the PBH mass [8]. In the other mass
ranges fpbh is less then 10−1, therefore could account only for a fraction of the total
missing mass.
These constraints are imposed by observations. For example PBH smaller than
1015g would evaporate due to the Hawking radiation [7] and the null detection of
γ-rays compatible with this phenomenon limits their abundance. Another example
is the non-observed microlensing in the Magellanic clouds that rules out the more
massive mass range between 1026g and 15M�.
Due to their gravitational interactions, PBH, if exist, shold mark the CMB through
the processes described above, therefore the CMB experiments are an useful tool to
probe this hypothesis.
A new stronger interest on PBH originates from the recent detection by the LIGO
(Laser Interferometer Gravitational-Wave Observatory) and Virgo Collaboration of
the gravitational waves produced by two merging black holes, that could open a
new way for dark matter Primordial Black Holes search [9][10].

Appendix A.1
A.1.1 The Boltzmann equation: non-relativistic thermal relics

The early Universe thermal history reveals the features of the origin of all the
species [2][3]. Just after the Big Bang, the Universe is dominated by the radiation,
a plasma of relativistic particles in a dynamical equilibrium kept by the annihilation
and production rate balance. This equilibrium depends on the mass-temperature
ratio and holds until T � m. Since the expanding Universe causes a temperature
decrease, whenm� T the energy loss inihibits the heaviest particles production and
the relative number densities reduce. The particle phase space distribution function

4The Schwarzschild radius is rBH =
√

2GM
r
' 10−15m for 1016 < M < 1017g
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evolves according to the Boltzmann equation (L[f̂ ] = C[f ]). In the Friedmann-
Robertson-Walker (FRW) model of an isotropic and homogeneous Universe, the
number density evolution equation is [1]:

ṅχ + 3Hnχ = 〈σχχ̄→ff̄ |v|〉[(nEQ)2 − n2] (1.9)

where nEQ is the number density of particles in thermal equilibrium, given by
the integration of the Fermi-Dirac (or Bose-Einstein) distribution for the relativistic
species (T � m) and the Maxwell-Boltzmann distribution for the non-relativistic
ones (m � T ), H is the expansion rate and 〈σχχ̄→ff̄ |v|〉 is the annihilation rate
times the velocity, averaged over the χχ̄ distribution functions 5. A more compact
form is:

a−3d(nχa3)
dt

= 〈σa|v|〉[(nEQ)2 − n2] (1.11)

where a is the cosmological scale parameter. Since (aT )3 is constant in the time,
the left hand side can be written as:

a−3d(nχa3 T 3

T 3 )
dt

= a−3(a3T 3)
d(nχ

T 3 )
dt

= T 3d(nχ
T 3 )
dt

(1.12)

Considering the density number of particles per comoving volume:

Y = n

T 3 (1.13)

that is a convenient expression since n/s ∝ N/(aT )3 is adimensional and (aT )3 is
constant, the Boltzmann equation become:

dY

dt
= T 3〈σχχ̄→ff̄ |v|〉[Y 2

EQ − Y 2] (1.14)

Now define the adimensional quantity x = m
T , such that:

dY

dx
= T 3

Hx
〈σχχ̄→ff̄ |v|〉[Y 2

EQ − Y 2] (1.15)

Since we are interested in the dark matter abundance today, we consider a later
time, when x � xF (where xF is the mχ/T ratio at the freeze-out) and Y � YEQ
(since YEQ ∝ e−mχ/T ), as the common plot shows:

5The annihilation cross section times the relative velocity between the two intial particles,
averaged over the χχ̄ distribution functions is:

〈σχχ̄→ff̄ |v|〉 = N

∫
dΠχdΠχ̄dΠfdΠf̄ (2π)4δ4(pχ + pχ̄ − pf − pf̄ )|M|2e−Eχ/T e−Eχ̄/T (1.10)

where N =
∫
dΠχdΠχ̄e

−Eχ/T e−Eχ̄/T = (nEQχ )−2 is the normalization and dΠi = gi
dp3

(2π)3 is the
phase space of the species i with gi degrees of freedom.

12
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Fig. A.1.1: The number of particle per comoving volume. The solid line represents YEQ,
the dashed line represents Y. The three different curves refer to increasing values of the
annihilation cross section, since more particles annihilate, less the residual density is.

Figure taken from [2]

In this limit the Boltzmann equation is:

dY

dx
' − T

3

Hx
〈σχχ̄→ff̄ |v|〉Y 2 (1.16)

This equation has no analytic solution, since 〈σχχ̄→ff̄ |v|〉 depends on the tempera-
ture. In literature the assumption 〈σχχ̄→ff̄ |v|〉 ' const is considered reasonable for
non-relativistic particles, at late time after the freeze-out [2]. In this assumption
and for xF ∼ 20 (6), the integration of eqs (1.16) between x = xF and x = ∞
provides:

Y∞ = 1.661g1/2
∗

mPlmχ〈σχχ̄→ff̄ |v|〉
∝ 1
mχ〈σχχ̄→ff̄ |v|〉

(1.17)

where g∗S ' g∗ accounts for the degrees of freedom involved and we assume them
constant in time and of order ∼ 102 (7).

6The value xF = 20 often encountered in literature arises from the simplest parameterization
〈σχχ̄→ff̄ |v|〉 ≈ const.

7See [2] for more details
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Chapter 2

Motivations and Candidates for
Dark Matter from Particle
Physics

The baryon number density computation, constrained by the Big Bang Nucle-
osynthesis [2], suggests that the matter parameter density of the universe, i.e. the
ratio between the matter energy density and the critical density, is constituted by
both a baryonic and non-baryonic contribution. From the data provided by the
Planck Collaboration [4]:

Ωmh
2 = 0.1415± 0.0019 = Ωch

2(= 0.1186± 0.0020) + Ωbh
2(= 0.02226± 0.00023)

(2.1)
where h = 0.678± 0.009 and as consequence Ωm = 0.308± 0.005 is the total matter
density parameter, Ωc = 0.258± 0.006 the cold dark matter density parameter and
Ωb = 0.0484± 0.0008 the baryonic one. Some theories are studying the existence of
a non-luminous baryonic dark matter component said MACHOs (Massive Compact
Halo Objects), but it would contribute only to the baryonic parameter density and
therefore would not explain the more abundant non-baryonic dark matter content.
The hypothesis that the dark matter constituent is an elementary particle is pro-
posed by many models.
After a brief comment on the attemp to provide a solution for the missing mass
problem without invoking new physics, this chapter is dedicated to the study of
some of the particle dark matter candidates that are hypothesized by extensions of
the Standard Model. The particles discussed along the chapter are summarized in
table (2.1) and in fig. (2.1), as a function of the relative masses.



2.1 The Standard Model proposals and limits

mD [eV]

7−10 5−10 3−10 1−10 10 310 510 710 910 1110 1310 1510

Axion Sterile neutrino WIMP

WIMPZILLA

Mirror particles

Fig. 2.1: Some of the dark matter candidates proposed in literature as a function of the hypothesized
mass

Mass Range Detection
Axions ∼ µeV-meV -Direct -Indirect
Sterile ν keV -Direct(∗) -Indirect
Wimp Gev-Tev -Direct -Indirect -Collider

Mirror Particles / /
WIMPZILLAS & 200 TeV Direct -Indirect -Collider

Table 2.1. The dark matter candidates discussed in this work, in order of increasing mass.
(∗): possible but not confirmed detection method. /: not defined mass range or detection method.

The large mass range of the particles that are proposed as dark matter content is
due to the different processes that can cause the cosmologic production and to the
possible different couplings that are hypothesized for each candidate, as we discuss
below.

2.1 The Standard Model proposals and limits
Dark matter predicted abundance implies that it is stable (i.e. the lightest particle

of the particle model spectrum) and its "darkness" implies either it is neutral or that
the possible couplings are lower than the actual experimental sensitivities. Among
the particle standard model zoo, only the neutrino survives.

2.1.1 Neutrinos
Neutrinos were the first dark matter candidates hypotized. Today we know they

cannot solve the missing mass problem because of their relativistic nature that
would contribute to hot dark matter, today ruled out by the cosmological constraints
discussed above. Furtheremore in 2015 the Planck collaboration provided the best
neutrino mass sum and energy density parameter upper limit:∑

mν < 0.23 eV (2.2)
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2.2 Axions

Ωνh
2 =

∑
mν

93eV < 0.0025 (Ων = 0.0054) (2.3)

which compared with the dark matter density parameter Ωch
2 = 0.1186± 0.0020

(Ωc = 0.258± 0.006), shows the neutrinos do not provide the value required [4].

The particle Standard Model does not provide any good dark matter candidate,
therefore a complete description of the physical reality needs a theory beyond the
Standard Model.

The Standard Model failure in the resolution of the missing mass problem is not
the unique flaw in the theory. There are other issues that we shall discuss along the
chapter, that are example of our inevitable and exciting resignation at the actual
knowledge incompletness. A theory built to solve any of these issues becomes more
plausible if it naturally provides a dark matter candidate.

2.2 Axions
The axions are pseudoscalar fields introduced by Weinberg [12] and Wilczek [13]

as result of Peccei and Quinn’s extension of the Standard Model [14], proposed to
solve the CP violation of the strong interactions.

In the limit of massless quarks, the QCD theory is symmetric under U(2)R⊗U(2)L
or, similarly, under U(2)V ⊗ U(2)A (1). According to the Goldstone theorem, the
spontaneous global symmetry breaking leads to the production of as many Nambu-
Goldstone bosons as the number of trasformation parameters. Since mq 6= 0, the
U(2)A Spontaneous Symmetry Breaking (SSB) should be associated to four pseudo
Nambu-Goldstone bosons. Indeed the effective theory foresees only three light can-
didates, the three pions π±, π0, associated to the SU(2)A SSB; this means the
U(1)A cannot be spontaneously broken. Indeed it is explicitly broken due to the
axial-vector current anomaly, that affects the current quadridivergence:

∂µJ
µ5 = g2N

32π2F
µν
a F̃ aµν (2.4)

where N is the number of flavors and g is the strong coupling constant(2).
1Consider the right and left currents JµaR = q̄Rγ

µ σa

2 qR and JµaL = q̄Lγ
µ σa

2 qL. Then J
µa
V = JµaR +

JµaL = q̄γµ σ
a

2 q, while J
µa5
A = JµaR − J

µa
L = q̄γµγ5 σa

2 q, therefore U(2)R ⊗ U(2)L → U(2)V ⊗ U(2)A,
i. e. the chiral currents are strictly connected to vector-axial currents.

2The QCD is asymptotically free in the ultraviolet. At the lowest order of the perturbation
theory the renormalized coupling constant is:

g2 = 48π2

33− 2N ln(QΛ )2 (2.5)

where N is the number of flavors, Q is the energy scale of the process considered and Λ is the
cut-off.
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2.2 Axions

This term, within the ’T Hooft gauge theory of the vacuum structure, introduces
in the lagrangian the dangerous term:

Lθ = θ
g2

32π2F
µν
a F̃µνa (2.6)

that violates the strong-CP conservation, as shown in Appendix A.2.1 [15]. θ is
a dimensionless parameter (Lθ is a 4-dimensional operator, i.e. is renormalizable)
that arises from the vacuum structure theory (3).

There are experiments that are searching for the neutron electric dipole moment
(NEDM) to probe the strong CP violation. The experiments actually impose a
NEDM upper limit equal to |de| < 2.9× 10−26e·cm [17], that requires θ . 10−10, as
discussed in Appendix A.2.2.
Peccei and Quinn [14] propose a theory that solves this fine tuning, suggesting an
extention of the Standard Model with the introduction of a new global chiral sym-
metry U(1)PQ, as called by Weinberg. By the breaking of this new symmetry, due
to istanton effects[18] (4), they absorb the CP violation term, restoring the CP-
symmetry. So far Peccei and Quinn’s theory is the most popular explaination of
the strong-CP problem.

To inspect the consequences of Peccei and Quinn’s theory , Weinberg[12] considers
a "minimal" extension of the Standard Model that includes the usual SU(2)⊗U(1)
chiral doublets and singlets of quarks and fermions and adds two complex scalar
fields {ψ+

i , ψ
0
i }, doublets under SU(2) ⊗ U(1), that furthermore carry the U(1)PQ

quantum number. The U(1)PQ spontaneous symmetry breaking, together with
that of SU(2) ⊗ U(1), would produce four massless neutral pseudoscalar Nambu-
Goldstone bosons, i.e. π0, η0, ψ0

1 and ψ0
2. The presence of small quark masses causes

an explicit symmetry breaking, that forces the NG bosons to acquire a mass and to
turn into pseudo-NG bosons. Their squared-mass matrix diagonalization produces
the axion neutral field a0 as a linear combination of π0 and η0, with a π0 dominant
weight and with a mass ma ≥ 23 keV×N , where N was the quark flavor number.
For N = 3 the lower limit was ma = O(102) keV. The original Weinberg mass term
was:

ma = Nmπfπ√
m2
u +m2

d

[ mumdms

mumd +mdms +msmu
]1/2 21/4G

1/2
F

sen2α (2.7)

where N is the number of flavors, mπ ≈ 135MeV and fπ ≈ 93 MeV are the pion
mass and decay constant, mi, with i=u,d,s, the light quark masses, GF the Fermi
coupling constant and α is an unknown angle fixed by the expectation values of the
two higgs fields, i.e. 〈|ψ1|〉 = 2−1/4G

−1/2
F cosα and 〈|ψ2|〉 = 2−1/4G

−1/2
F sinα [12].

This initial model was based on a U(1)PQ SSB scale fa equal to the electroweak
one (fa ≈ vEW = O(250GeV)), but this hypothesis was ruled out by the experi-
ments; then, during the years, the model has been reexamined and now fa � vEW .

3In a gauge theory the vacuum state is defined as the superposition |θ〉 =
∑

n
einθ|n〉 of n-

vacuum states |n〉, obtained from one another through a phase trasformation. From the path
integral formula of the transition amplitude +〈θ|θ〉− the lagrangian term (2.6) arises [16].

4For a review on istanton in QCD see also [19]
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2.2 Axions

A priori, omitting the actual experimental constraints, the strong-CP solving theory
admits an axion mass range of 10−12 − 106 eV [16][20].

The attractive feature of this version of the PQWW theory (Peccei, Quinn, Wein-
berg and Wilczek) is that in addition to its resolution of the strong-CP problem
it naturally offers a candidate for the challenging dark matter issue. The extra re-
quirement of accounting for the missing mass problem, in addition to the constraints
by laboratory and astrophysical experiments (that are discussed below), restricts
the predicted axion mass window, that is confined to the range 10−5−10−3 eV (and
fa ∼ 109 − 1011 GeV). A common way to express the axion mass is(5):

ma = mπfπ
fa

≈ 6eV 107GeV

fa
(2.8)

where the ma − fa relation is in evidence.

Generically the axion lagrangian interaction terms are proportional to f−1
a ; this

implies that the light axions, that are characterized by an fa in a range of order
∼ 109 − 1011 GeV, are feeble coupled to electromagnetic and matter fields (from
that "invisible axions").
From the cosmological and astrophysical point of view the axion-photon coupling is
important, both for the present axion density and for the stellar energy loss. Due
to their lightness, the invisible axions have only the two-photons decay channel,
described by the 5-dimensional lagrangian term (6):

Laγγ = −gaγγ4 φaF
µνF̃µν (2.9)

where φa is the pseudoscalar axion field, Fµν is the electromagnetic field-strenght
tensor, F̃µν its dual and gaγγ is the adimensional coupling constant:

gaγγ = α

2πfa

(
c− 2

3
4 + z

1 + z

)
= α

πfa
gγ (2.10)

with c a model-dependent constant of order O(1)(7) and z = mu
md

, with u and d the
light quarks. The light axion life-time is [21]:

τ(a→ 2γ) = 0.8× 107tU
g2
γ

(
eV

ma

)5
(2.11)

with gγ ∼ O(1) adimensional and defined above and tU = O(1017)s is the age of
the Universe. The (2.11) implies that τ(a → 2γ) < tU if ma & 24.02 eV; since we

5In this work we call axion both the Weinberg particle and the lighter particle we are searching
for, while in literature the latter is indicated by the terms "axion-like particle" or "invisible axion"
to distinguish it from the original one.

6We are concerning with an effective low-energy theory, therefore higher dimensional lagrangian
terms can be involved.

7There are two main models built on the axion paradigm: the KSVZ(Kim-Shifman-Vainshtein-
Zakharov), that introduce the axions and new heavy quarks that carry the U(1)PQ charge and that
are electrically neutral, and the DFSZ (Dine-Fischler-Srednicki-Zhitnitsky) that associates to the
standard quarks and leptons the U(1)PQ charge and requires at least two higgs doublets. For the
KSVZ c=0 while for the DFSZ c=8/3.
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are concerning with light axions, with ma . meV, the invisible axions are stable
within the age of the universe, as necessary to constitute the dark matter.
Many laboratory, astrophysical and cosmological experiments are dedicated to the
axion search. Their results are compared into the mass exclusion graph[22]:

– 11–

Axion Mass mA (eV)

fA (GeV)

10-1110-1010-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106
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    Black Holes 

Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76meV <∼ mA
<∼ 150meV

(0.21 eV <∼ mA
<∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

February 8, 2016 19:55

Fig. 2.2.1: The blue bar are exclusion ranges from astrophysical and cosmological experiments and
models. The grey bars are exclusion ranges from experiments searching for axions from the Sun and the
halo (the Beam Dump bar refer to the experiments that ruled out the original PQWW axion). Green bars

are the range that future experiments are searching for. Rose bars are open ways of search.
pdg.lbl.gov/2015/reviews/rpp2015-rev-axions.pdf.

where the remaining 10−5 − 10−3 eV axion mass range is shown.
The most intriguing region of search is ma ∼ meV, because there are hints concern-
ing stellar energy loss in Red Giants (RG), White Dwarf (WD) and Neutron Stars
(NS) that constrain the emitted axion masses to be of this order, as shown in fig.
(2.2.1) [22].

2.3 Sterile Neutrinos
The sterile neutrino is a particle beyond the standard model, that does not in-

teract with any gauge boson of the electroweak theory (for this reason "sterile"). It
is the right handed projection of the neutrino field. This extension of the standard
model seems quite natural, because it relaxes the artificial constraint of the right
handed neutrino exclusion from the particle content, not supported by any theoret-
ical argument. Similarly to the right handed projection of the charged leptons, the
right handed neutrino can take part in the generation of the neutrino mass term
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and, as a consequence, it can be involved in the mechanism that causes the discrep-
ancy between the neutrino and the charged lepton masses[27] (8 ); it could take part
also in the generation of the baryon asymmetry of the Universe [28]. Furthermore
the sterile neutrino, if accommodated by ad hoc hypothesis, can account for dark
matter.
Clearly the last application is the most interesting one for our purpose and we shall
discuss it in the following, but the cognition of the right handed neutrino versatility
in the solution of different issues makes it a more attractive object of study.

Because of the LEP results on Z decay width, that provide a number of invisible
channel equal to Nν = 2.984± 0.009 [29] (νe, νµ, ντ , with amplitude ∝ ν̄LγµνL), the
right-handed neutrinos must be either not coupled to the Z gauge bosons or more
massive than mZ/2. In order to get a stable particle(9), consider the first condition
and introduce the gauge singlet, right-handed neutrino NR. Since it is not coupled
with gauge bosons, the number of generations is not constrained by the anomaly
cancellations, therefore a priori the number of generations is arbitrary. This freedom
characterized also the masses, because the physics on the neutrino mass generation
is not well established(8) and the sterile neutrino a priori can have almost any
mass (from eV to an arbitrary scale MR smaller than the Planck scale)[28]. The
effect is that many models has been proposed, as a function of the parameter choice.

In this thesis, we are interested in the case when one or more sterile neutrino can
be relevant as a candidate to address the dark matter problem. For this reason, we
are particularly interested in sterile neutrinos with masses of O(keV). As discussed
below, this is the range suggested by cosmological and astrophysical constraints.
Let us introduce immediately the terminology we use in the following; we suppose
that we have several heavy neutrinos, with masses M1 < M2 < M3. . . . The stan-
dard case is the one when we have 3 neutrinos, and one of them, the lightest one,
has mass around keV.

The models proposed to provide a mechanism to explain the imposed framework,
for the most part, agree with two main mass shifting schemes, the bottom-up and
the top-down, shown in the fig. (2.3.1):

8At this time it is not established if the neutrino is a Dirac or Majorana particle and several
models are been proposed to explain the generation of the neutrino mass term. More details are
discussed in Neutrino mass, Appendix B.2

9A sterile neutrino of ms ∼ 45 GeV and weakly interacting would be highly unstable.
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and for some reason the mass of one sterile neutrino is suppressed to yield a physical

mass of only a couple of keV.

Note that we have, in passing, used the terms right-handed neutrino and sterile

neutrino to be practically equivalent. This is okay, as long as we are talking about

SM charges only: the right-handed neutrino is a total singlet under the SM gauge

group, and hence it is sterile. However, we have to keep in mind that there are two

loopholes in this terminology:

• First, the physical particle (which is a mass eigenstate!) will actually be nei-

ther purely right-handed nor purely sterile, due to the structure of the mass

terms and the active-sterile mixing, cf. Appendix A.2. This implies that any

mass eigenstate is always a superposition of a left-handed [active/SU(2)

doublet] and a right-handed [sterile/SU(2) singlet] state. Nevertheless, due

to the small mixing between active and sterile states, it is common to refer

to the SM-like neutrino mass eigenstates νi (i = 1, 2, 3) as active neutrinos

(even though they do have small sterile admixtures) and to refer to the ad-

ditional (often heavier) mass eigenstates Ni (i = 1, 2, 3) as sterile neutrinos

(even though they do have small active admixtures). In turn, the fields νLα

(α = 1, 2, 3) and NRα (α = 1, 2, 3) in the Lagrangian (which are not the

physical particles but only the fundamental ingredients of the theory) are

referred to as left- and right-handed neutrinos, respectively, according to

the standard terminology. Although this terminology is unambiguous, the

terms are often used in a more or less equivalent manner in the literature,

and in many cases one has to conclude from the context which physical

meaning is actually referred to.

• Second, even though the term sterile is used, this only refers to SM-

interactions. As soon as we go beyond the SM by extending the gauge

group, the RH-neutrinos will not be total singlets anymore, in general. For

M1º0

M1=OHkeVL

Bottom-up
scheme

M2,3=OHMRL M1,2,3=OHMRL

MRpkeV

M1=OHkeVL
Top-down

scheme

Fig. 4. The two generic mass shifting schemes for keV sterile neutrinos, in a setting with three
right-handed neutrinos. Typically, N1 is taken to be the keV sterile neutrino, but there are models
where this is not true.

Fig. 2.3.1: Left: The bottom-up scheme. The light neutrino mass initially is M1 = 0 and
is increased at the keV by some mechanism. The two heavier neutrino mass M2,M3 are of
O(MR), where MR is some high energy scale. Right: the top-down scheme. The all three
right handed neutrino masses initially are of O(MR) and some mechanism suppresses M1

at the keV scale. Taken from [31].

where M1 is the light sterile neutrino mass, M2,M3 are the heavier sterile neu-
trino masses and MR � keV is some high energy scale. These schemes refer to a
total of three sterile neutrinos, but it can be generalized to an arbitrary number.
The common tendency is to consider a starting configuration, in which M2 and M3
are of O(MR) and M1 is either zero or O(MR); then some mechanism increases or
suppresses the N1 sterile neutrino mass up to the keV scale.

A particularly interesting example of this scenario is the one called νMSM
(Neutrino Minimal Standard Model) proposed by Asaka, Blanchet and Shaposhi-
nokov in 2005[30] as a minimal extension of the actual theory. It works within the
SU(2)L⊗U(1)Y symmetry group and extends the standard model particle content
by only three right singlets (N1, N2, N3) (10). It accounts for:

1. neutrino masses consistent with the oscillation paradigm;

2. warm dark matter, through the accommodation of a light sterile neutrino of
O(keV);

3. the baryon asymmetry, through the accommodation of two heavier right handed
neutrinos in the range (150 MeV-100 GeV).

The many issues that find a solution in this scenario(11) make it attractive; how-
10A comment on notation: in this work we use equivalently right handed and sterile to distinguish

the three N1, N2, N3 from the standard, left handed (or active) neutrinos. To identify instead the
Ni from each other, in particular the keV neutrino from the others that are heavier, we specify light
or heavy. Moreover, in the same way as the literature, N1 is associated to the light sterile neutrino
and N2, N3 to the heavier neutrinos.

11On terminology: Alexander Merle, in [31], classifies a sterile neutrino approach relative to the
keV mass scale as a "[...]scenario, whenever it can accommodate for a keV sterile neutrino, but does
not give any explanation for the appearance of the keV scale" and as a "[...]model whenever there
is an explanation for the appearance of the keV scale or, rather, for a suitable mass hierarchy or
the existence of a suitable new scale". In this optic, the νMSM would be an interesting scenario.
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2.3 Sterile Neutrinos

ever it is a phenomenological theory that does not provide any explanation for the
appearance of the keV scale and for the shift between the light and the two heavier
right handed neutrino masses, therefore other approaches (model) are required [31].

Since these models aim to provide a more complete theory on neutrino physics,
they have to account also for the difference between neutrino and charged lepton
masses. This task is commonly achieved involving the popular seesaw mechanism,
whose simplest version is discussed in Appendix B.2. Besides the explanation of
the charged lepton-neutrino mass departure, the seesaw mechanism implies the
fundamental active - light sterile neutrino mixing, that makes the light right handed
neutrino not completely sterile and opens experimental probes. For example it
could have a main decay channel N1 → νaνaνa, where νa is the active neutrino, of
amplitude[32] (12):

ΓN1→νaνaνa = G2
FM

5
1 θ

2
1

96π3 (2.13)

where GF is the Fermi coupling constant and θ1 is the active - light sterile neu-
trino mixing angle(13). The required stability (necessary for the sterile neutrino to
constituite dark matter), imposed by:

τN1 = 5× 1026s

(
M1

1keV

)−5( θ2
1

10−8

)−1

& 1017s (2.14)

where τN1 is the lightest sterile neutrino decay time, puts an upper limit on a
relation between the mixing angle and the mass (M1, θ1) [6]:(

M1
10keV

)5( θ2
1

10−4

)
. 1 (2.15)

A very interesting decay channel is N1 → γνa [6]:

ΓN1→γνa = 9αEMG2
F

256 · 4π4 sin
2(2θ1)M5

1 (2.16)

12In [32], §12.2.1, this amplitude is written as:

ΓN1→νaνaνa = G2
FM

5
1 θ

2
1

96π3 = 1014years
(10keV

M1

)5
(

10−8

θ2
1

)
(2.12)

In the third member maybe there is an error. It is likely to refer to the decay time τN1→νaνaνa
rather than to the amplitude; the correct form should be the inverse one.

13For more details see The active-sterile neutrino mixing, Appendix B.2
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Figure 9. Bounds on the mass M1 and the mixing angle θ1 of the sterile neutrino dark matter for the models,
discussed in Section I D: DM in the νMSM (Panel a, see text for details); DM produced in the model with
entropy dilution (Panel b); and DM produced in the light singlet Higgs decays (Panel c).

Neutrinos in gauge multiplets – thermal production of DM neutrinos

In this model sterile neutrinos are charged under some beyond the SM gauge group [65]. A natural
candidate are here left-right symmetric theories, in which the sterile neutrinos are sterile only under
the SM S U(2)L gauge group, but are active with respect to an additional S U(2)R, under which the
left-handed SM particles are sterile. The steriles couple in particular to a new gauge boson WR,
which belongs to S U(2)R. One of the sterile neutrinos N1 is light and plays the role of dark
matter, entering in thermal equilibrium before freeze-out. Other sterile neutrinos N2,3 should dilute
its abundance up to the correct amount via out-of-equilibrium decays. This entropy production
happens if there are heavy particles with long lifetimes, which first decouple while still relativistic
and then decay when already non-relativistic [197]. The proper DM abundance is controlled by the
properties of this long-lived particle through the entropy dilution factor S ' 0.76 ḡ1/4

∗ M2

g∗ f
√

ΓMPl
, where

g∗ is an averaged number of d.o.f. during entropy generation, and M2 is the mass of the sterile
neutrino, responsible for the dilution. The X-ray constraint here bounds the mixing angle θ1 of the
DM neutrino in the same way as for the νMSM. The mixing between new and SM gauge bosons is
also severely constrained. The structure formation from the Lyman-α analysis constraints the DM
neutrino mass:, M1 > 1.6 keV, because its velocity distribution is that of the cooled thermal relic
[65, 160]. At the same time, this implies that the DM in this model is cold (CDM).

All other constraints in this scenario apply to the heavier sterile neutrinos and to the new gauge
sector. The correct abundance of the CDM sterile neutrino requires entropy dilution. To properly
provide the entropy dilution, N2 should decouple while relativistic and has a decay width

Γ ' 0.50 × 10−6 g2
N

4
g2
∗f

g2
∗

ḡ1/2
∗

M2
2

MPl

(
1 keV

M1

)2

. (32)

At the same time, the heavy neutrino N2 should decay before BBN, which bounds its lifetime to
be shorter than approximately 0.1÷ 2 s. Then, the proper entropy can be generated only if its mass
is larger than

M2 >
( M1

1 keV

)
(1.7 ÷ 10) GeV. (33)

The entropy is effectively generated by out-of-equilibrium decays if the particle decoupled while
still relativistic. The bound on the decoupling temperature leads to a bound on the new gauge
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Fig. 2.3.2: The exclusion graph of the νMSM sterile neutrino mass as a function of the
active-sterile neutrino mixing angle. The upper right corner is the X-ray exclusion region.

The left grey region is the dwarf spheroidal limit. The two black solid lines are the
non-resonant production limit (the upper line NRP, with null lepton asymmetry) and the
maximal resonant production limit (the lower line, with a maximal lepton asymmetry).
The colored lines between the two solid lines are production curves relative to different

lepton asymmetries. This figure is taken from [33].

where αEM is the fine-structure constant. The photon produced by this lat-
ter decay was searched by a spectrometer on board of INTEGRAL (International
Gamma-Ray Astrophysics Laboratory) satellite, pointed toward the Galactic Cen-
ter [34]. The non-observation of the expected photon line bounds the (M1, θ1)
parameter space, where θ1 is the active-sterile neutrino mixing angle, and fixes an
upper limit M1 < 50 keV (the upper right corner in Fig. 2.3.2). In addition the
phase-space distribution of the dwarf spheroidal galaxies in the Milky Way fixes a
lower mass bound M1 >1 keV [35](the left grey region in Fig. 2.3.2). The other
bounds derive from the sterile neutrino production mechanism, that involved the
lepton asymmetry [36]. The lepton asymmetry rises from the difference between
the lepton and anti-lepton number densities (Lα = nνα−nν̄α

nγ
). It depends on the pri-

mordial production of sterile neutrino and today it is not well established; different
values lead to different curves on the (M1, θ1) parameter space(14) (colored curves
between solid lines in Fig. 2.3.2).
The recent observation of an X-ray line at E ≈ 3.55 keV from cluster galaxy spectra
could be interpreted as an annihilation dark matter signal from a neutrino of this
type [37, 38]. If it is a two-body decay product, then M1 ≈ 7.1 keV, in agreement

14For example in [4] is reported the allow mass range 2 keV< M1 < 5 keV for Lα ≈ 0.
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2.4 Mirror Models

with the sterile neutrino mass window (with θ1 ≈ 10−11). However the uncertanties
due to other possible astrophysical sources or to the instrumental background, or
the plasma emission origin of the line require more investigations.

2.4 Mirror Models
The mirror models date back to the attempt of restoring the universe symmetry

under parity trasformation, spoiled by the weak interactions. A first proposal was
suggested by Lee and Young at the end of their popular article[41], as chance to
restore the right-left symmetry. They proposed that there could exist two protons,
left pL and right pR, with an interaction time-scale greater than the age of the
universe and likely coupled to the same electromagnetic field; the asymmetric pre-
ponderance of the left handed proton is ascribed to a some cosmological process,
similarly to the matter-antimatter asymmetry. Later this hypothesis was revised by
Landau and re-elaborated by his students Pomeranchuk, Okun and Kobzarev [42].
Since then mirror models have been captured theorists’ attention, thanks also their
potential success in the dark matter problem resolution(15).

The main feature of this theory is the building of a "mirror world", an exact copy
of the ordinary one, whose fields interact only gravitationally with the standard
particles. Another theoretical possibility is that there could be non-gravitational
mixed interactions between the ordinary world and its mirror image, in particular
a small electromagnetic coupling, as discussed below.

The symmetry group would be SU(3)c⊗SU(2)L⊗U(1)Y ⊗SU ′(3)c⊗SU(2)′R⊗
U(1)′Y . The particle content is extended to include the mirror fields, associated
to each standard particle and antiparticle. The dynamics is described by the
lagrangian[44]:

L = L(e, ν, u, d,W,Z, γ, φ..) + L(e′, ν ′, u′, d′,W ′, Z ′, γ′, φ′..) + Lmix (2.17)

where Lmix involves terms coupling the two sectors. This lagrangian is invariant
under the discrete Z2 = P ×R symmetry trasformation, where P is the usual parity
reflection and R represents the reflection into the mirror space, i.e. the substitution
of the standard fields with the correspondent mirror one and viceversa:

LL(1, 1,−1/2)⊗ (1, 1, 0)↔ L′R(1, 1, 0)⊗ (1, 2,−1/2)
eR(1, 1,−1)⊗ (1, 1, 0)↔ e′L(1, 1, 0)⊗ (1, 1,−1)

...

The mirror theory provides a resolution to the missing mass problem because
all the astrophysical objects (stars, planets, interstellar gas,..) or simple stable
mirror particles (such as mirror electrons, protons, etc..) could be dark matter
constituents. Among the admissible mixing interaction terms, there is the elec-
tromagnetic coupling − ε

2F
µνF ′µν , where ε is the small coupling constant, supposed

to be of O(10−9); beyond the possible astrophysical and cosmological effects, this
15See [43] for a detailed review on the published papers.

24



2.5 WIMPs

term opens the possibility of direct test of the mirror model, since it would pro-
duce a detectable nuclear recoil [44]. The mirror charged particles could acquire a
small ordinary electric charge ±εe, that would causes a mirror nucleus Rutherford
scattering off an ordinary nucleus:

dσ

dER
= 2πε2Z2Z ′2α2F 2

AF
2
A′

mAE2
Rv

2 (2.18)

where Z and A are the atomic and mass number of the ordinary nucleus, Z’ and
A’ the atomic and mass number of the mirror nucleo, FA and F ′A are the two form
factors, mA is the ordinary nucleus mass and v is the mirror nucleus velocity (while
the ordinary one is considered at rest). This model is still in agreement with the
available direct detection result [45].

2.5 WIMPs
The historical hypothesis that the cosmological origin of the dark matter is ther-

mic [2],[3], i.e. that it is the frozen out relic of a species in a previous thermody-
namical equilibrium, implied the proposal of the dark matter Weakly Interacting
Massive Particles (WIMPs).
The WIMP characterization is often ambiguous, because many candidates proposed
by the particle physics seams to share the same properties:

• the stability and the massivity, necessary to explain the missing mass at this
time;

• the weak interactions, where by weak interaction we intend any type of cou-
pling lower than the actual experimental sensitivities, since otherwise we
would have already detected them;

The thermal origin is the feature that distinghuishes the dark matter candidates
that are indicated traditionally as WIMPs, from the others.

Consider a dark matter content of (i) particle nature and produced by a (ii)
thermal mechanism and assume the hypothesis that (iii) all the dark matter is of
an unique type. In these hypotheses the experimental value of the dark matter
parameter density Ωχ constrains the thermally averaged annihilation cross section
times the relative velocity 〈σχχ̄→ff̄ |v|〉 at the order of 3× 10−26 cm3s−1 (16):

Ωχ ' 0.1 · 3 · 10−26cm3s−1

〈σχχ̄→ff̄ |v|〉
(2.19)

Through a rough estimate, σa ' 10−36cm2 ≡ 1 pb (1 picobarn=10−12 × 10−24

cm2) for v ' c and σa ' 10−33cm2 for v ' 10−3c, that is the typical mean halo
velocity assumed for practical purpose(17). The typical orders of the annihilation
cross section channels for the e+e− as a function of s = (p1 + p2)2 are shown in the
graph for a comparison:

16See What is the ’WIMP miracle’ in Appendix C.2 for more details.
17In the next chapter the halo density profile models and the velocity distributions are discussed
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50. Plots of cross sections and related quantities 5
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Figure 50.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)

Fig. 2.5.1: The e+e− annihilation cross section as a function of s = (p1 + p2)2. σ[mb] ∼ 10−6 is the
order of the WIMP σa estimate for v ' 10−3c. The figure is taken from
http://pdg.lbl.gov/2015/reviews/rpp2015-rev-cross-section-plots.pdf

The parameter density estimate discussed in Appendix C.2 implies that the ex-
perimental value Ωχ ' 0.2 imposes a limit on 〈σ · v〉, regardless of the parameters
of the particle involved in the process. Therefore we know the order of magnitude
of the dark matter annihilation cross section in the hypothesis of a thermal produc-
tion, but we cannot establish the interaction type. To associate this interaction to
the electroweak scale we should know that the mediator mass is of order of the Z0

and of the W±, i.e. O(102) GeV, while we have no information about the mediator.
If we want to speculate on the hypothesis that this is an electroweak interaction(18),
i.e. that:

σ ∼ G2
Fm

2
χ =

g4m2
χ

M4 (2.20)

with M ∼O(102) GeV, where GF ∼ 10−5 GeV−2 in natural units is the Fermi con-
stant, M is the mediator mass, mχthe dark matter particle mass and g the coupling
constant. Within this speculation a lower limit on the WIMP mass can be imposed,
i.e. the ’Lee-Weinberg limit’. In [47] Lee and Weinberg show that for a stable heavy
neutrino produced as a thermal relic, the condition to avoid the universe overclosing
imposes a lower limit on the mass at about 2 GeV. If we consider the dark matter
parameter density Ωχ, rather than the total parameter density, this limit becomes
mχ & 10 GeV.

Go back to the general WIMPs, masses lower the Lee-Weinberg limit could be
possible and for this reason there are many experimental efforts that try to probe
the lower mass region(19), while an upper limit equal to mχ < 7 TeV is provided by
Edsjo and Gondolo in 1997 as result of a study including coannihilation processes
(20) [48]. This is the reason of the WIMP mass upper limit often encountered, ex-

18A speculation that is defined as the ’WIMP miracle’.
19In particular the direct detection experiments, as we shall discuss later.
20Coannihilation is a process that corrects the thermal relic abundance and that occurs if there is

a degeneration in mass between different relic species that share also the quantum numbers. This
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2.5 WIMPs

pecially in experimental probes, that commonly focus on the range 10 GeV-1 TeV.
The lower limit of 10 GeV instead is an experimental limit and there are many
efforts to probe lower mass scales.

There exist different Grand Unified Theories (GUT), such as the Supersymmetry
(SUSY) and the extra dimension models (arised as a Kaluza-Klein theory elabo-
ration), that, in their attempt to solve in an unique picture the physical reality,
provide a possible explanation to the dark matter problem, condicio sine qua non
the unified theory cannot be considered complete.

2.5.1 Neutralino
The neutralino is the Lightest neutral Supersymmetric Particle (LSP) of many

supersymmetric models(21).
From the most general gauge invariant supersymmetric effective lagrangian by Gi-
rardello and Grisaru [50], the lagrangian terms dealing with the neutralino field
are:

L = −1
2[ψ0T

i Mijψ
0
j ] (2.21)

where with ψ0 we intend the four SUSY neutral fields ψ0 = (B̃0, W̃ 0, H̃0
u, H̃

0
d),

and Mij is a non diagonal mass matrix. The fields in the ψ0 basis are gauge-
eingenstates, while the fields obtained by the diagonalization of the mass matrix
Mij are mass-eingenstates. This spin-1/2 mass-eingeinstates are said neutralinos,
χ̃0
i , with i = 1, . . . , 4, and are a linear combination of the ψ0

i fields:

χ̃0
i = Nijψ

0
j = Ni1B̃0 +Ni2W̃ 0 +Ni3H̃0

u +Ni4H̃0
d (2.22)

where Nij is the unitary diagonalizing matrix. The generic Nij coefficient can be
roughly considered as the fraction of the j-ψ0 field that enters in the i-χ̃0 field. A
mass hierarchy order is commonly imposed, for example mχ̃1 < mχ̃2 < mχ̃3 < mχ̃4
(22), such that the hierarchy lightest particle is the Lightest Supersymmetry Par-
ticle (LSP) of the spectrum. Indeed the lightest neutralino is the lightest particle
of the supersymmetric spectrum thanks to the imposed R-parity, that makes the
neutralino stable avoiding its decay into Standard Model particles(23).
Under these assumptions, the neutralino can be considered a dark matter candi-
date. The range of mass usually probed is 10 − 1000 GeV, in agreement with the
constraints imposed by the thermal production hypothesis. This is also the reason
of the old expectation of a SUSY signature at the O(TeV). The neutralino has been
considered for long time the most plausible solution of the missing mass problem.
All the detection techniques can contribute to the neutralino search and the most
part of the experimental results had been interpretated as a function of this hy-
pothesis. The lack of a supersymmetric signature at collider motivates the search

process was pointed out by Griest and Seckel [49].
21For a discussion on the Supersymmetry see Appendix C.2
22The convention is that the B-ino mass is lighter than the W-ino mass, therefore the hierarchy

depends on the content of the four neutralinos. For more details see [51].
23For more details see SUperSYmmetry in Appendix C.2.
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of new hypothesis. The energy upper limit within which supersymmetry signs are
expected to appear is increased after each failure and this is a discouraging proof
of the large arbitrariness left by this theory.

Other SUSY dark matter candidates The supersymmetric particles that
are commonly considered as potential content of the dark matter are the gravitino
and the lightest neutralino. Also the sneutrino was studied as a possible candidate
but it was ruled out because if it is light does not provide the right dark matter en-
ergy density, if it is heavier it should have been directly detected [52]. The gravitino
belows to more general frameworks than the MSSM, while the neutralino is included
also in this simple model. The gravitino is the spin-3/2 fermion superpartner of the
spin-2 graviton. It arises in supersymmetric approches involving gravity, where the
global supersymmetry is promoted to a local symmetry. The gravitino interactions
are only gravitational, therefore it can produce only cosmological and astrophys-
ical effects. The direct and indirect particle searches are blind to this candidate,
therefore we do not further discuss about it.

2.5.2 Kaluza-Klein photon
- This part is taken from [55].

The Kaluza-Klein photon is the most valued dark matter candidate within the
minimal version of the Universal-Extra Dimension (UED) models.
The UED models are a re-elaboration of the original Kaluza-Klein (KK) effort to
unify gravity and electromagnetism through the extention of general relativity to 5-
dimensions. Although there exist other versions of the original KK theory, here we
will discuss the UED model proposed by Appelquist, Cheng and Dobrescu in 2001
[53], because it can accommodate a dark matter candidate, at cost of some arbitrary
impositions. In general the UED models consider 4 + D-dimensions, where D are
compactified dimensions of size ∼ R. For a minimal criterion we consider D = 1.
In analogy with the Klein proposal, the smallness of R avoids the observation of
this extra dimension and increases the energy scale at which the Standard Model
states can propagate in it, since the energy scale is ∝ 1/R, that is assumed to be
∼ TeV in the theory here considered. The UED model proposal is that the particle
spectrum is a "tower" of excited modes whose Standard Model is the fundamental
one. The squared mass of the nth excited state of a generic particle X at the tree
level is:

m2
X(n) = n2

R2 +m2
X(0) (2.23)

where m2
X(0) is the Standard Model mass. From eqs. (2.23) the Standard Model

spectrum correspond to n = 0, i.e. in this scenario it is the Kaluza-Klein funda-
mental mode.

The dark matter content would be the lightest particle of the spectrum of the
considered model. Since all the Standard Model particles are ruled out, the Lightest
Kaluza-Klein Particle (LKP) of dark matter must belong to the n = 1 excited state.
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To avoid the n = 1 particle decay into SM (Standard Model) particles, a so called
Kaluza-Klein Parity conservation is imposed, whose quantum number can be written
as P = (−1)n, where n is the nth KK mode.
The KK-Parity role is quite similar to that of the SUSY R-Parity: they are both
an imposed unbroken symmetry, introduced to make plausible the discussion of a
dark matter candidate within the respective model.
A constraint on the LKP masses derives from the thermal production hypothesis.
Servant and Taint in 2002 [54] fixed the mass range for the LKP at 900−1200 GeV,
as a consequence of the thermal production and of the coannihilation processes. The
mass range spreads out if we take into account other possible mechanisms that can
occur, therefore to include all the minimal cases we will consider the range 500−2700
GeV. Similarly to the other WIMP candidates, this is the reason of the mass range
often encountered in the experimental search for dark matter. Furthermore this
mass range encouraged the search, because the signature of this minimal KK-model
were expected to be observed at the next generation of colliders. Unfortunatly,
today this signature should have already been observed. However the model is not
ruled out since other production mechanism can be considered and the mass range
can be translated to higher upper limits.
The KK-photon is the LKP that requires the minimal effort. More precisely the
KK-photon is usually identified to the hypercharged gauge boson B(1), i.e. the first
Kaluza-Klein excited mode of the standard U(1) gauge boson.

Other Kaluza-Klein dark matter candidates Another popular Kaluza-
Klein dark matter candidate is the KK-neutrino, that, however, as Profumo and
Hooper assert [55], is not favored by the direct detection results. Another KK-
particle that can account for dark matter is the KK-graviton, but this proposal
involves gravity, while here we are referring only to minimal models(24).

2.6 WIMPZILLAS
The WIMPZILLAs, as the eccentric name evokes, are heavy WIMPs, where the

WIMPs are the historic and popular Weakly Interactive Massive Particles.
They were proposed by Kolb, Chung and Riotto in 1996 [59], who concluded their
article affirming: "[...] WIMPZILLAS may surpise and be the dark matter, and we
may learn that size does matter!".

Consider first the WIMPs: they are hypothesized to be a thermal relic, where
a thermal relic is the result of the freeze-out of a species in thermodynamical
equilibrium(25). Under this hypothesis the parameter density is forced by the Boltz-
mann equation to depend mostly upon to the mass of the species frozen out. As
a consequence the dark matter parameter density (Ωχh

2 = 0.1187 ± 0.0021, re-
cently measured by the Planck Collaboration [4] and denoted with Ωc in the pa-
per), imposes an upper limit to the allowed WIMP mass. For example Griest and

24The UED minimal model is also said the flat UED model, because does not include the gravity.
25For more details see ’The Boltzmann equation: non-relativistic thermal relics’ in Appendix A.1
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Kamionkowski in 1990 [60], for an Ωχ . 1, found an upper limit mχ . 102 TeV.

The WIMPZILLAs are the WIMP non-thermal relic version, not constrained by
the Boltzmann equation and therefore characterized by any large mass. This is
the main property of these candidates, that makes them the heavier dark matter
candidate proposed. The two necessary conditions are only the stability and the
non-equilibrium. The first can result somehow from supersymmetric theories while
the second derives from an interaction rate Γ smaller than the expansion rate H at
the production temperature T ∗. This condition is codified in the limit:(

200TeV
Mχ

)2(
T ∗

Mχ

)
< 1 (2.24)

where the capital M distinghuishes the WIMPZILLA mass Mχ from the WIMP
mass mχ. This bound implies Mχ & 200 TeV.
If the dark matter is so massive, then its numerical abundance would be less then
the WIMP one, i.e. given a ρχ, it can be ρχ ∝ mχnχ ∝Mχn

′
χ, with Mχ � mχ and

n′χ � nχ.

This hypothesis is not so popular, but we have discuss it because it proves the
weakness of the arguments that support also one of the most friendly and pursued
model, i.e. the WIMPs, and shows the arbitrariness of the admissible theoretical
resolutions of the missing mass problem.

Appendix A.2
A.2.1 Strong CP violation

The lagrangian term proportional to the parameter θ violates CP due to the
presence of the F-tensor dual F̃ :

Lθ = θ
g2

32π2F
µν
a F̃µνa (2.25)

Consider first the Abelian case. The QED strength tensor is:

Fµν = ∂µAν − ∂νAµ (2.26)

and its dual:

F̃µν = 1
2ε

µναβFαβ (2.27)

Consider a lagrangian term proportional to FµνF̃µν . Because of the Fµν antisym-
metry, only the off-diagonal terms are non-null, with F 0i = −Ei and F ij = −εijkBk.
The FµνF̃µν contraction selects the terms:

F 0iF̃0i = (−Ei)(1
2ε0ijkF

jk) = −1
2ε0ijkε

jkl(−Ei)Bl = δliE
iBl = Ē · B̄ (2.28)
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and

F ijF̃ij = (−εijlBl)(
1
2εijk0F

k0) = −1
2ε

ijlεijk0Bl(Ek) = −δlkBlEk = −Ē · B̄ (2.29)

where ε0ijkεjkl ≡ εijkεjkl = εijkε
ljk = 2δli

Therefore:

FµνF̃µν = F 0iF̃0i + F i0F̃i0 + F ijF̃ij = 2Ē · B̄ − Ē · B̄ = Ē · B̄ (2.30)

Since E and B are characterized by:

P T C
E - + -
B + - -

their scalar product is T-odd (or equivalently CP-odd), therefore the associated
lagrangian term is CP violating.

Now consider the non-Abelian theory:

Gµνa = ∂µAνa − ∂νAµa + igεabcA
µbAνc (2.31)

G̃µνa = εµναβ(∂αAβa − ∂αAβa + igεabcA
αbAβc) (2.32)

with Gµνa antisymmetric and only G0i and Gij (i 6= j) non-null (similarly for its
dual). At the leading order the non-Abelian field theory reduces to the Abelian
one, therefore GµνaG̃µνa ( ~Ea · ~Ba) violates CP as well.

A.2.2 The Electric Dipole Moment(EDM) connetion with the strong
CP-problem

The non-observation of the Electric Dipole Moment(EDM) imposes a fine-tuning
for the parameter θ, appeared in the lagrangian as a consequence of the QCD
vacuum-structure theory. The reason is that if the EDM was observed, it would be
a proof of the strong CP violation. Let us see why.
The Maxwell’s equations are(26):

~∇ · ~E = ρ (2.33)
~∇ · ~B = 0 (2.34)

~∇× ~E + ∂ ~B

∂t
= 0 (2.35)

~∇× ~B − ∂ ~E

∂t
= j (2.36)

where ρ is the electric charge density and j = ρv is the electric charge current.
Then, considering the following eingenvalue scheme (27):

26This part refers to [23]
27To check the discrete symmetry eingenvelues refer to [24]

31



Appendix A.2

P T C
E - + -
B + - -
ρ + + -
j - - -

the Maxwell’s equations are invariant under discrete symmetries.
The Dirac’s proposal of the existence of a "magnetic charge", as the electric one, led
to the search for the electric dipole moment, that would arise in the same way as
the magnetic dipole moment. In 1949 [25] he wrote "I do not believe there is any
need for physical laws to be invariant under these rejections, although all the exact
laws of nature so far known do have this invariance." and in effect he proposed the
modification of the Maxwell’s equations (2.34) and (2.35):

~∇ · ~B = ρm (2.37)

~∇× ~E + ∂ ~B

∂t
= jm (2.38)

where ρm and jm would be the magnetic charge density and the magnetic charge
current, with jm = ρmv. Under parity reflection and time reversal the two equations
(2.37) and (2.38) are not invariant, therefore Ramsey (1958) proposed an additional
operation of magnetic charge conjugation M, to obtain the PM and TM conserva-
tion. In any case P and T are destroyed.
Note that in this way the Maxwell equations would appear completely symmetric
between the electric and the magnetic part. The hamiltonian term relative to the
electric dipole moment would be:

He = −~de · ~E (2.39)

To leave He invariant under P, de should change sign ~de → −~de. But since it is
projected on the angular momentum direction ~J (the ~de orthogonal components
average to zero):

~de = α~J (2.40)

where α is some constant, and:

P T C
J + - +

i.e. ~J is a pseudo-vector, then the parity conservtion is violated.
The time-reversal reflection is similarly violated. Since under T ~J → − ~J , then
~de → −~de, while ~E → ~E as shown in the previous tables. This implies that He

is not invariant under time-reversal, or equivalently uneder CP (since for the CPT
theorem, CPT is conserved).

Today many efforts are working for improving the EDM bounds. The main
searches are dedicated to the EDMs of paramagnetic atoms and molecules, the
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EDMs of diamagnetic atoms and the EDMs of hadrons (28).

Focusing on nucleon EDM, the generalization of He in eqs. (2.39) in relativistic
terms is:

Ldim=5 = −de
i

2 ψ̄σµνγ5ψFµν (2.41)

where dim=5 stay for the energy dimension of the lagrangian density, that implies
[de] = E−1. This lagrangian term, of course, violates CP as well. We can separate
L in three parts, (i) de, (ii) Aµν = 1

2 ψ̄σµνγ5ψ and (iii) Fµν .

de changes sign under T. For µ, ν = 0, i→ F0i = −Ei, that does not change sign
under T (Ei → −Ei). In order to violate CP, A0i shoud have eingenvalue +1 under
T. Neclecting the factor 1/2:

T
(
ψ̄σ0iγ5ψ

)
T † = T

(
ψ̄
i

4[γ0, γi]γ5ψ

)
T † =

= T ψ̄( i4[γ0, γi]γ5)ψT † = T ψ̄( i2γ
0γiγ5)ψT † (2.42)

Inserting TT † conveniently, T ψ̄T † = ψ̄(γ1γ3), TψT † = (−γ1γ3)ψ TiT † = −i since
T is antiunitary (29), and Tγ0γiγ5T † = γ0γiγ5, since T is a spatio-temporal opera-
tor, therefore it does not act on γ matrices, except γ2, that in Dirac representation
is pure imaginary, therefore Tγ2T † = −γ2. Hence:

ψ̄(γ1γ3)(−i)(γ0γiγ5)(−γ1γ3)ψ = i[ψ̄γ0γ1γ3γ
iγ5γ1γ3ψ] =

= −i[ψ̄γ0γiγ1γ3γ5γ1γ3ψ] = ψ̄γ0γiγ5ψ (2.43)

where γ5 = iγ0γ1γ2γ3, {γµ, γν} = 2gµν and (γi)2 = 1. Therefore:

T
(
ψ̄σ0iγ5ψ

)
T † =

(
ψ̄σ0iγ5ψ

)
(2.44)

as expected. Now for µ, ν = i, j → Fij = −εijkBk, where Bk → −Bk under T. With
similar considerations (paying attention to the substitution γ0 → γj):

T
(
ψ̄σijγ5ψ

)
T † =

(
ψ̄σijγ5ψ

)
(2.45)

Finally:
TLdim=5T

† = −Ldim=5 (2.46)

The effective lagrangian at low energy can be therefore written as:

Leff = Ldim=4 + Ldim=5 + · · · = θ
g2

32π2F
µν
a F̃µνa − de

i

2 ψ̄σµνγ5ψFµν + . . . (2.47)

where Ldim=4 refer to (2.25). The connenction between the parameter θ and the
electric dipole moment de lies in this lagrangian density. Handling these terms, one
can infer [17]:

28This section refers to [26]
29An antiunitary operator θ satisfies the antilinear condition: θ(a|α〉+b|β〉) = a∗θ(|α〉)+b∗θ|β〉).
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de ∼ eθ
m

Λ2
had

(2.48)

where m is the spin 1/2 particle mass and Λhad ∼ 4πfπ, with fπ = 93 MeV.
From the experimental results on the Neutron Electric Dipole Moment(NEDM),
the "fine-tuning" of the θ parameter arises [13]:

de ≤ 2.9 · 10−26e · cm→ θ ≤ 10−10 (2.49)

Appendix B.2
B.2.1 Fermion representations

- This appendix refers to [27][39].

A Dirac spinor is the linear combination of plane waves whose positive frequency
part annihilates (±1

2) polarized particles and the negative frequency part creates
(±1

2) polarized antiparticles.
If we use the anticommutation relations between oscillator operators:

{ar(p), a†s(p′)} = {br(p), b†s(p′)} = δrsδ
3(p− p′) (2.50)

and the spinor normalization(30):

u†r(p)ur(p) = v†r(p)vr(p) = Ep
m

(2.53)

the Dirac spinor is:

ΨD(x) =
∑
r=1,2

∫
d3p

(2π)3/2

√
m

Ep
{ar(p)ur(p)e−ipx + b†r(p)vr(p)eipx} (2.54)

A Dirac field can be decomposed into two-component chiral spinors, ΨR and ΨL

(where R and L indicate right and left). In the massless limit, these two-components
chiral spinors that are mixed by the mass term, become independent solutions of
the Dirac equation of motion. In this limit they are called Weyl spinors and the
Fourier expansion is:

ΨW
L,R(x) =

∫
d3p

(2π)32Ep
{a(p)uL,R(p)e−ipx + â†(p)vL,R(p)eipx} (2.55)

30Another common normalization is:

u†r(p)ur(p) = v†r(p)vr(p) = 1 (2.51)

These spinors, unlike that above, reabsorb the square-root
√

Ep
m

, such that the Dirac field become:

ΨD(x) =
∑
r=1,2

∫
d3p

(2π)3/2 {ar(p)ur(p)e
−ipx + b†r(p)vr(p)eipx} (2.52)
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a(p) = N

∫
d3xe−ipxu†L(p)ΨL,R (2.56)

â†(p) = N

∫
d3xγ0C(eipx(Ψ†L,RuL(p)))∗ = N

∫
d3xe−ipxv†L(p)ΨL,R (2.57)

where u(p) = γ0Cv∗(p) and v(p) = γ0Cu∗(p).
Since this is a massless limit, the normalization (2.53) fails, therefore for the Weyl
spinor we have used:

{ar(p), a†s(p′)} = {âr(p), â†s(p′)} = (2π)32Epδrsδ3(p− p′) (2.58)

and:

u†r(p)ur(p) = v†r(p)vr(p) = 2Ep (2.59)

A Majorana spinor is a Dirac field that satisfy the reality condition. The simple
Ψ = Ψ∗ condition is not Lorentz invariant, as shown in the following:

Ψ′(x′) = e−
i
4σµνω

µνΨ(x) (2.60)

Consider now the Lorentz-trasformation of the Ψ∗(x):

Ψ∗′(x) = e−iσ
∗
µνω

µνΨ∗(x) (2.61)

that is not the same trasformation law because σµν is not purely imaginary.
Therefore we defined the conjugate field:

Ψ̂(x) = γ0CΨ∗(x) (2.62)

such that the trasformation law is:

Ψ̂′(x′) = (e−iσµνωµν )Ψ̂(x) = (e−iσµνωµν )γ0CΨ∗(x) (2.63)

we can find a general condition for the unitary C matrix by equating Ψ′(x′) = Ψ̂′(x′):

Cσ∗µνC
−1 = −γ0σµνγ0 (2.64)

For the Dirac γ-matrices:
C = iγ2γ0 (2.65)

In general the unitary trasformation:

Ψ̂R,L = ΨL,R (2.66)

rotates a chiral state into the other. Both Dirac and Majorana field can be obtained
as a combination of Weyl fields. Consider two Weyl fields, Ψ1,Ψ2, that can be left
or right handed respectively. Dirac and Majorana are massive fields, therefore both
the chirality must be present in the combination. The difference between Dirac and
Majorana fields is that the first is complex and the second is real. This implies
that the Dirac field is the combination of two different Weyl fields with different
chirality, while the Majorana field is the combination of the same Weyl field with
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different chirality. Exploiting the unitary transformation (2.66), if we consider Ψ1
and Ψ2 with a fixed chirality, the Dirac and Majorana fields can be written as:

ΨD = ΨW
1 + Ψ̂W

2 (2.67)

and:
ΨM = ΨW

1 + Ψ̂W
1 (2.68)

We remark that the Dirac field is a general combination of different fields, right
and left, while the Majorana is the combination of the right and left part of the same
field, because it is constrained by the realiy condition. The Weyl condition imposes
the existence of only one of the two chiral components (left-handed particles and
right-handed antiparticles or viceversa). Therefore Weyl field is a particular case of
Dirac fields, while the Majorana and Weyl conditions are not compatible.

Another feature that distinguishes Dirac and Majorana particles is the boost. If
a Dirac particle is boosted, since it is massive, an observer can travel at an upper
velocity. He will observe a particle with the opposite helicity. To discern particles
and antiparticles he needs to look at the charge. But if the particle is uncharged, as
the neutrino, then he cannot distiguish them. For this reason the neutrinos could
be Majorana particles. This hypothesis is very interesting, but at this time we do
not know if the neutrino is a Dirac or Majorana particle.

B.2.2 Neutrino mass
Within the Standard Model the observation of only one neutrino helicity (the left

handed projection) and the requirement of the lagrangian gauge invariance imply
that the neutrinos are massless:

• a Dirac mass term would involve two helicities and therefore would require
the introduction of gauge singlet right handed neutrinos;

• a Majorana mass term would involve only one helicity at a time, being ∝
νTLC

−1νL, where νL is the left handed neutrino field and C the charge conju-
gation matrix, therefore it would be favoured. But the total hypercharge of
this term is -1, since that of the left handed neutrino is Y = −1

2 . The Higgs
doublet φT = (φ+ φ0) has Y = 1

2 (or −1
2 for the conjugate φ̂), therefore

any Yukawa type coupling leads to a lagrangian term with total hypercharge
different from zero and hence that violates the correspondent U(1)Y gauge
symmetry.

For these reasons, within the standard model, the neutrinos are considered massless.

The recent results on neutrino oscillations prove that the neutrinos are massive
and therefore definitively imply that a standard model extension is required. To
allow a Dirac mass term it is sufficient to introduce a gauge singlet right handed
neutrino νR. To allow a Majorana mass term through minimal extensions of the
standard model, we can:
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1. introduce an Higgs triplet φT with hypercharge Y = 1, so that, coupled to
νTLC

−1νL, the gauge invariance is restored;

2. consider a non-renormalizable 5-dimensional operator C
Λ (Lφ)(Lφ), where C

is a dimensionless costant and Λ is a large energy scale; this term restores
the hypercharge conservation involving only standard model particles and,
below the electroweak spontaneous breaking, it provides a Majorana mass
term, suppressed by the energy scale Λ. This hypothesis can occur if the
standard model is the low energy manifestation of an higher energy theory,
whose energy scale is E ∼ Λ.

��
��
��
��

��
��
��
��yD

νR

νL

〈φ0〉
��
��
��
��

��
��
��
��yT

νL

νL

〈φ0
T
〉

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

νL

νL

〈φ0〉

〈φ0〉

C
M

Figure 6. Left: Dirac mass from the vacuum expectation value of the neutral component φ0 of a
Higgs doublet. yD is a Yukawa coupling. Center: a Majorana mass for an active neutrino due to a
Higgs triplet φ0

T with the Yukawa coupling yT . An analogous diagram can generate a Majorana mass
for a sterile neutrino, with φ0

T replaced by a Higgs singlet (or bare mass). Right: Majorana mass for
νL generated by a higher-dimensional operator involving two Higgs doublets. (Figure similar to fig. 1
in Ref. [147].)

The CP-conjugate field is then
(νR)c ≡ C νRT , (1.19)

where we are following the notation in ref. [66]. In Eq. (1.19), C is the charge conjugation
matrix, given by = iγ2γ0 in the Weyl representation, and νR ≡ (νR)†γ0 is the Dirac adjoint.
Note that the CP conjugate in Eq. (1.19) is always well-defined, independent of whether CP
is violated, and that (νR)c is the field which annihilates a left-chiral antineutrino.6

In contrast, an active (or doublet or ordinary) neutrino is in an SU(2) doublet with a
charged lepton, and it has conventional weak interactions. There are three known left-chiral
active neutrinos νL,α, where the flavor index α = e, µ, τ denotes the associated charged lepton.
The CP-conjugate (νL)c ≡ C νLT (suppressing the flavor index) is the field associated with a
right-chiral antineutrino. The number n of right chiral neutrinos is unknown (and could even
be zero, as there are alternative explanations of neutrino masses, see section 1.5.1). In the
remainder of this subsections we use an illustrative toy model with only one LH and one RH
neutrino flavour.

νL ↔ (νL)c and νR ↔ (νR)c each describe two degrees of freedom and are known as
Weyl spinors. Fermion mass terms describe transitions between left and right-chiral states.
There are two possible types for neutrinos. A Dirac mass term connects the left and right
components of two different Weyl spinors. These are typically active and sterile, such as

LD = −mD (νLνR + νRνL) , (1.20)

where we have chosen the phases of the fields so thatmD is real. LD allows a conserved lepton
number L, but violates weak isospin by 1/2 unit. It can be generated by the Higgs mechanism,
as in fig. 6, and it is analogous to the quark and charged lepton masses. That is, mD = yDv,7

where v = 174 GeV is the expectation value of the neutral Higgs field. If eq. (1.20) is the
only neutrino mass term, then νL and νR can be combined to form a four-component Dirac
spinor νD ≡ νL + νR, with CP conjugate (νD)c ≡ (νL)c + (νR)c.

Unlike quarks and charged leptons, neutrinos are not charged under any unbroken gauge
symmetries. They may therefore have Majorana mass terms, which connect a Weyl spinor

6Some authors use alternative notations, such as νcR,L for C νR,LT .
7In the minimal seesaw model, (1.25), the number yD is to be identified with the matrix F .

– 16 –

Fig. B.2.1: Left: the Dirac mass term, that involves neutrinos ν of both the
helicities, right (R) and left (L), coupled to the neutral component φ0 of the
standard Higgs doublet and that therefore requires the introduction of a right

handed neutrino (yD is the Yukawa coupling). Center: the Majorana mass term,
whose gauge invariance under U(1)Y is obtained introducing an higgs triplet φT ,

coupled to left handed neutrinos (yT is the Yukawa coupling). Right: the Majorana
mass term provided by a gauge invariant non rinormalizable 5-dimensional operator,
in which the two left handed neutrinos are coupled to the neutral components φ0 of

two standard higgs doublets (C is a dimensionless constant and M is the large
energy scale associated to the unexplored higher energy theory, Λ in the text.). This

figure is taken from [28].

3. introduce the gauge-singlet right-handed neutrinos and consider a mass term
∝ ν̂†RνR. Since the total hypercharge of this term is Y=0, it could be coupled
to a non standard Higgs singlet φs.

The Majorana mass terms would violate the lepton number conservation. Since
the lepton number is not a gauge quantum number, its violation is admissible.

To show briefly how the seesaw mechanism works, let us consider a simple frame-
work that involves a Yukawa type coupling term and a Majorana mass term, i.e.
that introduce the right handed neutrino without specifying the possible physics
beyond the standard model that produces the masses. This is the framework un-
der which the seesaw type I mechanism works. There is a notation change: the
right handed neutrinos so far indicated with νR, below are indicated with NR, the
Yukawa coupling yD with a generic matrix λ and the standard Higgs doublet with
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φ, in the same way as the literature cited. Within this condition the dynamics at
low energy is described by the lagrangian:

L = LSM +
∑
i

NR,i/∂NR,i + LDY + LMmass (2.69)

where LDY is the Yukawa interaction term:

LDY =
∑
ij

(λijψ̄L,iφ̂NR,j + h.c.) (2.70)

with λij a coupling matrix with flavor indeces and φ̂ = iτ2φ∗; note that YNR =
0, Yφ = 1/2 and YψL = −1/2, therefore the term conserves the hypercharge. After
spontaneous symmetry breaking, the Dirac mass term is:

LDmass =
∑
ij

(mij ν̄L,iNR,j + h.c.) (2.71)

where mij = λij
v√
2 is the Dirac mass matrix (v =< φ >).

LMmass is the Majorana mass term:

LMmass =
∑
ij

(1
2Mij

¯̂
NL,iNR,j + h.c.) (2.72)

where again Mij is the Majorana mass matrix.
Then the total neutrinos mass term is:

Lmass = 1
2
(
ν̄L

¯̂
NL

)( 0 m
mT M

)(
ν̂R
NR

)
+ h.c.

where it is used the identity ¯̂
NLν̂R = ν̄LN

(
R
31) such that the two terms ∝M add

up to the Dirac mass term. Note that m is a 3 × 3 matrix, equal to the number
of charged lepton generations, M is in general a N × N matrix and the sterile
neutrino field is a N-dimensional vector, where N is the number of sterile neutrino
generations (the cancellation of chiral anomalies does not constrain the number of
generations because sterile neutrinos are not coupled to gauge bosons). Since the
chiral projections are not eingeinstates of mass, the diagonalization process leads
to the active-sterile neutrino mixing, with a mixing angle θ ∼ O(mM ), and provides
the mass eingeinvalues we are searching for (32). Then the block-diagonalization in
the M � m limit, leads to:

ma = −mM−1mT (2.73)
such that, if m ∼ v = O(100 GeV), as aspected, and M is somehow M ∼ O(1014

GeV), then:

ma ∼
m2

M
∼ 1002

1014GeV = 10−10GeV = 0.1eV (2.74)

below the cosmological experimental limit ∑i νa,i . 0.23 eV [2].

31 ¯̂
NLν̂R = ((iγ0CN∗R)†γ0)iγ0Cν∗L = −iN∗R†C†γ0†iCν∗L = NT

Rγ
0ν∗L = (ν∗Lγ0NT

R )T = ν†Lγ
0NR =

ν̄LNR
32For the diagonalization details we recommend the appendix A of [31], that includes also other

possible mass terms.
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B.2.3 The active-sterile neutrino mixing
- This appendix refers to [40]

The active-sterile neutrino mixing is employed by the diangonalization of the
mass matrix discussed above. In a simplified version of the mixing in which there
are only one active and one sterile neutrino, the diagonalization is made by an
orthogonal rotational matrix O:

O =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(2.75)

such that OOT = 1 and:

Lmass = 1
2
(
ν̄L

¯̂
NL

)
OOT

(
0 m
mT M

)
OOT

(
ν̂R
NR

)
+ h.c. (2.76)

Then:

OT
(

0 m
mT M

)
O =

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)(
0 m
mT M

)(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
=

(
Msin2(θ) + 2msin(θ)cos(θ) Msin(2θ)

2 +mcos(2θ)
Msin(2θ)

2 +mcos(2θ) Mcos2(θ)− 2msin(θ)cos(θ)

)
To be diagonal, Msin(2θ)

2 + mcos(2θ) = 0 ⇒ tan(2θ) = −2mM , therefore, since
θ-mixing is small:

θ ≈ m

M
(2.77)

and in the m�M limit: (
−m2

M 0
0 ∼M

)
(2.78)

In these conditions the rotated sterile neutrino eingeinstate is:

N ′R = O12ν +O22N = −sin(θ)ν + cos(θ)N ≈ N + θν (2.79)

This mixing opens the important radiative decay channel N1 → νaγ on which many
experiments are based, whose 1-loop feynman diagrams are shown below:
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all possible active neutrino flavors must be proportional to the following quantity,

∑

α

|θαi|2, (39)

which is called the i-th active-sterile mixing angle square and usually denoted as

θ2i . This is the quantity we can put an upper bound on by a non-observation of the

monoenergetic photon γ.

The precise bound originating from different satellite experiments can be found

in Refs. 32, 89 (based on Refs. 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,

131, 132). For our purpose, a simplified version of this bound as used in Ref. 27 is

perfectly sufficient:

θ2i . 1.8 · 10−5

(
1 keV

Mi

)5

. (40)

Note, however, that more recent non-observations of the X-ray line for certain galax-

ies yield even stronger bounds, cf. Refs. 133, 134. Corresponding updates of the

simplified bound in Eq. (40) are available.148

Let us now get a more precise understanding of the connection between the

active-sterile mixing and the entries in the full neutrino mass matrix. As we have

just seen, the definition of the i-th active-sterile mixing angle θi is

θ2i ≡
∑

α

|θαi|2, where θαi ≡ Uα,3+i =
[
m∗

DM
−1
R

∗
VR

]
αi
. (41)

Note that we have expressed the generation-dependent active-sterile mixing θαi in

terms of the full neutrino mixing matrix U as defined in Appendix A.2. In the basis

where the RH neutrino mass matrix is diagonal (and real),MR = diag(M1,M2,M3),

we have VR = 1, and the above formula simplifies to

θαi =
∑

k

m∗
DαkM

−1
k δki =

(m∗
D)αi
Mi

. (42)

Ni ΝΑ

Γ

WW

eΑ

ΘΑi

Ni ΝΑ

Γ

W

eΑ eΑ

ΘΑi

Fig. 3. The Feynman diagrams for the radiative decay of the sterile neutrino, Ni → ναγ.Fig. B.2.2: The Feynman diagram for the sterile neutrino radiative decay, allowed by the
active-sterile neutrino mixing. This figure is taken from [31].

where νa is the active neutrino.
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Appendix C.2
C.2.1 What is the ’WIMP miracle’

Usually in literature dealing with the WIMP paradigm, we bump into the the
popular thermally averaged total annihilation cross section of χ into lighter particles
times the relative velocity:

〈σχχ̄→ff̄ |v|〉 ≈ pb · c ≈ 3 · 10−26cm3s−1 (2.80)

This value results from the computation of the dark matter parameter density,
in the thermic hypothesis.

Exploiting the computation of Y∞ provided in at the end of ’The Boltzmann
equation: non-relativistic thermal relics’ in Appendix A.1:

Y∞ = n0
T 3 = 1.661g1/2

∗
mPlmχ〈σχχ̄→ff̄ |v|〉

(2.81)

the Boltzmann equation provides the parameter density equation at this time:

Ω0
χ =

ρ0
χ

ρ0
c

= mχn0
ρ0
c

= mχY
∞T 3

0
ρ0
c

(2.82)

Since:

n0 = Y∞T 3
0 = Y∞s0

45
2π2g∗s

= 1.12× 104 g
1/2
∗

g∗smPlmχ〈σχχ̄→ff̄ |v|〉
cm−3 (2.83)

with s0 = 2970cm−3, and:

ρ0
c = (4.85± 0.13) · 10−6GeV/c

2

cm3 (2.84)

then:

Ω0
χ = 1.12× 104cm−3

ρc

g
1/2
∗

g∗smPl〈σχχ̄→ff̄ |v|〉
∼ 0.1 ·

√
100
g∗

(
10−10GeV −2

〈σχχ̄→ff̄ |v|〉

)
(2.85)

where g
1/2
∗
g∗s
∼ g−1/2
∗ .

Since 1 GeV−2 in natural units is 0.1 mbarn, then:

〈σχχ̄→ff̄ |v|〉 ∼ 10−38cm2 → 〈σχχ̄→ff̄ |v|〉 ∼ 10−28cm3s−1 (2.86)

Usually in literature this prediction is claimed as the "WIMP miracle", because
the 〈σχχ̄→ff̄ |v|〉 is of the same order of the electroweak interaction. Indeed the
interaction is not establish, because we have no information about the mediator.
The significant result is the estimation of the annihilation cross section in a mass
independent way, but this is not enough to be claim as a ’miracle’.
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C.2.2 SUperSYmmetry
- This part is mostly taken from [51].

The SUperSYmmetry (SUSY) is a mathematical proposal that imagines a sym-
metry between fermions and bosons. Since the SUSY considers the symmetry be-
tween particles with different statistics, i.e. with integer and half-integer spin, is a
more general symmetry group than the Poincarè ones(33). IfQ is the supersymmetry
generator, such that:

Q|fermion〉=|boson〉 Q|boson〉=|fermion〉

than the square of the spin generator S2 cannot be a Casimir for the SUSY group,
while P 2 is imposed to be a Casimir adding a superparteners for all the elementary
particles with the same mass but different statistics. This framework is supported by
the Coleman-Mandula theorem [56], asserting that in theories with chiral fermions
and parity-violating interaction, Q and Q† must satisfy the following anticommuta-
tion and commutation relations:

{Q,Q†} = 2σµPµ (2.88)

{Q,Q} = {Q†, Q†} = 0 (2.89)

[Pµ, Q] = [Pµ, Q†] = 0 (2.90)

where the spinor indices are omitted. From eqs. (2.90) we can infer that P 2 is the
SUSY Casimir and therefore states of the same multiplet must have equal masses.

Hierarchical or naturalness "problem" The mass degeneration just discussed
is the supersymmetry property that provides a solution to the so said hierarchy or
naturalness problem, that is the appearance of quadratic divergences in the radia-
tive corrections of the mass of possible scalar fields contained in the lagrangian.
This problem does not occur within the Standard Model because, being a renormal-
izable theory, all the divergences are absorbed by the renormalization procedure.
The problem would arise only if an energy scale of new physics exists, such as an
heavier particle.

33The Poincarè group counts two Casimir, the length of the Pauli-Lubansky pseudo-vectorW 2 =
−mJ2, where Jµ is the total angular momentum generator, and the length of the 4-momentum
generator P 2. The Pauli-Lubansky pseudo-vector is the ’moving particle spin generator’ beacuse
it is defined as:

Wµ = 1
2 εµνρσM

νρPµ (2.87)

where Mνρ = i
4 [γν , γρ] is the inifinitesimal rotation generator and Pµ is the traslation generator.

For massive moving particlesW 2 = −mJ2, where J is the total angular momentum. For particle at
restW 2 = −mS2 and since bothW 2 and P 2 commute with all the Poincarè group generators, they
are considered as the Casimir of the group. In this way the elementary particles can be collected
according their mass and spin in irreducible multiplets under the Poincarè trasformations. At rest
the Pauli-Lubansky pseudo-vector is ∝ S2, where Sµ is the spin generator, therefore the irreducible
multiplets of the Poincarè group are constituted by the particles with the same mass and spin,
labelled by |m, s, sz〉, where −s ≤ sz ≤ s.
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Consider the Higgs potential:

V = m2
H |H|2 + λ(|H|)4 (2.91)

where mH is the Higgs mass and λ is the coupling constant. The Standard Model
masses are fixed by a unique energy scale, that is the vacuum expectation value of
the Higgs field (vev), that is non null if m2

H < 0 and λ > 0. The one-loop diagrams
involving fermionic or bosonic intermediate states correct the m2

H

“We are, I think, in the right Road of Improvement, for we are making Experiments.”

–Benjamin Franklin

1 Introduction

The Standard Model of high-energy physics, augmented by neutrino masses, provides a remarkably

successful description of presently known phenomena. The experimental frontier has advanced into the

TeV range with no unambiguous hints of additional structure. Still, it seems clear that the Standard

Model is a work in progress and will have to be extended to describe physics at higher energies.

Certainly, a new framework will be required at the reduced Planck scale MP = (8πGNewton)
−1/2 =

2.4 × 1018 GeV, where quantum gravitational effects become important. Based only on a proper

respect for the power of Nature to surprise us, it seems nearly as obvious that new physics exists in the

16 orders of magnitude in energy between the presently explored territory near the electroweak scale,

MW , and the Planck scale.

The mere fact that the ratio MP/MW is so huge is already a powerful clue to the character of

physics beyond the Standard Model, because of the infamous “hierarchy problem” [1]. This is not

really a difficulty with the Standard Model itself, but rather a disturbing sensitivity of the Higgs

potential to new physics in almost any imaginable extension of the Standard Model. The electrically

neutral part of the Standard Model Higgs field is a complex scalar H with a classical potential

V = m2
H |H|2 + λ|H|4 . (1.1)

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This occurs if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. We know

experimentally that 〈H〉 is approximately 174 GeV from measurements of the properties of the weak

interactions. The 2012 discovery [2]-[4] of the Higgs boson with a mass near 125 GeV implies that,

assuming the Standard Model is correct as an effective field theory, λ = 0.126 andm2
H = −(92.9 GeV)2.

(These are running MS parameters evaluated at a renormalization scale equal to the top-quark mass,

and include the effects of 2-loop corrections.) The problem is that m2
H receives enormous quantum

corrections from the virtual effects of every particle or other phenomenon that couples, directly or

indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the

Feynman diagram in Figure 1.1a yields a correction

∆m2
H = −|λf |2

8π2
Λ2
UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted

as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.

H

f

(a)

S

H

(b)
Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2

H , due to (a) a
Dirac fermion f , and (b) a scalar S.

3

Fig. C.2.1: One-loop corrections to the Higgs squared mass m2
H due to (a) a fermionic intermediate

state and (b) a scalar intermediate state [51]

The diagram (a) corresponds to the Higgs-fermion coupling lagrangian term
−λfHf̄f and the relative correction to m2

H is:

∆m2
H = −|λf |

2

8π2 Λ2
UV (2.92)

The diagram (b) corresponds to the Higgs-scalar coupling lagrangian term−λS |H|2|S|2
and the relative correction is:

∆m2
H = − λS

16π2 [Λ2
UV − 2m2

Sln(ΛUV /mS) + . . . ] (2.93)

where mS is the scalar field mass. The quadratic divergence ∝ Λ2
UV is solved by the

renormalization procedure and with a different regularization, such as the dimen-
sional, the term Λ2

UV does not occur. The naturalness problem arises if an heavier
field exists (34), because in order to provide the cancellation of the term ∝ m2

S ,
fine-tuned conditions are required(35). The minus sign that occurs between boson
and fermion loops can provide the cancellation of the dangerous contributions to all
the higher order corrections, but this require that the particle content is constituted
by an equal number of bosons and fermions.
The SUSY succeeds in providing this cancellation and this is one of the strongest
argumentations that are led in its favor. Since, as known, the standard model mat-
ter fields and the gauge bosons, after the electroweak symmetry breaking, have not
similar masses, imposing supersymmetry in the quantum field theory framework,
as mentioned above, implies the existence of a copy for all the fundamental fields,
a superpartner, degenerate in mass and with different statistics. Hence the super-
multiplets contain each field and its superpartner.

34For a review on the experimental hints of the hierarchical problem see [57].
35Here the correction is due to an heavy scalar particle, but at higher order it can be also a

fermion heavy particle.
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Indeed the SUSY does not solve completely the question. Taking into account
gravity, the complete lagrangian contains another term, the cosmological constant
Λ. We have already encountered the problem connected with the cosmological
constant when we discussed dark energy. The SUSY fails in solving this hierarchy
problem [58].

Minimal Supersymmetric Standard Model (MSSM) Let us introduce the
simplest approach to the supersymmetry theories, the Minimal Supersymmetric
Standard Model (MSSM). It extends the Standard Model particle content intro-
ducing a superpartner for each standard field, or, more precisely, for each degree of
freedom of the standard fields. It is said "Minimal" because it introduces a minimal
number of SUSY fields, only to account for all the Standard Model fields.
Since the energy scale of supersymmetry is higher than the electroweak one, the
standard particles are massless; hence considering Weyl fermions, there are two de-
grees of freedom for each fermion, due to the two helicities. Therefore the MSSM
particle spectrum contains:

• two real spin-0 superpartners (or equivalently a complex scalar field) for each
matter field (spin-1/2). These scalar superpartners are called s-fermions (from
scalar fermions);

• two non-supersymmetric Higgs doublets and the two relative fermionic super-
partners. A new Higgs non-supersymmetric doublet is introduced to avoid
spoiling the anomaly cancellation, that requires an even number of fermion
(or sfermion) fields. The Higgs superparners are called higgsinos;

• a spin-1/2 fermion superpartner for each spin-1 gauge boson. This fermion
superpartner is called as the relative gauge boson, adding -ino at the end of
the name. In general they are called gaug-inos.

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 families) u ũ∗R u†R ( 3, 1, −2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2)

Table 1.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The spin-0
fields are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.

to charge −1/3 down-type quarks (down, strange, bottom) and to the charged leptons.

We will call the SU(2)L-doublet complex scalar fields with Y = 1/2 and Y = −1/2 by the names

Hu and Hd, respectively.
† The weak isospin components of Hu with T3 = (1/2, −1/2) have electric

charges 1, 0 respectively, and are denoted (H+
u , H

0
u). Similarly, the SU(2)L-doublet complex scalar

Hd has T3 = (1/2, −1/2) components (H0
d , H

−
d ). The neutral scalar that corresponds to the physical

Standard Model Higgs boson is in a linear combination of H0
u and H0

d ; we will discuss this further in

section 8.1. The generic nomenclature for a spin-1/2 superpartner is to append “-ino” to the name

of the Standard Model particle, so the fermionic partners of the Higgs scalars are called higgsinos.

They are denoted by H̃u, H̃d for the SU(2)L-doublet left-handed Weyl spinor fields, with weak isospin

components H̃+
u , H̃

0
u and H̃0

d , H̃
−
d .

We have now found all of the chiral supermultiplets of a minimal phenomenologically viable exten-

sion of the Standard Model. They are summarized in Table 1.1, classified according to their transfor-

mation properties under the Standard Model gauge group SU(3)C ×SU(2)L×U(1)Y , which combines

uL, dL and ν, eL degrees of freedom into SU(2)L doublets. Here we follow a standard convention, that

all chiral supermultiplets are defined in terms of left-handed Weyl spinors, so that the conjugates of

the right-handed quarks and leptons (and their superpartners) appear in Table 1.1. This protocol for

defining chiral supermultiplets turns out to be very useful for constructing supersymmetric Lagrangi-

ans, as we will see in section 3. It is also useful to have a symbol for each of the chiral supermultiplets

as a whole; these are indicated in the second column of Table 1.1. Thus, for example, Q stands for

the SU(2)L-doublet chiral supermultiplet containing ũL, uL (with weak isospin component T3 = 1/2),

and d̃L, dL (with T3 = −1/2), while u stands for the SU(2)L-singlet supermultiplet containing ũ∗R, u
†
R.

There are three families for each of the quark and lepton supermultiplets, Table 1.1 lists the first-family

representatives. A family index i = 1, 2, 3 can be affixed to the chiral supermultiplet names (Qi, ui, . . .)

when needed, for example (e1, e2, e3) = (e, µ, τ). The bar on u, d, e fields is part of the name, and does

not denote any kind of conjugation.

The Higgs chiral supermultiplet Hd (containing H0
d , H

−
d , H̃

0
d , H̃

−
d ) has exactly the same Standard

Model gauge quantum numbers as the left-handed sleptons and leptons Li, for example (ν̃, ẽL, ν,

eL). Naively, one might therefore suppose that we could have been more economical in our assignment

by taking a neutrino and a Higgs scalar to be superpartners, instead of putting them in separate

supermultiplets. This would amount to the proposal that the Higgs boson and a sneutrino should be the

†Other notations in the literature have H1,H2 or H,H instead of Hu, Hd. The notation used here has the virtue of
making it easy to remember which Higgs VEVs gives masses to which type of quarks.

9

Table C.2.1: The MSSM spin-0,1/2 supermultiplets. The notation ã indicates the superpartners [51].
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Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 1.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

same particle. This attempt played a key role in some of the first attempts to connect supersymmetry to

phenomenology [9], but it is now known to not work. Even ignoring the anomaly cancellation problem

mentioned above, many insoluble phenomenological problems would result, including lepton-number

non-conservation and a mass for at least one of the neutrinos in gross violation of experimental bounds.

Therefore, all of the superpartners of Standard Model particles are really new particles, and cannot be

identified with some other Standard Model state.

The vector bosons of the Standard Model clearly must reside in gauge supermultiplets. Their

fermionic superpartners are generically referred to as gauginos. The SU(3)C color gauge interactions

of QCD are mediated by the gluon, whose spin-1/2 color-octet supersymmetric partner is the gluino. As

usual, a tilde is used to denote the supersymmetric partner of a Standard Model state, so the symbols

for the gluon and gluino are g and g̃ respectively. The electroweak gauge symmetry SU(2)L×U(1)Y is

associated with spin-1 gauge bosons W+,W 0,W− and B0, with spin-1/2 superpartners W̃+, W̃ 0, W̃−

and B̃0, called winos and bino. After electroweak symmetry breaking, the W 0, B0 gauge eigenstates

mix to give mass eigenstates Z0 and γ. The corresponding gaugino mixtures of W̃ 0 and B̃0 are called

zino (Z̃0) and photino (γ̃); if supersymmetry were unbroken, they would be mass eigenstates with

masses mZ and 0. Table 1.2 summarizes the gauge supermultiplets of a minimal supersymmetric

extension of the Standard Model.

The chiral and gauge supermultiplets in Tables 1.1 and 1.2 make up the particle content of the

Minimal Supersymmetric Standard Model (MSSM). The most obvious and interesting feature of this

theory is that none of the superpartners of the Standard Model particles has been discovered as of

this writing. If supersymmetry were unbroken, then there would have to be selectrons ẽL and ẽR with

masses exactly equal to me = 0.511... MeV. A similar statement applies to each of the other sleptons

and squarks, and there would also have to be a massless gluino and photino. These particles would have

been extraordinarily easy to detect long ago. Clearly, therefore, supersymmetry is a broken symmetry

in the vacuum state chosen by Nature.

An important clue as to the nature of supersymmetry breaking can be obtained by returning to the

motivation provided by the hierarchy problem. Supersymmetry forced us to introduce two complex

scalar fields for each Standard Model Dirac fermion, which is just what is needed to enable a cancellation

of the quadratically sensitive (Λ2
UV) pieces of eqs. (1.2) and (1.3). This sort of cancellation also requires

that the associated dimensionless couplings should be related (for example λS = |λf |2). The necessary
relationships between couplings indeed occur in unbroken supersymmetry, as we will see in section

3. In fact, unbroken supersymmetry guarantees that quadratic divergences in scalar squared masses,

and therefore the quadratic sensitivity to high mass scales, must vanish to all orders in perturbation

theory.‡ Now, if broken supersymmetry is still to provide a solution to the hierarchy problem even

in the presence of supersymmetry breaking, then the relationships between dimensionless couplings

‡A simple way to understand this is to recall that unbroken supersymmetry requires the degeneracy of scalar and
fermion masses. Radiative corrections to fermion masses are known to diverge at most logarithmically in any renormal-
izable field theory, so the same must be true for scalar masses in unbroken supersymmetry.
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Table C.2.2: The MSSM spin-1,1/2 gauge supermultiplets. The notation ã indicates the
superpartners[51].

The particle content of the Minimal Supersymmetric Standard Model is sum-
marized in the two tables above. The two Higgs doublets have the up and down
indices because they provide the masses respectively to the up and down doublet
components.

Soft symmetry breaking If these fields had masses equal to the standard part-
ners, clearly we would have already detected them. In order to comply with the
known phenomenology, the supersymmetry is supposed to be a broken symmetry,
but the energy order of this symmetry breaking is not predicted. This is the reason
of the large arbitrariness in the parameter space, when we talk about supersymmet-
ric dark matter candidates. Indeed the requirement of solution of the naturalness
problem can constrain the mass splitting between particles and the relative super-
partner. For example, within the the Minimal Supersymmetric Standard Model
(MSSM), one can image a soft symmetry breaking, that introduces the correction
to the squared Higgs mass:

∆m2
H = m2

soft

[
λ

16π2 ln(ΛUV /msoft) + . . .

]
(2.94)

that is proportional to m2
soft, where msoft is the mass scale of the superpartners.

As the electroweak symmetry breaking, the SUSY breaking provides SUSY masses
proportional to a unique mass scale, in this case msoft. The numerical value of this
correction is not so relevant because the value of the Higgs bare mass is unknown.
Indeed there are not constraints on the msoft. At the begining msoft was thought
to be of O(TeV), to probe an energy scale accessible to experiments: signs of the
supersymmetry should have arisen at the TeV scale [2][46][51]. Since the SUSY
symmetry breaking energy scale is imposed and not derived, it is arbitrarly and
conveniently changed as a function of the experimental results.

R-parity Finally, to consider a supersymmetric dark matter candidate, is yet
necessary to introduce an important property: the R-parity. The R-parity is the
global symmetry:

R = (−1)3(B−L)+2s (2.95)

where B and L are the baryon and lepton numbers, and s is the spin. For the
standard particles R = 1, while for the superpartners R = −1. To preserve the
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R-parity, the SUSY particles must be always produced in couple. This new global
symmetry is introduced because also the MSSM, that is the simplest approch to the
SUSY, allows terms that violates the B and L numbers. This violation is admissible
because they are not gauge symmetries, but in these conditions unobserved processes
are allowed, such as the proton decay. The R-parity conservation is imposed to avoid
these processes.
From the dark matter problem point of view, the R-parity is the symmetry that
allows to isolate the SUSY particles by the standard model particles, so that the
lightest particle of the SUSY spectrum is stable. Therefore the arbitrary imposition
of the R-parity permits the prediction of supersymmetric dark matter candidates.
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Chapter 3

The Phenomenology of WIMP
Candidates

The WIMP, Weakly Interactive Massive Particle, is the most quested dark matter
hypothesys. This chapter is focused on the phenomenology that characterizes this
candidate, i.e. on the physics at the basis of the experimental search. We will
discuss the several halo models in section 3.1 and the direct and indirect detection
techniques in section 3.2 and 3.3. The aim is to study in depth the analytical form
of the observable quantities and furthermore to clarify the conditions under which
the comparison between direct and indirect search is possible.

3.1 The Milky Way dark matter halo
An accurate dark matter density profile has not been calculated yet. N-body

simulations of hierarchical clustering in cold dark matter scenarios provide some
solutions and the Milky Way halo density profile can be inferred by these results.

A general density profile model is [61]:

ρ(r) ∝ 1(
r
a

)γ [1 +
(
r
a

)α](β−γ)/α (3.1)

where a is the halo core radius and α, β and γ are parameters that identify the
different models.

α β γ

Ka 2 3 0.2
Kb 2 3 0.4
FNW 1 3 1
Iso 2 2 0

Table 3.1. The parameters α, β and γ for four different models. Ka is the Kravtsov model, with
γ = 0.2, Kb is the Kravtsov model, with γ = 0.4, FRW is the Navarro, Frank and White and Iso is the
isothermal, spherical symmetryc profile.

In table (3.1) we refer to the Kravtsov et al. model as K, to the Frank, Navarro



3.1 The Milky Way dark matter halo

and White as FNW and to the simple isothermal, sferically symmetric halo density
as Iso, where Ka and Kb stay for the two γ ∼ 0.2− 0.4.

The dark matter direct and indirect searches usually adopt the simplest halo
model to fit their results, i.e. the isothermal, sferically symmetric halo density,
therefore (α, β, γ) = (2, 2, 0). The normalization constant is choose as the value of
the halo density at the Solar System distance R0 from the galactic centre:

ρ(r) = ρ0

[
1 +

(
R0
a

)2
]

[
1 +

(
r
a

)2] (3.2)

such that ρ0 is the mean dark matter energy density nearby the solar system.
Solving the Jeans equation, the associated distribution velocity function is the
Maxwellian [62]:

f(v, vE)d3v = 1
k
e−(v+vE)2/v02

d3v (3.3)

where v is the dark matter halo velocity, vE is the dark matter velocity relative
to the target and v0 is the galactic rotation velocity and k is the normalization.
Indeed the functions ρ(r) and f(v, vE) just defined are an approximation of the
Jeans equation solutions, but the approximation and the exact solution coincide at
small and large radii. The model described by the density profile (3.2) and velocity
distribution (3.3) is the Standard Halo Model (SHM). This is the simplest model,
but different density profiles leads to different velocity distribution [63]. Since the
experimental result interpretation is dependent on the velocity distribution, there
are attempts to provide halo-independent result analyses [64].

The direct search depends on the halo density near the solar system and we use
this recent study result [65]:

ρlocalDM = (0.39± 0.03)(1.2± 0.2)(1± δtriax)GeV
cm3 (3.4)

where the first factor is the mean dark matter density at R0, the second accounts
for an enhancement effect due to the galactic baryonic disk and the third is due
to a possible deviation from a spherical symmetric halo, with δtriax ≤ 0.2. If we
maximize this latter, the mean halo density in the solar system is:

ρlocalDM = 0.47± 0.13GeV
cm3 (3.5)

The indirect search instead depends also on the dark matter density in the core
of massive celestial objects, such as the Sun or the galactic center. Besides there are
different density profile, there are also uncertainties on the R0 and a parameters,
such that a parameters space region must be considered, as shown by the following
plot:
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Figure 5: Allowed values of the parameters ρ0, the local halo density, and
a, the core radius, for the four halo profiles considered in Section 3. The
allowed regions vary as a function of the third parameter which enters the
discussion, the galactocentric distance of the solar system R0; we plot the
regions corresponding to R0 = 8.5 kpc which extend to lower values of a and
to R0 = 7.1 kpc which allow higher values of a. The markers indicate the
halo profiles which are considered in Fig. 6.

32

Fig. 3.1.1: The halo density profile ρ0 is shown as a function of the possible core radius
a, for th four density model discussed above, and for two different galactocentric distances
R0 = 7.1 kpc and R0 = 8.5 kpc. Taken from Bergstrom L., Ullio P., Buckley J. H. (1998).
Observability of γ-rays from dark matter neutralino annihilations in the Milky Way halo.

Astroparticle Physics, 9(2), 137-162

3.2 Direct detection
- This section refers mostly to [66]

The dark matter direct detection is usually performed with a very low background
apparatus that aim to observe the potential signal produced by the dark matter
interaction with nuclei or electrons within the detector. The most so far exploited
phenomenology is the elastic cross section of dark matter with protons and neutrons.

3.2.1 The halo velocity relative to the Earth
The Galaxy is merged in a dark matter halo. The celestial body motion through

the halo provides a relative velocity between the halo particles and the Earth. If
we define (1):

• uE - the Earth rotation velocity around the Sun, with 〈uE〉 ≈ 30 km/s);
1The notation used is in agreement with [66], while the values are taken from [46]
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• uS - the Sun proper motion relative to nearby stars;

• v0 - the galactic rotation velocity around the Galaxy center and therefore also
the Solar System center of mass velocity; 〈v0〉 ≈ 220km/s is taken as the mean
dark matter velocity at R0;
vesc - the escape velocity, i.e. the velocity at which a particle can escape from
the gravitational field, that is 498km/s . vesc . 608km/s, typically 544km/s;

then the resulting dark matter halo velocity vE relative to the target (in the
target rest frame) is:

~vE = ~uE + ~uS + ~v0 (3.6)

Since |~v0| � |~uE |, |~uS |, commonly it is considered ~v0 ∼ vE , unless the annual
motion of the Earth around the Sun can be indicative to identify a dark matter
signature. The Earth orbit around the Sun is inclined by 60° with respect to the
Galaxy plane and, as a consequence, with respect to the plane of the Sun rotation
around the Galaxy center, as shown in Fig. (3.1.1). The Earth velocity contribution
to the velocity of the WIMP wind is usually considered as a sinusoidal effect with
an amplitude of 15km/s, due to the uE projection on the galactic plane. The
maximum projection is reached about in June, the minimum in December. The
relative velocity between the target and the incident WIMP particle usually taken
for direct detection simulation is:

vE ' 220 + 15cos(2πt) km/s (3.7)

with 0 < t < 1.

Fig. 3.2.1: A popular representation of the Earth orbit around the Sun, used to show the common model
of the target-WIMP relative velocity. The maximum velocity is reached about in June, while the

minimum one about in December.
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3.2.2 Recoil rate
Consider the elastic scattering of an halo particle with mass mD off a target nu-

cleus of mass mT . The differential number of recoil events dR is proportional to (i)
the elastic cross section σ, (ii) the differential flux of incident particles dφ and (iii)
the number of nuclei targets NT :

(i) for the moment we do not fix the model, hence we assume a not specified
elastic cross section and the only interesting property is that it depends on the
relative velocity;

(ii) the incident flux depends on the halo number density described by the equa-
tion (3.11) and the relative velocity v, i.e. dφ = vdn;

(iii) in a detector of total massM there are N0× M
A nuclei, where A is the atomic

mass expressed in grams, that contains an Avogadro number N0 = 6.022 × 1023 of
nuclei. Therefore in 1kg target of atomic mass A there are NT = N0×1kg

A(g) = N0×103

A(uma)
target nuclei.

Then the differential recoil rate is:

dR = NTσdφ = NTσvdn = NTσv
n0
k
g(v, vE)d3v (3.8)

where g(v, vE)d3v is a generic velocity distribution (2), called g to distinguish it
from the maxwellian distribution f mentioned above. Since the detectors have a
characteristic energy threshold, to produce a detectable recoil energy, the incoming
particle must have a minimal relative velocity vmin. Integrating over the range
vmin − vesc, where vesc is the escape velocity from the galactic gravitational field,
the total rate per kg×day is:

R = NTn0

∫ vesc
vmin

σvg(v, vE)d3v

k
= NT

ρD
mD

∫ vesc
vmin

σvg(v, vE)d3v

k
(3.9)

To give an order of magnitude of the rate, for a simplified model with σ = σ0/v2,
where σ0 is velocity independent(3), g = f and vesc = ∞ and for an ideal detector
with vmin = 0, the counting rate would be [67]:

R = R0 = 5.8/A events

kg day

(
σ0

10−38cm2

)(
ρD

10−24g/cm3

)(
v

200km/s

)(1 GeV
mD

)
(3.10)

where the normalizations of eqs. (3.10) refer to the WIMPs hypothesis, even
if this discussion can be valid for all the massive candidates. Observe that since
1g/cm3 = 5.6 · 1023GeV/cm3 than ρD = 10−24g/cm3 ≡ 0.56GeV/cm3, that is of the
order of magnitude of the dark matter density.

2Note that in the following the normalization k is extracted from the velocity distribution
function.

3In [5] the calculation is made for the ’zero momentum transfer’ cross section σ0, but probably,
as in [1], in the appendix A of [66] the dependency on 1/v2 is assorbed in the integration of the
velocity distribution.
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The maxwellian distribution approximation If we assume a dark matter
halo velocity described by the maxwellian distribution f = f(v,vE) of eq. (3.3),
that, as said before, is associated to the isothermal, spherical symmetric density
profile, then the dark matter number density n would be:

n = n0
k

∫ 2π

0
dφ

∫ −1

1
dcos(θ)

∫ v′

0
dvv2f(v,vE) (3.11)

where k is the normalization constant, such that if v′ = vesc → n = n0:

k =
∫ 2π

0
dφ

∫ −1

1
dcos(θ)

∫ vesc

0
dvv2f(v,vE) =

(πv0)3/2

erf (vesc
v0

)
− 2
π1/2

vesc
v0

e
− v

2
esc
v2
0

 (3.12)

with k → k0 = (πv0)3/2 if vesc → ∞ (4). Defined vmin, the counting rate, due
to incoming dark matter particles with velocity between vmin and vesc, for a target
relative velocity vE , but for a simplified constant cross section and for g equal to
the maxwellian distribution f , is:

R(vE , vesc) = R0
k0
k1

R(vE ,∞)
R0

−
(
v2
esc

v2
0

+ 1
3
v2
E

v2
0

+ 1
)
e
− v

2
esc
v2
0

 (3.13)

R(vE ,∞)
R0

= 1
2

π1/2
(
vE
v0

+ 1
2
v0
vE

)
erf

(
vE
v0

)
+ e
− v

2
E
v2
0

 (3.14)

where E0 = 1
2mDv

2
0, R0

E0
= 4

π1/2NT
ρD
m2
D
σ0 and k1 is the normalization constant

with the integration extreme vmin and R0 is the counting rate for vE = 0 (zero
solar system rotation velocity and zero earth revolution velocity),vesc =∞ (infinite
gravitational attraction) and vmin = 0 (no detector energy threshold):

R0 = N0 · 103

A

ρD
mD

σ0
2v0
π1/2 (3.15)

In summary, so far we have considered a zero momentum transfer nuclear form
factor F (|q2|) ∼ 1 and an efficiency f for each detector equal to 1.

3.2.3 WIMP elastic scattering cross section
- This section refers to [62][66]

The elastic dark matter-nucleus scattering cross section is relevant both for the
direct and the indirect WIMP searches: the WIMP direct search is based on the

4The details of the calculus of the normalization constant k are in the appendix of [66]. The
main subtlety to simplify the integration is to put vE=0, since the dark matter number density is
independent from the Earth velocity through the halo and therefore the normalization is equal for
all the vE .
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nuclear recoil, while the capture in the celestial bodies consists in the WIMP energy
loss due to collisions off nuclei. Assuming that annihilation and capture processes
reach the equilibrium there is a strict relation between the annihilation rate and the
capture rate. This assumption is the key for the comparison of the results between
these two completely different categories of search.

The WIMPs, when they hit a nucleus, interact with quark and gluons. This
implies the introduction of unknown parameters related to the couplings and the
mediators. Since the WIMPs nature is unknown, both axial-vector and scalar in-
teractions are hypothesized and the cross section is the result of their sum. Often
the cross section is classified as spin-dependent or spin-independent, because an
interaction can prevail on the other as a function of the nucleus properties.

Spin dependent cross section The spin-dependent cross section can occur
only in nuclei with an odd number of protons and/or neutrons. The form of the
differential spin-dependent cross section σSD of a WIMP-nuclear elastic scattering,
for a transferred momentum q (5), is:

dσSD
d|q2| = 8

πv2 Λ2G2
FJ(J + 1)F 2(|q|) (3.16)

where v is the incoming particle velocity, J is the total angular momentum of
the nucleus, GF = 1.166 × 10−5GeV −2(~c)3 is the Fermi constant, F 2(|q|) is the
nuclear form factor(6) and Λ is:

Λ = 1
J

(ap〈Sp〉+ an〈Sn〉) (3.18)

where 〈S〉 is the expectation value of the spin of the unpaired proton or neutron
and:

ap =
∑

q=u,d,s

dq√
2GF

∆q(p) (3.19)

an =
∑

q=u,d,s

dq√
2GF

∆q(n) (3.20)

are unknown parameters, depending on the couplings dq between WIMPs and sea or
valence quarks and on the quantities ∆q, resulting by the effective strong interaction
theory and numerical computed by experiments. Then the elastic spin dependent
cross section can be written as:

dσSD
d|q2| = 8

πv2G
2
F

(J + 1)
J

(ap〈Sp〉+ an〈Sn〉)2F 2(|q|) (3.21)

5For the kinematics relations relative to the elastic scattering see the Appendix A.3.1
6In [66] F 2(|q|)=S(|q|)

S(0) , with:

S(|q|) = (ap + an)2S00(q) + (ap − an)2S11(q) + (a2
p − a2

n)S01(q) (3.17)
where Sij are form factors whose values are numerically calculated using many models [62], and
ap and an are factors referred to proton and neutron respectively. They involve the interaction
couplings, therefore are model dependent.
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Spin independent cross section The spin independent or ’coherent’ cross
section, due to scalar or vectorial couplings, are dominant for heavier nuclei. Scalar
or vectorial interactions do not involve the nucleon spin, therefore the proton and
neutron couplings are the same and the differential cross section is:

dσSI
d|q|2 = 1

πv2 [Zfp + (A− Z)fn]2F 2(|q|) = σ0
v2F

2(|q|) (3.22)

where fp and fn are unknownWIMP-quark couplings, σ0 is the velocity-independent
part of the cross section and µ = mDmT

(mD+mT )
(7).

Analitic expression of the form factor In the scalar or vectorial interactions
the form factor does not depends on the nucleon spin and reduces to the usual
charge distribution in the momentum space. The only analytical expression of the
form factor comes from the charge density proposed by Helm in 1956 [68](8) that
leads to[69]:

F 2(|q|) =
[3j1(qR1)

qR1

]2
e−(qs)2 (3.23)

where q =
√

2mTER is the trasferred momentum, with ER the recoil energy,
s = 1fm is a characteristic dimension of the nucleus, j1(qR1) = [sin(qR1) −
qR1cos(qR1)]/(qR1)3 and R1 = (R2 − 5s2)1/2, with R ' 1.2A1/3fm.
Therefore the form factor, that can be written as:

F 2(|q|) =
[3(sin(qR1(A))− qR1(A)cos(qR1(A)))

(qR1(A))3

]2
e−(qs)2 (3.24)

depends non trivially on the target atomic mass.

Often, even if there exists a difference between the spin-dependent and the spin-
independent interaction, the simulation are done in the simpler assumption of a
spin independent cross section, whose velocity dependency is in the factor 1/v2 and
in the form factor. The form factor used for practical purpose is the Helm form
factor in eqs. (3.23), but it is worth noting that it approximats a more complicated
framework.

3.2.4 Annual modulation
As "annual modulation" we refer to the differential recoil rate annual oscillation,

due to the Earth velocity around the Sun, that sums vectorially to the Sun velocity
around the Galactic center. The differential rate acquires a period of one year and
therefore can be expanded in Fourier:

dR(vmin, t)
dE

= A0 +
∑
i

Aicos[nw(t− t0)] +
∑
i

Bisin[nw(t− t0)] (3.25)

7From eq. (7.34) of [62]
8In [66] the authors refer to this form factor as the "Wood-Saxon", because it is very similar.
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where vmin is the minimum velocity that can cause a detectable recoil. In the
assumption of an isotropic velocity distribution, such that Bi = 0, and of a ne-
glectable variation of the velocity distribution due to the Earth velocity, such that
A0 � A1 � A2.., then:

dR(E, t)
dE

≈ S0(E) + Sm(E)cosw(t− t0) (3.26)

where w = 2π/year. The annual modulation depends only on the detectability
of the energy recoil. For this reason it is an important signature and its detection
by the DAMA collaboration is a fundamental result in the panorama of the dark
matter search, though the published data seems in contrast with the results of other
experiments.

3.2.5 Inelastic-scattering
The most so far exploited phenomenology is the WIMP-nuclei elastic cross sec-

tion. Another possible signature could be due to the WIMP inelastic scattering
off target electrons or target nuclei. The inelastic scattering consists in a process
whose final state content is different from the starting one. They are characterized
by a further energy loss, beyond the nuclear recoil, that in the cases of WIMP is
due to atomic or nuclear excitation. As a consequence the inelastic cross section is
suppressed with respect to elastic cross section.

The two inelastic processes due to a WIMP scattering can occur if[62]:

1. a WIMP hits an orbital electron; this latter can leave the atoms in an excited
state and the de-excitation can produce a detectable signal;

2. a WIMP scatters off the nucleus; under certain conditions can cause the nu-
clear excitation and its de-excitation can produce a detectable signal.

In the first process the excited electron state is expected to decay emitting a pho-
ton of several eV. These photons may be easier to be detected than the phonon or
electron-hole pairs produced by the nuclear elastic scattering because of the pres-
ence of many different excitable energy states whose rate can be predicted and
distinguished [70].
The second process was discussed by Ellis, Flores and Lewin in 1988 [71]. They
focused on some supersymmetric particles, but their considerations can be gener-
alized. Starting from their results, the numerical limits on this latter process are
discussed in the last chapter.

3.3 Indirect detection
The indirect detection aims to study the dark matter properties through the

detection of Standard Model particles produced by the dark matter annihilation or
decay occurring in over density regions, as the center of celastial bodies.
Consider WIMPs. The fluxes of the interesting particles depends on the WIMP
previous capture process, that traps WIMP in the center of the Galaxy, the Sun or
the Earth and in the following WIMP annihilation into Standard Model particles.
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3.3.1 WIMP capture and annihilation processes
When a dark matter halo particle scatters off nuclei near the Sun, the Earth or

the Galaxy center, it can be trapped gravitationally with a certain probability and
accumulate in the core region. Here the annihilation process can occur, producing
primary or secondary particles, whose fluxes are detected on Earth. Due to these
processes, the variation in time of the WIMP particle number Nχ in the core region
is:

dNχ

dt
= CC − CAN2

χ − CENχ (3.27)

where CC is the capture rate, CA is the annihilation rate, with ΓA = 1
2CAN

2
χ and

CE is the evaporation rate(9).
The evaporation term for masses for the masses of interest can be neglected [72].
The capture rate is time independent because the dark matter halo properties and
the composition of the body are considered constant in time. The solution of eqs.
(3.27) is:

ΓA = 1
2CCtanh

2
(
t

τ

)
(3.28)

where τ = 1/
√
CCCA and t can be the solar system age t ≈ t� w 4.5 · 109 years.

Commonly the equilibrium condition dN/dT = 0, that holds for t�/τ >> 1 is
considered, such that from eq. (3.27):

ΓA = 1
2CC (3.29)

Under this assumption the physics of the annihilation is not necessary, because it
can be evaluated from the physics of the WIMP-nuclei elastic scattering. The cap-
ture can be due to the WIMP scatter off any nucleus in the volume dV considered:

CC =
∫ R

0
dr4πr2∑

i

dCi(r)
dV

(3.30)

where R is the celastial body radius and dCi(r)
dV is the capture rate off the nucleus

i in a shell of volume. Edsjo and Wikstrom in [9], referring to a Gould article
published in 1987 [73], calculate the capture probability for a velocity independent
cross section σχ,i. Indeed they consider a generic elastic scattering cross section,
but, as in literature [1], it is factorized in a velocity independent factor, usually
called σ0 but here called σχ,i, times a velocity dependent term consituted by the
form factor F (|q2|) times a term 1

v2 . The velocity dependent term is assorbed in the
integrals, while the velocity independent part of the cross section can be factorized:

ΓA = CC
2 = σχ,i ·

∫ R

0
dr4πr2∑

i

1
σχ,i

dCi(r)
dV

(3.31)

This method is crucial for the direct and indirect detection result comparison, as
discussed in the next sections. Since σχ,i is constituted by a spin-dependent and by

9The evaporation process is the particle escape from the gravitational field due to a particle
velocity greater than the celestial body escape velocity.
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a spin-independent part, in agreement with [72] the eqs. (3.31) can be inverted and
written as:

σSI = λSI(mχ)ΓA (3.32)

σSD = λSD(mχ)ΓA (3.33)

where σSI and σSD are relative to the WIMP-proton elastic scattering, and the
difference between the two conversion factors λSI and λSD is only the relation
between the WIMP-nucleus cross section σχ,i and the spin-dependent/independet
WIMP-proton cross sections.

Annihilation channels The WIMP can annihilate in various final states: con-
sidering only those at tree level they are the fermion-antifermion ff̄ , where f can
be charge leptons, neutrinos and quarks, the gauge bosons W+W−, Z0Z0 and γγ,
and other annihilation channels involving the Higgs boson. In the non-relativistic
limit, the thermally average annihilation cross section times the velocity, discussed
in ’The Boltzmann equation: non-relativistic thermal relics’ in Appendix A.1.1, can
be expanded as:

〈σav〉 = a+ bv2 +O(v4) (3.34)

where a corresponds to the s-wave annihilation and b both to the p and s-wave
annihilation. In the v →0 limit, that holds in the Earth and Sun core, the s-wave
annihilation constrains the process, because the two Majorana neutralino interact-
ing spins must be opposite according to the Fermi statistic. The angular momentum
conservation leads to outgoing fermions with the same helicity. But in the mf → 0
limit the helicity flip is required to get a non-null cross section; as a consequence
the lighter the fermion, the rarer the process. This makes the tt̄ final state the
dominant fermionic annihilation channel for such models where mχ > mt[4]. This
is the reason for considering moslty annihilation channels in heavy Standard Model
particles, i.e. tt̄, cc̄, bb̄, τ+τ−,W+W−, Z0Z0.

3.3.2 Event rate for neutrino fluxes
The annihilation or the decay of dark matter captured in the core of the Galaxy,

the Sun or the Earth can produce neutrinos. The neutrino astronomy is a competi-
tive indirect search for dark matter because, unlike charged particles, the produced
neutrinos escape from the core and can reach the Earth, preserving the source direc-
tion. This favours their distinction from the background. The expected differential
neutrino flux is:

dφν
dE

= ΓA
4πR2

∑
f

Bf
dNf

ν

dE
(3.35)

where ΓA is the annihilation amplitude, R is the distance from the source, Bf is
the branching ratio of the f -channel and dNf

ν
dE is the neutrino differential number in

the channel f .
This neutrino flux is not directly observed. The neutrino telescope detection princi-
ple relies on the detection of the charge leptons produced by the neutrino scattering
off nuclei in the detector material or in rock. Since the incoming neutrinos are at
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high energies, they interact with the quarks of the nucleus, via the deep inelastic
scattering:

ν(ν̄) +N → l−(+) +X (3.36)

where N is the nucleus, l−(+) is a charge lepton and X is the hadronic shower.
Since the detection technique requires a long path lenght from the interaction point,
the ν̄ccµ interactions are the best candidate events to be identified by the µ detection.

Event rate for muon-neutrino induced fluxes The neutrinos, that can es-
cape from the celestial body core, propagate, oscillate and near the detector interact
producing detectable muons. The observable is the neutrino-induced muon flux φµ.
If we consider the WIMP annihilation process[72]:

φµ = ΓA · n
4πR2

∫ ∞
Ethµ

dEµ

∫ ∞
Ethµ

dEν

∫ ∞
0

dλ

∫ Eν

Eµ
dE′µP (Eµ, E′µ, λ)

dσν(Eν , E′µ)
dE′µ

·

·
∑
i

P (νµ, νi)
∑
f

Bf
dNf

i

dEν
= ΓA · η(mχ) (3.37)

where ΓA is the annihilation amplitude, R is the distance from the celastial
body center, n is the numerical density of targets; dN

f
i

dEν
is the number of neutrinos

νi in energy unity produced starting from the WIMP annihilation in channel f, Bf
weighs the probability of the annihilation channel f, P (νµ, νi) is the probability that
the νi oscillates in νµ in the detector; P (Eµ, E′µ, λ)dσν(Eν ,E′µ)

dE′µ
is the probability of

detecting a muon of energy E′µ, being
dσν(Eν ,E′µ)

dE′µ
the differential νµ−µ cross section

and P (Eµ, E′µ, λ) the probability that starting from a muon energy E′µ, after a path
lenght λ in the detector, the muon energy is Eµ; there are than the integral over all
the energies and the possible path lenghts. Note that the lower integration limit is
the detector energy threshold.

Now combine the φµ expression with the capture rate in eq. (3.32) and (3.33):

σSI = λSI(mχ)ΓA = λSI(mχ) φµ
η(mχ) = kSI(mχ)φµ (3.38)

σSD = λSD(mχ)ΓA = λSD(mχ) φµ
η(mχ) = kSD(mχ)φµ (3.39)

This is the direct relation between the observable, i.e. the muon flux, and the
elastic scattering cross section, that is crucial for the direct and indirect result
comparison. We underline that this direct relation holds only if the equilibrium
condition between capture and annihilation rate works. Furthermore if an annhi-
lation channel f is considered dominating, then the conversion factors kf (mχ) are
provided by the web tool WimpSim [74].
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3.3.3 Event rate for γ-ray or cosmic ray fluxes
As neutrinos, also γ-rays can be produced at the end of the dark matter annihi-

lation or decay chain. For the WIMP paradigm, the expected monochromatic γ-ray
flux is:

dφγ(ψ, θ)
dE

= 〈σav〉8πm2
χ

∑
f

Bf dN
f
γ

dEγ
· J(ψ, θ) (3.40)

where:
J(ψ, θ) =

∫ ∆Ω

0

∫
lof
ρ2(l(ψ, θ))dld∆Ω (3.41)

is the astrophysical term that relates the expected γ-ray flux with the dark matter
density along the telescope line of sight (los) and within the accessible solid angle
∆Ω. ψ and θ are the angular distance of the observation point from the galactic
center and plane. The density is squared because we are considering the annihilation
process. The integral over the line of sight is peculiar of the γ-ray and cosmic ray
detection since the detected signal cannot be connected with a specific source, as
the neutrinos that can be associated to the center of celestial objects.
An analogue approach is exploited for the detection of cosmic rays.

Appendix A.3
A.3.1 Non-relativistic elastic scattering kinematics

Consider two particles in the laboratory frame (LF) with v1 6= 0 and v2 = 0.

Fig. A.3.1: A schematic representation of the kinematics of the non-relativistic scattering. In black p01
and p02 are the incident momentum in the center of mass, |p01| = |p02|. In grey p’01 and p’02 are the

final momentum in the center of mass, |p’01| = |p’02| = |p01| = |p02|. The solid blue vector represents the
intial momentum of the first particle in the laboratory frame, p1 = m1

m2
p01 + p01 (remember that

|p01| = |p02|). The dashed blue vector represents the final momentum of the second particle in the
laboratory frame, p’1 = m1

m2
p01 + p′01. In red the final momentum of the second particle in the laboratory

frame.

In the centre of mass (CM) they are:

v01 = v1 −VCM = m2
m1 +m2

v1 (3.42)
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v02 = 0−VCM = − m2
m1 +m2

v1 (3.43)

with VCM = m1v1+m2v2
m1+m2

= m1
m1+m2

v1 the center of mass velocity in the laboratory
frame. Note that:

p01 = m2
m1 +m2

p1 −→ p1 = m1
m2

p01 + p01 (3.44)

as shown in fig. (A.3.1).

In the CM the non relativistic scattering corresponds to a direction change, i.e
to a conserving modulus rotation of the momentum, at a generic angle θ:{

|p01| = |p′01|
|p02| = |p′02|

(3.45)

with |p01| = |p02|. Therefore after the diffusion, the first particle momentum in the
CM, p′01, as a function of the initial momentum in the CM p01, is:{

p′01x = p01cosθ

p′01y = p01sinθ
(3.46)

The relation between the LF and the CM after the diffusion is:

v′01 = v′1 −V′CM = v′1 −
m1v′1 +m2v′2
m1 +m2

= m2
m1 +m2

(v′1 − v′2) (3.47)

Then:

p′01 = m1
m2

m1 +m2
(v′1 − v′2) = m2

m1 +m2
p′1 −

m1
m1 +m2

p′2 (3.48)

Since p′01 is known, the system of equation:{
p′01 = 1

m1+m2
(m2p′1 −m1p′2)

p′2 = p1 − p′1
(3.49)

can be solved for p′1 and p′2. The solution for p′1 is:

p′1 = p′01 + m1
m1 +m2

p1 = p′01 + m1
m2

p01 (3.50)

as shown in fig. (A.3.1) and, as a consequence, the solution for p′2 is:

p′2 = p1 − p′1 = p1 − (p′01 + m1
m1 +m2

p1) = m2
m1 +m2

p1 − p′01 (3.51)

and in components: {
p′2x = m2

m1+m2
|p1| − m2

m1+m2
|p1|cosθ

p′2y = − m2
m1+m2

sinθ|p1|
(3.52)

with:
|p′2|2 = p′22x + p′22y = 2

(
m2

m1 +m2

)2
p2

1(1− cosθ) (3.53)
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For a comparison with the nuclear recoil due to dark matter discussed in the text,
p′2 corresponds to the transferred momentum, that in the text we indicate with q,
and 1, 2 correspond to D,T, where D stay for dark matter and T for target. Since
the cold dark matter is not relativistic, the kinetic energy and the momentum of
the incoming particle are:

E = 1
2mDv

2 (3.54)

p = mDv (3.55)

Said ER the recoil energy, it is:

ER = |p
′
2|2

2mT
≡ |q|

2

2mT
= 1
mTmD

( 4mDmT

mD +mT

)2 p2
1

2mD
(1− cosθ) = E · r1− cosθ

2
(3.56)

where r = 4mDmT
(mD+mT )2 and E = p2

1
2mD is the incoming dark matter energy.
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Chapter 4

Experimental Search for Dark
Matter Particles

Many experimental efforts are dedicated to the dark matter particle search. Be-
yond the search at colliders, there are two main categories: the direct and the
indirect detection experiments. Each detection techinique focuses on a different
interaction process. The direct search probes the WIMP interaction off nuclei, the
indirect search the WIMP annihilation and the colliders the WIMP production, as
summarized in fig. (4.1).

2 THE DARK MATTER PUZZLE

proposed originally with a different motivation and not to explain dark matter. The

fact that the models are motivated by different unresolved observations strengthen the

relevance of the predicted dark matter candidate. A more comprehensive review on dark

matter candidates can be found for example in [61]. This article focuses on the direct

detection of WIMPs and just some brief information on searches for particles that would

induce an electronic recoil (e.g. axion-like particles) will be given in the following.

2.3. Searches for dark matter particles

The particle dark matter hypothesis can be tested via three processes: the production

at particle accelerators, indirectly by searching for signals from annihilation products,

or directly via scattering on target nuclei. Figure 1 shows a schematic representation

of the possible dark matter couplings to a particle, P, of ordinary matter. While the

Figure 1. Schematic showing the possible dark matter detection channels.

annihilation of dark matter particles (downwards direction) could give pairs of standard

model particles, the collision of electrons or protons at colliders could produce pairs of

dark matter particles. In this section the production and indirect detection methods as

well as the current status of searches are briefly summarised. The subsequent sections

and main part of this review are then devoted to the direct detection of dark matter,

χP→ χP (horizontal direction in figure 1).

Since the start of the Large Hadron Collider (LHC) at CERN in 2008, the CMS [62]

and ATLAS [63] experiments have searched for new particles in proton-proton collisions

at a center-of-mass energy of 7 TeV. Besides the discovery of the Higgs particle [64][65],

CMS and ATLAS have studied a number of new particle signatures by scanning the

parameter space of different supersymmetric and extra-dimensions models. The presence

of a dark matter particle would only be inferred by observing events with missing

transferred momentum and energy. Therefore, events with, e.g., an energetic jet and an

imbalanced momentum transfer are selected for analysis. Reactions of the type

pp→ χχ+ x (1)

8

Fig. 4.1: The three interactions typologies exploited for the dark matter search.

This chapter is an analisys of the active projects focusing on the dark matter
detection and on the published data. We will discuss the direct experiments in
section 4.1, the indirect experiments in section 4.2 and the state of the art of the
available results in section 4.3. We remark that the comparison between results is
possible according to the conditions discussed in the previous chapter

4.1 Direct detection experiments
The dark matter direct search consists in the detection of a signal produced by

the interaction of the halo dark matter particle with the detector material. This
task is pursued by very low background detector in underground laboratories. In
order to optimize the search, a comparison between the direct detection results
obtained through different techniques is crucial. However the different detection
principles, the choice of the procedure to reject or subtract the background and
the different targets complicate the picture, making this confront one of the most



4.1 Direct detection experiments

discussed issues of the last years.
We will collect the experiments into three classes: high purity crystal detectors,
noble liquid detectors and cryogenic detectors.

• High purity crystal detectors: constituted by highly radiopure inorganic
crystals, such as sodium iodide (NaI) or cesium iodide (CsI), their aim is the
observation of single scattering events through the detection of a scintillation
signal. Usually the crystals are doped to reduce the gap between the con-
duction and the valence bands, so that lower recoil energies are detectable.
Examples are the popular DAMA (DArk MAtter) experiment, constituted by
NaI(Tl) (sodium iodide doped with thallium) crystals and the KIMS (Korea
Invisible Mass Search) experiments, made of CsI(Tl) (cesium iodide doped
with thallium) crystal.
The DAMA result, that is evidence of the annual modulation of the differential
rate of events collected in about twenty years of observation, is very discussed
because it is in apparent contrast with the null result obtained by other direct
detection experiments. In order to shed light on this controversy, experi-
ments that aim to reproduce the DAMA result are in development phase. An
example is the SABRE (Sodium-iodide with Active Background REjection)
experiment, that will consist in twins NaI(Tl)-detectors that will be located
one at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, and the other
in Stawell Underground Physics Laboratory (SUPL), Australia [76]. Another
challenge is pursued by the DM-Ice experimental program, that is a direct
detection experiments that seeks to verify the DAMA results with a target of
NaI buried 2450m in the South Pole [77].

• Noble liquid detectors: Noble liquids such as xenon (Xe), argon (Ar) and
neon (Ne) should allow to detect in coincidence the ionization and the scin-
tillation signal due to WIMP interactions with the noble liquid atoms. This
discrimination property, the rapidity of the scintillation decay time (ns) and
the possibility to obtain large masses at modest cost make noble liquid a
very exploited target. Furthermore these detectors can discriminate between
WIMP recoil and electron recoil. Examples are the XENON and the LUX
(Large Underground Xenon experiments), that exploit the xenon targets, and
DarkSide, that is constituted by argon targets. Xenon and DarkSide are
located in the LNGS, while LUX experiment in the Sanford Underground Re-
search Facility (SURF), in the Homestake Mine, in South Dakota. This latter
experiment claims to have reached the lowest esclusion limit for WIMP detec-
tion. An exclusion limit implies the contradiction of the results of previous
experiments, for istance the DAMA annual modulation, and this is the reason
of the controvercy mentioned above.

• Cryogenic detectors: the detection principle of very low temperature de-
tectors, constituted by crystals, semiconductor materials or noble liquid, is the
measure of temperature variations due to the local energy deposition follow-
ing the dark matter interaction with nuclei. The cryogenic temperatures lower
the energy threshold, allowing the search for smaller dark matter masses. For
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example the CRESST (Cryogenic Rare Event Search with Superconducting
Temperature) experiment, located in the LNGS, is constituted by the inor-
ganic scintillator CaWO4. The low temperature (∼ mK) allows to probe
masses smaller than 10GeV, such that the CRESST-II (last upgrade) collab-
oration reached the best limit for masses < 6GeV. There are also many de-
tectors constituted by semiconductor materials, for example CoGeNT, CDMS
(Cryogenic Dark Matter Search), EDELWEISS are germanium detectors, that
work at low temperature. In particular SuperCDMS reached a temperature
∼ mK. An example of noble liquid experiment that works at low temperature
is DarkSide.

4.1.1 DAMA
The DAMA (DArk MAtter) experiment is located at the Laboratori Nazionali

del Gran Sasso (LNGS) of the I.N.F.N. (Istituto Nazionale di Fisica Nucleare). It
is mainly focused on the dark matter search and precisely its aim is the detection
of the signature of the dark matter annual modulation from the Galactic Halo.
This section is devoted to the DAMA experiment study, since our aim is to try to
understand their result.

Experiment description The DAMA detector is an inorganic scintillator,
constituted by a matrix of radiopure Thallium-doped Sodium-Iodide (NaI(Tl))
crystals(1). The general detection principle is based on the collection of radiation
emitted by the detector, regardless of the interaction that causes it. The applied
procedure to reduce the background (briefly discussed below) are such that the "am-
biguous" data, that can be due to the background but that can contain also a dark
matter signal, are conserved. In this way constraints on the detectable dark mat-
ter candidate are not fixed a priori, because all the possible signals from incoming
particles are collected.
It is for this reason that the DAMA results are claimed model-independent by the
collaboration and this is also why the DAMA results can be consistent with different
models [79].

The NaI(Tl) target has an high scintillation yield of ∼ 40 photons/keVee (2),
therefore ideally it could be sensitive to small energy deposition (at the sub-keV
level). This high light yield decreases the energy threshold and should allow the
search for light dark matter candidates[80], such as the axions of the keV or the
sterile neutrinos of the keV. However, although the "physical" energy threshold is
at the sub-keV, the software energy threshold is at ∼ 2keVee, because it must take
into account the background.

For WIMP candidates, the choice of sodium Na (mNa ∼ 23GeV) and iodide I
(mI ∼ 127GeV) as targets would permit a better sensitivity to both possible high
and low bullet masses, since the recoil energy is greater if the bullet mass and

1The advantages of the NaI(Tl) target choice are listed in the DAMA reference [78]
2A keVee is the amount of energy produced by en electron recoil, with an equivalent nuclear

energy recoil. The ratio between the light produced by a nuclear recoil and that produced by an
electron recoil is said the nuclear quenching factor (1keV/1keV ee = Qf )
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the target nucleus masses are similar, such that the results could be interpreted
as a iodide recoil for heavier WIMPs and as a sodium recoil for the lighter ones.
Moreover the spin-independent cross section is allowed by the high iodide target
mass and the spin dependent by the most abundant Na and I isotopes, 23Na and
127I, that have unpaired nucleons.

Data taking phenomenology The hypothesized incoming particle provides
a nuclear recoil whose energy deposition excites the electrons. The electron de-
excitation produces a light-pulse that is detected by the photomultipliers(3). Each
crystal is connected to two low-background photomultipliers (PMTs) working in
coincidence to reduce the photomultiplier noise and to increase the light collected.
The experimental setup is such that to have 5.5 to 7.5 photoelectrons/keV, i.e.
for 1 keV of energy deposition the resulting photon emission, will induce 5.5 ÷ 7.5
photoelectron revealed by the PMTs.

Background reduction attempts Because of the very low-energy signal many
precautions are needed to control for the background. The main sources of back-
ground are (i) the radioactivity both of the isotopes in the detector material and
of the environment such as of the rock surrounding the laboratory, (ii) the primary
cosmic rays and (iii) the showers produced by cosmic rays, including for example
neutrons, that can simulate a dark matter recoil. To reduce some of these back-
ground sources the DAMA apparatus is located in the underground LNGS labora-
tory at a depth of 3,100 meters-water-equivalent (m.w.e). Internal radiation due to
the isotope radioactivity is reduced by the crystal purification, but some elements
such as Potassium(K) and Rubidium(Rb) are difficult to separate from Na. This
is dangerous because for example the 40K isotope decay indirectly produces γ-rays
that provide a signature of 3.2 keVee, a parameter that depends on the energy.

Rejection procedure For the dark matter search, the interesting signals are
the single-hit events, i.e. the events that occur in a single crystal (since the detec-
tion probability of dark matter multiple-hit events is negligible). Near the energy
threshold the photomultiplier noise can contribute to the single-hit events. This
background (reduced also because the photomultiplier work in coincidence) is re-
jected because the time distribution of scintillation and noise signals are different
and therefore they are clearly distinguishble [78].
The detector characteristics and the rejection procedure are chosen in order to reach
the main goal of the DAMA project, that is a model-independent result. Indeed the
dependency on the models is unavoidable, since for example the lightest candidates
such as the gravitino or the axions in the µeV−meV are not detectable. However
the annual modulation signature includes many different models and it does not
need of priori assumption on the density profile or the couplings. For this reason
it is a very relevant result. The absence of other background reduction attempts

3The emitted light-pulse is not absorbed by the material because its energy is lower than the
characteristic gap: the excited electrons fill energy states created by the activators (the thallium),
that are located between the valence and the conduction bands. Therefore the material is trans-
parent to the light-pulse, that is detected.
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makes the constant signal ambiguous; however the annual modulation, acting as a
rejection procedure itself, would contain the meaningful signal.

Results

• The DAMA/NaI was the first set-up for the dark matter annual modulation
search. It was an 3×3 array of 9,70 kg of NaI(Tl) crystals with a total weight
of ∼ 100kg. With this set-up the DAMA collaboration claimed the detection
of an annual modulation after a 14 year observation, with a total exposure
of 1.33 ton × yr (the longest and most massive continuous exposure among
the direct detection experiments)[81, 82]. They attribuited this modulation
of the rate, with 6.3 σ C.L.(Confidence Level), to the annual modulation of
the relative dark matter velocities, as described in the previous chapter.

• The new generation set-up is the DAMA/LIBRA (Large sodium Iodide Bulk
for Rare Processes)experiment, that has increases the number of crystals from
nine to 25. The total weight is now of ∼ 250 kg. Still after this upgrade they
confirm the annual modulation observation over 7 years of observation, now
with 9.3 σ C.L [82].

The energy distribution of the counting rate per day×kg×keVee resulting from a
0.53ton×day exposure of the DAMA/LIBRA apparatus is [78]:

and by the efficiencies when lowering the number of available photoelectrons
(see for example Fig. 26).

The single-hit scintillation events at low energy

The procedure for noise rejection near energy threshold, described above, is
the only procedure applied to the collected data. Fig. 27 shows, as example,
the resulting cumulative low energy distribution of the single-hit scintillation
events, as measured by DAMA/LIBRA detectors in an exposure of 0.53 ton ×
yr. This energy distribution is the mean value of all the used detectors; some
differences among the detectors are present depending e.g. on their specific
levels of residual contaminants and on their position in the matrix.
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Fig. 27. Cumulative low-energy distribution of the single-hit scintillation events
(that is each detector has all the others as veto) as measured by the used
DAMA/LIBRA detectors in an exposure of about 0.53 ton × yr. The energy thresh-
old of the experiment is at 2 keV and corrections for efficiencies are already applied.
See text.

It is worth noting that – as in the former DAMA/NaI experiment – neither
other on-line or off-line techniques nor backgrounds from residual radioactiv-
ity suppression are performed at all. In particular, background contribution to
the counting rate of the single-hit scintillation events, arising from residual ra-
dioactivity in the experimental apparatus, cannot precisely be extrapolated in
the keV region e.g. because of: i) the limitation of MonteCarlo simulation pro-
grams at very low energies; ii) the fact that often just upper limits for residual
contaminants are available; iii) the unknown location of each residual con-
taminant in each component; etc. Nevertheless, the investigations, presented
in previous section, are extremely useful e.g. to qualify the detectors and to
identify the sources which should be reduced in further developments of ra-
diopure crystals, detectors’ components, apparatus components, etc.. On the
other hand, as known, the annual modulation signature, which is exploited by
DAMA apparata, acts itself as an effective background rejection procedure.

Response to nuclear recoils

Finally, it is worth noting that, whenever WIMP (or WIMP-like) candidates
are considered in corollary analyses of Dark Matter investigations, the response
of the NaI(Tl) detectors to nuclear recoils has to be taken into account [4].

34

Fig. 4.1.1: Single-hit variation of the counting rate per day×kg as a function of the deposited energy
after a 0.53ton×day exposure of the DAMA/LIBRA apparatus. The counting rate has a peak around

3keVee[78]

The keV axis is somehow misleading, because, as reported in all the DAMA publi-
cations, keV stay for keVee, that is the energy that would be detected if the incoming
particle was an electron. The proportionality factor between keV and keVee is the
quenching factor Qf , that is typical of the detector and depends on energy. In the
2-20keV region, DAMA provides quenching factors of (0.30±0.01) and (0.09±0.01)
respectively for Na and I. From the graph, the DAMA counting rate as a function
of the energy released by the possible interactions, is increasing under ∼ 1.5 keVee
(that divided for the quenching factor is equivalent to 5keV for Na and 16.6keV for
I), has a small peak, i.e. an excess of counts, between 2-4 keVee (' 6.6 − 13.3keV
for Na and ' 22− 44keV for I) and above 4 keVee (' 13.3keV for Na and ' 44keV
for I) is quite constant. Since the costant counting rate is ' 1 and the peak (red on
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the graph) is roughly between (1 − 1.5)cpd/kg/keVee, the peak emerges from the
background of (0− 0.5)cpd/kg/keVee.

The DAMA collaboration publishes only the residuals of the annual modulation
as a function of the days, i.e. the term Sm(E)cosw(t−t0) of eq. (3.26). The residual
annual modulation integrated in three different energy intervals is:
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Figure 2: Experimental residual rate of the single-hit scintillation events measured
by DAMA/LIBRA–phase1 in the (2–4), (2–5) and (2–6) keV energy intervals as a
function of the time. The time scale is maintained the same of the previous DAMA
papers for coherence. The data points present the experimental errors as vertical bars
and the associated time bin width as horizontal bars. The superimposed curves are
the cosinusoidal functions behaviours A cosω(t − t0) with a period T = 2π

ω = 1 yr, a
phase t0 = 152.5 day (June 2nd) and modulation amplitudes, A, equal to the central
values obtained by best fit on the data points of the entire DAMA/LIBRA–phase1.
The dashed vertical lines correspond to the maximum expected for the DM signal
(June 2nd), while the dotted vertical lines correspond to the minimum.

5

Fig. 4.1.2: The residual annual modulation integrated in three different energy intervals: from the top (i)
2− 4keVee, (ii) 2− 5keVee and (iii) 2− 6keVee, for a total exposure of 1.33ton×yr [83].

After the data analysis the DAMA collaboration conclusion is that the annual
modulation is present only in the 2 − 6keVee energy range, with an amplitude
A = (0.0112± 0.0012)count/day/kg/keVee with (9.3σCL ).
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4.2 Indirect detection experiments
The indirect search focuses on the detection of the WIMP annihilation products

in standard model particles, that can be detected by telescopes on Earth or by
satellites. Telescopes exploitable for the Dark Matter search are of two categories:
neutrino telescopes and Imaging Air Cherenkov Telescope (IACT). In what follows
we will discuss some experiments beloging to the three indirect detection typologies.

• Neutrino observatories: The dark matter search led by neutrino telescopes
focuses on the detection of secondary neutrinos produced by dark matter
annihilation or decay. More technically they search for the muons produced by
the interaction of neutrinos within the detector or with the matter surrounding
the detector. The muons are detected exploiting the Cherenkov effect, that
is the radiation emission process, activated by the passage of a relativistic
charged particle through a transparent medium at a velocity greater than
that of light in the same matter.

40 3. The ANTARES neutrino telescope

This simple geometrical pattern of light emission allows a precise reconstruction
of tracks from the measurement of only few hits (times of arrival) at different space
points (PMT) of the apparatus.

Figure 3.6. This image show the cone of Cherenkov light induced in the medium.

The number of photons produced along a flight path dx in a wavelength bin dλ
for a particle carrying unit charge is:

d2N

dλdx
= 2παsin2 θC

λ2 . (3.5)

At wavelength of 400− 500 nm the efficiency of the photomultiplier as well as
the transparency of the water are maximal. Within 1 cm flight path 100 photons
are emitted in this wavelength bin. Between 285− 400 nm twice as many photons
are emitted, however they contribute less to the detected signal. At a perpendicular
distance of 40 m from a charged track the density of photons between 400− 500 nm
is still 1 per 340 cm2, neglecting absorption and scattering effects.

For β = 1 the Cherenkov light yield is independent of the energy of the charged
particle. This means that the Cherenkov radiation does not allow to measure the
energy of the particle that originated it. However when hadronic or electromagnetic
showers are produced the electrons originated in the showers induce Cherenkov
radiation. The number of e± is proportional to the shower energy, so the total
Cherenkov light emitted can allow an energy estimate of the event. This allows some
calorimetric measurements if the neutrino vertex is inside the active detector volume
or for muon tracks above 1 TeV where radiative processes dominate its energy loss.

3.4 Light propagation in sea water
The processes of absorption and scattering characterise the transmission of light in
water. They are parametrised by the absorption length λa, the scattering length λs
and the scattering function β(θs) which describes the angular distribution of the
volume scattering angle θs [109].

The relevant window of wavelength for a sea water Cherenkov detector is centred
on blue light. Deep sea water transparency is maximal in the blue, with typical
values of 60 m for λa, and a scattering function peaked in the forward direction with

Fig. 4.2.1: The Cherenkov light emission cone.

The neutrino telescopes Ice-Cube and ANTARES (Astronomy with a Neu-
trino Telescope ans Abyss environmental RESearch) use as radiator ice and
water respectively, therefore the Cherenkov light is emitted only if the particle
velocity vp is greater than c

n (about 0.76c in ice and 0.75c in water), where
n is the ice or water refraction index. The Cherenkov light is detected in
both the experiments by strings of Digital Optical Modules (DOMs), which
are evacuated glass spheres, containing the photomultiplier tube to detect the
Cherenkov radiation; the DOMs contain also the electronics that can begin
to process the signals in place, before sending the data to the surface; this
accelerates the data elaboration. The detectors are thought to reconstruct
the direction of the incoming µ by fitting the space-time distribution of the
detected Cherenkov photonos.

• Imaging Air Cherenkov Telescope (IACT):MAGIC (Major Atmospheric
Gamma Imaging Cherenkov), VERITAS (Very Energetic Radiation Imaging
Telescope Array System), HESS (High Energy Stereoscopic System), CTA
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(Cherenkov Telescope Array) are all ground based telescopes, devoted to the
search of Very High Energy (VHE) γ-rays(4). The interaction of the latter
with the atmosphere produces showers of charged particles, whose propaga-
tion within the air particles produces the Cherenkov radiation cone detected
by the IACTs. The air refraction index is n = 1.00029, therefore charged
particles with velocity v > c/n can produce Cherenkov radiation. IACT are
consolidated as useful tool for the γ-ray astronomy and hence for the dark
matter search. As shown in eq. (3.40), γ-ray telescopes cannot connect the
signal to a specific point, for istance the Galactic center, because many other
sources can be present on the line of sight. However the IACTs can probe the
possible signature from the galactic halo, from galaxies nearby or from dwarf
spheroidal galaxies, that are the most dominated dark matter objects. So far
any γ-signal attributable to dark matter has been detected.

• Space telescopes: The favoured position allows the detection of primary
cosmic rays. The Fermi satellite (GLAST Gamma-ray Large Area Space Tele-
scope) focuses on the primary γ-ray detection, while for example PAMELA
(Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics)or
AMS (Alpha Magnetic Spectrometer) detects high energy charged cosmic
rays. The expected dark matter signature is the enhancement of the fluxes of
positrons, antiprotons or antideuterons, since their origin could be attributed
to the dark matter annihilation or decay.
PAMELA published results on a positron excess at 10GeV [84][85], after con-
firmed also by AMS-02. This result was predicted some years before [86] and
the proposed hypotheses for a dark matter interpretation were: (i) a dark mat-
ter particle with mass > 10TeV (5) or (ii) a dark matter particle of ∼ 1TeV
that annihilates or decays only in leptons. Both the hypotheses have not been
excluded. The observation of a positron excess has been confirmed indirectly
also by Fermi and HESS experiments(6) [87].
Another signal that in the past years was hypothesized to be a dark mat-
ter signature, was the 511keV γ-ray line from the galactic center, detected
by the ESA’s INTEGRAL (The European Space Agency’s INTErnational
Gamma-Ray Astrophysics Laboratory) satellite. It was thought to be an
e+e−-annihilation product, that would be connected to the dark matter anni-
hilation in the galaxy center. This hypothesys was ruled out in 2009 [88] and
its origin was attributed to other astrophysical sources.
A recent result (2014), provided by the ESA’s XMM-Newton (X-ray Multi-
Mirror Mission) spacecraft in a spectrum of 73 galaxies [89] and later confirmed
by the NASA’s CHANDRA X-ray observatory, was the X-ray line at 3.5keV.
It is compatible with the hypothesys that a sterile neutrino could account as
dark matter and this is one of the main arguments in its favour, as discussed
in the dedicated section(7).

4CTA is still in development phase.
5A larger WIMP mass could be in agreement with the null results at colliders.
6"Indirect" because these results are inferred from the analysis of the detected γ-ray fluxes.
7For a schematic but clear discussion refer to

https://indico.cern.ch/event/325123/contributions/755829/attachments/630486/867688/PPTalks-
JC.pdf
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4.3 Experimental results and comparison
The accidental equality between the admissible WIMP mass range and the col-

lider accessible energy scale motivated the WIMP experimental search. Numerous
projects have been spending efforts for years in order to obtain some information
on the WIMP parameters and further efforts are spent to compare the available
results to improve the experimental search. In the light of the analsys realized in
the previous chapter, in this section we will discuss the cross section limits as a
function of the dark matter mass, for the WIMP paradigm.
Firstly consider the σSI −mχ plot in fig. (4.3.1).

16 25. Dark matter

the quality of the fluid and to run with C3F8. The final goal is to build PICO-250L, a
ton scale detector.

SIMPLE [30], an experiment using superheated liquid C2ClF5 droplet detectors run
at Laboratoire Souterrain de Rustrel, has completed its ”phase II”, without bringing
better limits than the experiments cited above. The collaboration intends to switch to
the bubble chamber technology.
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Figure 25.1: WIMP cross sections (normalized to a single nucleon) for spin-
independent coupling versus mass. The DAMA/LIBRA [65], CDMS-Si, and
CoGeNT enclosed areas are regions of interest from possible signal events.
References to the experimental results are given in the text. For context, the blue
shaded region shows a scan of the parameter space of the pMSSM, a version of
the MSSM with 19 parameters, by the ATLAS collaboration [66], which integrates
constraints set by LUX and ATLAS Run 1; the favored region is around 10−10 pb
and 500 GeV.

Figures 25.1 and 25.2 illustrate the limits and positive claims for WIMP scattering
cross sections, normalized to scattering on a single nucleon, for spin independent and spin
dependent couplings, respectively, as functions of WIMP mass. Only the two or three
currently best limits are presented. Also shown are constraints from indirect observations
(see the next section) and a typical region of a SUSY model after the LHC run-1 results.
These figures have been made with the dmtools web page [64].

Table 25.1 summarizes the best experimental performances in terms of the upper limit
on cross sections for spin independent and spin dependent couplings, at the optimized
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Fig.4.3.1: The σSI vs mχ graph for the comparison between the available results. At lower incident dark
matter masses the direct detection technique is less efficient due to the lower nuclear recoil energy. The
best limit is provided by the LUX experiment[94]. The enclosed area refer to region of possible signal.

The green region refers to DAMA annual modulation; the pink region refers to the three events claimed by
CDMS-Si as possible dark matter signature; the blue region overlapping the CDMS-Si one refers to the
CoGeNT excess. The results of the three experiments are compatible. The blue bottom region on the

right refers to an ATLAS non-excluded region, relative to the pMSSM. Taken from [75].

The best limit is provided by LUX between ∼ 6 GeV and 1 TeV, with a minimum
at about σSI ∼ 10−45 cm2 and mχ ∼ 30 GeV. Towards lighter masses all the direct
detection experiments provide less stringent constraints due to their lower sensi-
tivity for lower recoil energy. The coloured enclosed DAMA[90], CDMS-Si[91] and
CoGeNT[92] areas are the parameter regions allowed by the three experiments. The
blue region, indicated with ATLAS, is a non-excluded region studied by the ATLAS
collaboration and referred only to a minimal SUSY model, the phenomenological
MSSM, that reduces the MSSM parameters from more than 100 to 19. The ATLAS
collaboration affirms that σSI ∼ 10−46cm2 and mχ ∼ 500 GeV is the favored region
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4.3 Experimental results and comparison

[93].
Consider now the σSD −mχ plot in fig. (4.3.2). 25. Dark matter 17
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Figure 25.2: WIMP cross sections for spin dependent coupling versus mass. (a)
interactions with the neutron; (b) interactions with the proton. References to
the experimental results are given in the text. Indirect detection results are from
SuperKamiokande (annihilation into bb̄ and τ+τ− channels) together with IceCube
(annihilation into W+W−); for details see the indirect WIMP searches section
below.
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Fig. 4.3.2: The σSD vs mχ graph for the comparison between the available results. The Ice-Cube
experiment provides the best exclusion limit for mχ & 200 GeV, while Super-Kamiokande provides the

best exclusion limit for mχ . 200 GeV. Taken from [75].

The two graphs refer to the WIMP spin interaction with neutron or proton. The
strongest exclusion limits are provided again by LUX for the WIMP interaction
with neutrons and by the Ice-Cube experiment for mχ & 200 GeV and by Super-
Kamiokande for mχ . 200 GeV for the WIMP interaction with protons(8).

8The observables of the indirect detection technique are the fluxes of primary or secondary
particles produced by the dark matter annihilation or decay; starting from the results on fluxes,
the upper limit on the cross section off nuclei can be inferred exploiting the physics of the capture
process.
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4.3 Experimental results and comparison

The collider results, fig. (4.3.3), provided the lowest limit for dark matter masses
mχ < 6GeV for the spin independent cross section and the lowest limit in the the
whole mass range for the spin-dependent cross section. A comparison between the
dark matter search at collider at 13 TeV and the direct detection results is shown
in fig. (4.3.3) for the spin-dependent and spin-independent cross sections[95].
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Fig. 12 Inferred 90 % CL limits on a the spin-independent and b
spin-dependent WIMP–nucleon scattering cross section as a function
of DM mass mχ for different operators (see Sect. 1). Results from
direct-detection experiments for the spin-independent [128–134] and
spin-dependent [135–139] cross section, and the CMS (untruncated)
results [14] are shown for comparison. c The inferred 95 % CL limits

on the DM annihilation rate as a function of DM mass. The annihilation
rate is defined as the product of cross section σ and relative velocity
v, averaged over the DM velocity distribution (〈σ v〉). Results from
gamma-ray telescopes [126,127] are also shown, along with the ther-
mal relic density annihilation rate [26,27]

uncertainties related to the jet and Emiss
T scales and resolu-

tions introduce uncertainties in the signal yields which vary
between 2 % and 16 % for different selections and squark
and gluino masses. The uncertainties in the proton beam
energy introduce uncertainties in the signal yields which vary
between 2 % and 6 % with increasing squark and gluino
masses. The uncertainties related to the modelling of initial-
and final-state gluon radiation translate into a 10 % to 15 %
uncertainty in the signal yields, depending on the selection
and the squark and gluino masses. The uncertainties due to
PDF result in uncertainties in the signal yields which vary
between 5 % and 60 % for squark and gluino masses increas-

ing from 50 GeV and 2.6 TeV. Finally, the variations of the
renormalization and factorization scales introduce a 15 % to
35 % uncertainty in the signal yields with increasing squark
and gluino masses.

Figure 13 presents, for the SR7 and SR9 selections and
in the case of degenerate squarks and gluinos, σ × A × ε

as a function of the squark/gluino mass for different grav-
itino masses. For comparison, the model-independent 95 %
CL limits are shown. For each SUSY point considered in the
gravitino–squark/gluino mass plane, observed and expected
95 % CL limits are computed using the same procedure as in
the case of the ADD and WIMPs models. This is done sepa-

123

Fig. 4.3.3: In the left panel the σSI vs mχ graph for the comparison between the direct detection results
and the search at collider. Note that for mχ < 4 GeV the search at collider fixes the lowest upper limit. In
the right panel the σSD vs mχ plot. The colliders impose the lowest upper limit for the whole mass range.

Taken from [95].

The indirect detection experiments can impose limits on the thermally averaged
annihilation cross section times the relative velocity 〈σ · v〉 as a function of the
WIMP mass. Since space telescope and IACT experiments observe the products
of annihilation or decay of diffuse dark matter and not of dark matter captured in
the centre of celestial objects, there is not a connection with WIMP nuclear cross
section. This is the reason of the absence of nulclear cross section plots for IACTs
experiments or for space telescopes. The plot in fig. (4.3.4) is provided by the
Ice-Cube Collaboration(9).

9Fig. (4.3.4) taken from https://sciencesprings.wordpress.com/2016/06/03/from-icecube-
searching-for-dark-matter-using-icecube-cascades/
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4.3 Experimental results and comparison

Fig. 4.3.4: The 〈σv〉 vs mχ graph for the comparison between the available upper limits. The cross
section refers to the channel τ+τ− and to the Navarro, Frank and White (NFW) density profile.

The figure shows the results/sensitivities in the plane 〈σv〉 vs mχ, allowing the
comparison between neutrino telescope, IACT and satellite results. The grey re-
gion is the parameter space compatible with the PAMELA positron excess while
the green region indicates the parameter space that is compatible with the Fermi
and HESS indirect results on the positron excess. Clearly the combination of the
Fermi and MAGIC results imposes the best upper limit.

From the variety of results illustrated so far, the experimental quest for dark
matter, relative to the electroweak mass range, can be splitted in two parts: the
search for a low WIMP mass, of the order of 10GeV and the search for a large
WIMP mass, of order & 100GeV. At this time the latter is the range of interest for
the indirect search. The direct detection experiments, together with collider, can
probe also the low WIMP mass region and the hints for a positive signal stimulates
the arising of more and more projects that aim to verify or exclude these results.
The collaboration between direct and indirect search is stricter when the results
from the indirect search are provided by neutrino telescopes, due to the theory of
the WIMP capture. This latter allows to extrapolate limits on the nuclear cross
section from the results on WIMP annihilation, as discussed in section §3.3.2. The
competitive results obtained by telescope experiments, both in space and on Earth,
for large WIMP masses are impressive, therefore the observation of neutrinos, γ-
rays and cosmic rays appears to be a fundamental tool for the dark matter search,
despite the difficulty encountered in the comparison of the results. Note that in
fig.(4.3.2) the neutrino telescope results refer only to spin-dependent cross section.
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4.3 Experimental results and comparison

This is a further complication, since the theory of axial-vector interactions is af-
fected by more unknown parameters than that of scalar couplings. This latter are
the most convenient in theoretical simulation, since the dependency on unknown
parameters can be handled more easly; that is why the cross section plots for direct
detection experiments refer to spin-independent cross section. However this trick is
not enough to achive a reliable comparison among their results. Several assumptions
are involved in the extrapolation of the data presented, relative for example to the
halo velocity distribution, the mean halo velocity and the local density, beyond the
difficulty introduced by the different targets characteristics and the different statis-
tics procedures that affect the outcome and invalidate the comparison. For this
reason the so called exclusion limits are not definitive constraints and the potential
excluded regions of parameter space are still subject to be studied, especially that
suggesting a positive signal.
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Chapter 5

Numerical Results

As remarked in the previous chapter, the comparison between direct detection
experiments and also between direct and/OR indirect detection experiments, is
complicated due to the many parameters involved. This last section is dedicated to
the numerical analysis of some of these parameters that are crucial for the compari-
son between direct detection experiments, in order to clarify the ingredients (energy
threshold, cross section, nuclear form factor calculation, sensitivities . . . ) that are
relevant for the evaluetion of the results. Since the parameters involved depends
on the different targets, in particular on the target mass, the study of their contri-
bution is necessary in order to allow the comparison between the results. We will
clarify the experimental limits on the detectable recoil energies and on the probable
dark matter masses (section 5.1); the expected counting rate in the most exploited
targets, firstly independently on cross section and form factors and secondly dis-
cussing the two contributions (section 5.2). We will introduce also a discussion on
the WIMP inelastic scattering off nulcei, to fix bounds on the probable dark matter
masses (section 5.3). Finally we briefly discuss the section on the neutrino telescope
sensitivity for the dark matter indirect search (section 5.4). In the two last sections
there are hints about possible future extension of this work, in particular towards
the scope to extend this numerical study to the other candidates discussed in deep
in previous chapters and to the direct-indirect detection comparison.

5.1 Numerical limits on elastic scattering off nuclei
The direct detection signal produced by the dark matter elastic scattering off nu-

clei is proportional to the nuclear recoil energy. The recoil trasmitted to the nuclei
depends on: the bullet mass, the bullet velocity, the target mass and the diffusion
angle. This latter is a kinematics factor, while the other terms depends on the dark
matter nature and on the target choice. Let us see what are the detection limits as
a function of the several parameters.

In the center of mass of the reaction the recoil energy ER due to the elastic
scattering between a dark matter particle of mass mD and a target nucleus of mass



5.1 Numerical limits on elastic scattering off nuclei

mT is(1):
ER = E · r (1− cosθ)

2 (5.1)

where E = p2
D

2mD is the incoming dark matter energy, r = 4mDmT
(mD+mT )2 , with 0 < r ≤ 1,

and θ is the center of mass diffusion angle. The maximum recoil energy as a function
of θ and for fixed mT and mD is:

ERmax = E · r = 2m2
DmT

(mD +mT )2 v
2 (5.2)

where v is the dark matter velocity. Starting from eq. (5.2), the behaviour of the
recoil energy as a function of dark matter masses in the electroweak mass range, for
five different targets and for a dark matter velocity v ≡ v0 = 220km/s, is shown in
fig. (5.1.1).

 [Gev]Dm
0 100 200 300 400 500 600 700 800 900 1000

 [k
eV

]
R

,m
ax

E

0

100

200

300

400

500

600

700
D

Recoil_energy_vs_m

Na (23)
Si (29)
Ge (73)
I (127)
Xe (131)

 [Gev]Dm
0 20 40 60 80 100 120 140 160

 [k
eV

]
R

,m
ax

E

0

50

100

150

200

250
D

Recoil_energy_vs_m

Na (23)
Si (29)
Ge (73)
I (127)
Xe (131)

Fig.5.1.1: The maximum recoil energy as a function of a the dark matter mass for different targets. The
recoil energy trend is increasing with mD. For large mD the maximum recoil energy is greater for heavier
targets, while for small mD the recoil energy is greater for lighter targets. This implies that the recoil
energy is maximized for a target mass closer to the dark matter one. In the bottom graph is shown the

mass range 0− 160GeV

1For the calculus details see the Appendix A.3.1
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5.1 Numerical limits on elastic scattering off nuclei

For mD < mT the increasing trend with the possible dark matter mass is faster
than that for mD > mT . Furthermore the plot in the bottom of fig. (5.1.1), that is
zoomed in the mass range 0− 160GeV, shows that for smaller dark matter masses
the recoil energy is greater for lighter targets, while for larger dark matter masses
is greater for heavier targets. This implies that for a fixed mD, the closer mT is to
mD, the greater is the recoil energy, as shown in fig. (5.1.2), where the maximum
recoil energy is plotted as a function of the possible target masses and for three
dark matter masses.
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Fig.5.1.2: The maximum recoil energy as a function of the different targets for three dark matter masses.
The point of maximum recoil energy is reached for mD ≡ mT .

If mT = mD → ERmax = E = 1
2mDv

2. For 10GeV < mD ≡ mT < 1TeV
and v = vmax = vesc ' 5.44

3 10−3c, the most promising recoil is in the range
16.4keV . ERmax . 1644keV, while the minimum recoil energy is fixed by the
energy threshold of the detector. These energy recoil ranges can be useful for the
target choice if the interest is in a specific dark matter mass.

For a fixed target, that is the situation usually encountered for already active
experiments, can be interesting to understand what is the lowest detectable dark
matter mass, always exploiting the recoil signal as dark matter signature. Consider
the expression of the maximum recoil ERmax in eq. (5.2). In the most optimistic
kinematics, the lowest dark matter mass can be computed through the expression:

mD(GeV) =
Eth
[keV]

mT
[GeV] + mT

[GeV]

√
2 mT

[GeV]
Eth
[keV](

2 mT
[GeV] −

Eth
[keV]

) (5.3)

where mT is in GeV and Eth is in keV. For example for a detector similar to
DAMA, with Na as target and with an energy threshold of Eth = 6.7keV (2), the

2Here the energy is in keV. Usually in literature the direct detection energy threshold is given in
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5.1 Numerical limits on elastic scattering off nuclei

lowest probable dark matter mass is mD ' 14.2GeV. So far we have considered
v = 10−3c. Indeed v can be also v > v0, since vmax = vesc = 544kms−1 ≈ 5.44

3 ·10−3c.
To take into account a different velocity it will be sufficient to divide Eth for the
adimensional factor a =

(
v·103

c

)2
in eq. (5.3). For the maximum velocity the a

factor will be a =
(

5.44
3

)2
and the previous estimates will be mD > 6.1GeV.

Finally, for fixed energy threshold (i.e. for a fixed target) and for a fixed dark
matter mass, there is a minumum detectable velocity associated to the incoming
dark matter particle:

vmin =
√

2Eth(keV)
mD(GeV)r10−3c (5.4)

For example for the sodium target, with mT = 23GeV, an energy threshold
of 6.7keV and mD = 10GeV the minimum detectable incoming velocity would be
vmin = 1.26 · 10−3c = 378km/s. The minimum detectable incoming velocity as a
function of the possible dark matter masses can be computed for a fixed energy
threshold and different targets or for a fixed target and different energy threshold.
The two cases are plotted in fig. (5.1.3). An upper limit on the possible energy
threshold can be fixed for the case of mD = 10GeV considering that there is a
maximum possible velocity, that is the escape velocity vesc ' 544km/s. This upper
limit implies that for too much high energy threshold the detector are not sensitive
to the dark matter particle. For the dark matter mass of 100GeV the minimum
velocities are lower than that relative to lighter dark matter masses, as expected
according to the kinematics.
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keVee, though it is written in keV, where as said before a keVee is the amount of energy produced
by en electron recoil, with an equivalent nuclear energy recoil. This means for example that the
DAMA energy threshold of 2keV is indeed 2keVee. Therefore ∼ 2keVee/Qf,Na ∼ 6.7keV for Na
and ∼ 2keVee/Qf,I ∼ 22keV for I, where Qf,Na = 0.3 for 6.5 < ER < 97keV and Qf,I = 0.09 for
22 < ER < 330keV. For this reason we consider Eth,Na = 6.7keV.
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5.2 Direct detection event rate in different targets
Due to the weakness of the interactions that should couple the dark matter with

the ordinary matter, the scattering processes expected in direct detection experi-
ments are rare events and their detection is a challenge for the experimental search.
The simulation of the expected signal is in this case a still more fundamental step
that allows an careful interpretation of the experimental data, in particular in the
optic of a comparison among the results. For this reason in what follows we will
study the behaviour of the differential rate as function of the recoil energy detected,
in different targets and for several possible dark matter masses in the electroweak
range.
The curves in fig. (5.2.1) are the differential rate as a function of the recoil energy
for five different targets (131

54 Xe, 127
53 I, 73

32Ge, 29
14Si, 23

11Na), for a dark matter mass of
100GeV and for a form factor F (|q|) = 1(3). The plotted differential rate is inde-
pendent from the velocity-independent part of the cross section thanks to the ratio
with the factor R0/(E0r), where R0, E0 and r are the terms discussed in the section
§3.2.2 and in the previous section §5.1.1. We will name it rescaled-differential rate.
The multiplication for this term is commonly used to make the results indepen-
dent from the part of WIMP-target cross section that depends on quark or spin

3The integration of the counting rate involves the form factor due to the transferred momentum
dependency on the recoil energy. As discussed later in the text the relation is:

q(fm−1) =

√
2mT (GeV)ER(keV)10−6

0.197GeVfm = =
√

(2mT )
(1

2mDv2
D

)
r = 2µ(GeV)vD(cm/s) · 0.806

c
(5.5)

Each point of the curve is obtained by integrating on all the possible velocities that can cause the
same recoil energy.
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couplings.
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Fig.5.2.1: The scaled differential rate as a function of the recoil energy, for a dark matter masses of
10GeV for five different targets (131

54 Xe, 127
53 I, 73

32Ge, 29
14Si, 23

11Na) and for a form factor F (|q|) ≡ 1. The rate
is greater for lighter targets for the whole recoil energy range. The division for the factor R0/(E0r)

cancels the dependency of the differential rate from the cross section.

The typical form of the differential rate dependency on the recoil energy is[66]:

dR

dER
= R0
E0r

e−ER/E0r (5.6)

in agreement with the differential rate in fig. (5.2.1). Each point of such differential
rate is obtained from the numerical integration of the analytic expression(4):

dR

dER
= R0
E0r

k0
k

1
2πv2

0

∫ vmax

vmin

1
v
f(v, vE)d3v =

= R0
E0r

k0
k

1
2vE

∫ vmax

vmin

[e(v−vE)2/v2
0 − e(v+vE)2/v2

0 ]dv (5.7)

inferred by the manipulation of eq. (3.9) of [66], together with its appendix A.
vmin in this case is not the minimum velocity detectable by the detector; it is the
minimum velocity that can cause the recoil energy ER considered.
The differential rate for a fixed dark matter mass of 100GeV is plotted in fig. (5.2.2).

4Indeed, as said before, the plot in fig. (5.2.1) and (5.2.2) are the differential rate in eq. (5.7)
over the factor R0

E0r
.

79



5.2 Direct detection event rate in different targets

 [keV]RE
0 20 40 60 80 100 120 140 160

r)
]

0
/(

E
0

/[R
R

dR
/d

E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

=100GeV
D

Differential_Rate_vs_Recoil_Energy_m

Xe (131), I (127), Ge (73)

SI (29)

Na (23)

Fig.5.2.2: The differential rate as a function of the recoil energy, for a dark matter mass of
100GeV for five different targets (131

54 Xe, 127
53 I, 73

32Ge, 29
14Si, 23

11Na) and for a form factor
F (|q|) ≡ 1. The rate is greater for heavier targets for the whole recoil energy range. The

division for the factor R0/(E0r) cancels the dependency on the cross section.

Note that for a dark matter mass of 10GeV the scaled-differential rate for a
unit of mass detector is greater for lighter targets, while for a dark matter mass
of 100GeV the order is inverted. However, as we will show below, this is due to
the multiplicative factor R0/E0r, therefore it is not related to a physical effect.
Furthermore observe that the recoil energy range for heavier dark matter masses
([0− 160]GeV for mD = 100GeV) is much greater than that of lighter dark matter
masses ([0−14]GeV formD = 10GeV), as expected from the limits on the maximum
recoil energy computed in the previous section, where ER,max = Er =

(
1
2mDv

2
)
r,

that is proportional to mD.

5.2.1 Differential rate for scalar couplings
So far we have not made assumption on the cross section thanks to the scaling

with the factor R0/(E0r) discussed above. However this trick does not allow to
estimate the order of magnitude of the differential rate. In order to obtain this
information let us consider the spin-independent cross section discussed in the sec-
tion §3.2.3. The cross section is different changing the targets because of the factor
[Zfp+(A−Z)fn]2 ∼ A2f2, where commonly the coefficients fp and fn are simplified
as f ≡ fp ' fn. The value of σ is obviously unknown, therefore as a consequence
its velocity independent part σ0 is usually fixed arbitrarly. However if we consider
σ0 = σ′0A

2 and fix arbitrarly the order of magnitude of the factor σ′0 (including the
factor f), for example to the value σ′0 = 10−40cm2, we can compute the differential
rate considering the dependency on the squared target mass. The dependence of
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5.2 Direct detection event rate in different targets

the non-scaled differential rate as a function of the recoil energy for different targets
is shown in fig. (5.2.3), for two different dark matter mass, 10GeV and 100GeV and
for a form factor F (|q|) ≡ 1.
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Fig.5.2.3: The non-scaled differential rate as a function of the recoil energy, for a dark matter mass of
10GeV on the top and of 100GeV on the bottom, for five different targets (131

54 Xe, 127
53 I, 73

32Ge, 29
14Si, 23

11Na),
for a scalar couplings with σ0 = σ′0A

2 (σ′0 = 10−40cm2) and for a form factor F (|q|) ≡ 1.

Note that, as anticipated, the differential rate is greater for heavier targets for
both the dark matter masses considered for the mostly part of the possible recoil
energy. However an interesting behaviour present for the 10GeV dark matter mass
is discussed in the next paragraph. To conclude this section instead let us evaluate
the counting rate integrated over all the possible recoil energies. For each target
we compute this total rate through the integration of the curves in fig. (5.2.3).
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5.2 Direct detection event rate in different targets

The maximum and minimum recoil energy between which the integration is made
are Emin = 0keV and Emax = E · r. The maximum recoil energy was derived in
the previous section and depends on the different targets, while even if the energy
threshold characteristic of each detector would shift the minimum recoil energy,
here we consider the ideal case, that is Eth ≡ Emin = 0. The total counting rate per
day×kg [cpd/kg] is summarized in table (5.1), for mD = 10GeV and mD = 100GeV.
The total rate obtained is exactly inversely proportional to the dark matter mass.

Rate for mD = 10GeV Rate for mD = 100GeV
129
54 Xe 0.815 [cpd/kg] 0.0815 [cpd/kg]
127
53 I 0.790 [cpd/kg] 0.0790 [cpd/kg]

73
32Ge 0.454 [cpd/kg] 0.0454 [cpd/kg]
29
14Si 0.180 [cpd/kg] 0.0180 [cpd/kg]
23
11Na 0.143 [cpd/kg] 0.0143 [cpd/kg]

Table 5.1. Counting rate per day×kg for five different targets, for mD = 10GeV and mD = 100GeV.
The computation is provided through the numerical integration explained in the text.

Considering for example the xenon isotope 129
54 Xe, in 100kg the total rate per day

is ' 81 for a fixed mD = 10GeV and ' 8.1 for mD = 100GeV. This estimate is
derived in the assumption of:

• maxwellian velocity distribution v, with mean value v0 = 244km/s;

• scalar coupling, with σ = σ′0A
2/v2 and σ′0 aribitrarly fixed to 10−40cm2;

• local dark matter density ρ = 0.4GeV/c2/cm3;

• unitary form factor F (|q|) ≡ 1;

• ideal detectors, with unitary efficiency f .

The order of magnitude of this results is in agreement with eq. (3.10), when
the opportune normalization is substituted. What we expect is that in reality the
counting rate per day×kg is lower due to the two suppression factors F (|q|) and f .

A peculiar behaviour of the scalar coupling rate for 10GeV dark
matter

The non rescaled differential rate computed for a fixed dark matter mass of
10GeV, shown in fig. (5.2.3), presents an interesting behaviour. Let us focus on the
differential rate in the range [0-0.1] cpd/kg/keV. For a recoil energy ER & 2.75keV
for germanium and for a recoil energy ER & 3.75keV for sodium and silicium, the
counting rate per day×kg×keV becomes greater than that of the two heavier targets,
that is for iodide and xenon.
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Fig.5.2.4: The zoomed non-scaled differential rate as a function of the recoil energy in the range [0-0.1]
cpd/kg/keV, for a dark matter mass of 10GeV, for five different targets (131

54 Xe, 127
53 I, 73

32Ge, 29
14Si, 23

11Na),
for a scalar couplings with σ0 = σ′0A

2 (σ′0 = 10−40cm2) and for a form factor F (|q|) = 1.

This result could be in agreement with the panorama of the available experimen-
tal results. As discussed before, the DAMA collaboration detected, and is detecting,
the expected annual modulation of the counting rate due to the Earth rotation ve-
locity around the Sun. This behaviour is compatible with two WIMP mass regions.
Here we are interested in the case of a light WIMP, therefore we focus on the hy-
pothesis that the signal is due to a ∼ 10GeV WIMP. However at the same time
other experiments discussed before, such as XENON and LUX, affirm that exclu-
sion limits due to their null results, rule out this hypothesis. Nevertheless, with
caution, CDMS-Si and CoGeNT published an excess of events, that if interpreted
as the detection of a dark matter signal, is compatible with the DAMA results.
In this framework our simulation would hint a reconciliation of the two different
points of view. For istance the DAMA signature, detected at about 3keVee, that is
at ∼ 10keV for Qf,Na = 0.3, would be due to the scalar coupling of a 10GeV dark
matter particle with the sodium nucleus; since at 10keV the xenon target count-
ing rate is already null, the observation of a signal in DAMA and a null result in
XENON could be not in a contradiction.

However we remark that these estimates are computed only for scalar couplings,
for a form factor F (|q|) = 1 and for an ideal detector of efficiency f = 1. A deeper
study of the counting rate requires the estimation of these contributions. A first
effort in this sense is discussed below, relative to the analysis of the form factor
contribution.

5.2.2 The form factor contribution to the differential rate
So far we have considered a form factor F (|q|) = 1. The numerical integration

at the basis of this discussion is elaborated in order to allow the introduction of
the counting rate dependency on the transferred momentum. The form factor is
a suppression term, more and more important as the transferred momentum (and
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5.2 Direct detection event rate in different targets

therefore the recoil energy) is greater. Through this factor the size of the nucleus
can be taken into account, since for high energies the nucleus internal structure
is accessible to the incoming particle and as a consequence the nucleus cannot be
approximed as point-like.
We will consider the limit of maximum suppression, i.e. of maximum recoil energy
ER = E · r, where E = 1

2mDv
2
D and r = 4mDmT

(mD+mT )2
(5).

Consider the form factor in eq. (3.24). The transferred momentum expressed in
fm−1 is(6):

q(fm−1) =

√
2mT (GeV)ER(keV)10−6

0.197GeVfm =

=
√

(2mT )
(1

2mDv2
D

)
r = 2µ(GeV)vD(cm/s) · 0.806

c
(5.10)

where µ is the reduced mass µ = mDmT
(mD+mT ) . The Helm form factor discussed in

section §3.2.2 is plotted as a function of the transferred momentum in fig. (5.2.5),
for a fixed dark matter mass of 100GeV.
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Fig. 5.2.5: The squared Helm form factor F 2(|q|) for a trasferred momentum in the range [0− 1]fm−1,
for two targets (131

54 Xe and 23
11Na). The two recoil energy scale relative to the two target refer to the case

of a fixed dark matter mass of 100GeV.

The form factor relative to the other targets considered in previous sections are
between the two curves plotted. The two recoil energy scales are associated to the

5This assumption allows also to cancel the dependency on θ, i.e. the diffusion angle in the center
of mass.

6Since the conversion from Electronvolt (eV) to Hertz (s−1) is:

1eV = 2.41804× 1014s−1 (5.8)

then:
1GeV

c
= 0.806fm−1 (5.9)
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two different targets for a fixed dark matter mass of 100GeV, obtained from eq.
(5.10). This graph provides an important information about the value of the form
factor at the recoil energies of interest. For xenon the maximum suppression due
to the form factor is of the 80% for ER = 160keV, while for the same maximum
recoil energy the suppression is only of the ∼ 10% for Na. The non-scaled differential
counting rate in presence of the Helm form factor, for a dark matter mass of 100GeV
and for the two targets of xenon and sodium is plotted in fig. (5.2.6).
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Fig. 5.2.6: The non-rescaled counting rate as a function of the recoil energy for two diffeent targets
(131
54 Xe and 23

11Na), for a fixed dark matter mass of 100GeV. The dashed-dot line is referred to the
differential counting rate including the Helm form factor.

As expected the form factor suppression is greater for xenon with respect to sodium,
for which the counting rate with and without the form factor are indistinguishable
on the graph.

Consider now a fixed dark matter mass of 10GeV, relevant for the observations
discussed in the previous section.
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Fig. 5.2.7: The non-scaled counting rate as a function of the recoil energy for two different targets
(131
54 Xe and 23

11Na), for a fixed dark matter mass of 10GeV. The dashed-dot line is referred to the
differential counting rate including the Helm form factor.

In fig. (5.2.7) the zoomed squared form factor as a function of the trasferred
momentum is shown. The two energy scales correspond to the recoil energy associ-
ated to the two targets, xenon and sodium, for a fixed dark matter mass of 10GeV,
computed from the eq. (5.10). As evident, the form factor suppression is irrelevant
for this dark matter mass scale. The maximum suppression due to the squared
form factor is between ∼ 0.955 − 0.960 for xenon and between 0 ∼ 0.990 − 0.995
for sodium. A further confirm comes from the comparison between the non-scaled
differential counting rate for mD = 10GeV, computed with and without the Helm
form factor, shown in fig. (5.2.8).
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differential counting rate including the Helm form factor.
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This result is important because allows to affirm that the peculiar behaviour
observed in the differential counting rate for different targets and for a fixed dark
matter mass of 10GeV, discussed in the previous section, is not influenced by the
form factor contribution.

5.3 Numerical limits on inelastic scattering off nuclei
- This section refers to [71]

The aim of this section is to put limits on the detectability of lighter dark matter
candidates through their inelastic scattering off nuclei. As discussed before, inelastic
scattering can occur via atomic or nuclear excitation. Assuming the maximum halo
velocity vH = vesc, the minimum probable dark matter mass for the excitation
energy of each isotope can be computed through the condition:

mD >
2∆E

|vesc + vE |2 − 2∆E
mT

(5.11)

In [14] only isotopes with nuclear excitation ∆E < 100keV are considered since
for ∆E > 100keV inelastic scattering for WIMP lighter than 100GeV are suppressed
by factors > 10. These isotopes are odd protons-even neutrons or even neutrons-
odd protons. In the following table are listed the excitation energies of the most
popular isotopes of this kind:

∆E (keV)
127
53 I 37.1

133
55 Cs 81.0
83
36Kr 9.4
129
54 Xe 39.6
131
54 Xe 80.2
183
74 W 46.5

Table 5.2. Excitation energy (∆E) of the most exploited isotopes with ∆E < 100keV. Taken from [71]
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5.4 Numerical limits on neutrino telescope sensitivity

Fig.5.3.1: The minimum detectable dark matter mass as a function of the excitation energies relative to
different isotopes. The excitation energies are taken from [14]. Some of them are summarized in table

(5.2).

Thanks to the simple eq. (5.11), given the excitation energy of the various isotopes,
the minimum dark matter mass detectable through inelastic scattering on nuclei
can be inferred. This limit can be useful to clarify if a target is sensitive or not to
a precise dark matter mass. For example the graph in fig.(5.3.1) suggests that the
lower dark matter mass that can activate a nuclear excitation is between 12−13GeV
for 127

53 I and between 28 − 30GeV for 131
54 Xe. This simple result allows to establish

what experiments have or not have access to inelastic processes that involves nuclear
excitation.

It would be interesting to extend this study to atomic excitations due to scattering
by WIMPs. Furthermore to shed light on the experimental results, it is necessary to
study also inelastic processes characterized by final states not containing the dark
matter particle. This latter configuration is possible for candidates different from
WIMPs, therefore it is beyond the scope of this work. However it is an interesting
hint for a future study.

5.4 Numerical limits on neutrino telescope sensitivity
In the Sun and in the Earth core the temperature is low and the WIMP velocity is

non-relativistic, therefore the direct WIMP-annihilation into neutrinos is negligible.
The interesting neutrino flux derives from the annihilation or decay of the Standard
Model particles produced by the open WIMP-annihilation channel. Each particle of
the annihilation channel has an energy ∼ Eχ ≡ mχ, since the trapped WIMP is on
average at rest. Neutrinos produced by the two/three-body decay of these particles
have energies equal to 1

2 or 1
3 of the WIMP mass. The energy of the muon produced

by the deep inelastic scattering ν(ν̄) +N → µ−(+) +X, that occurs in the detector
(in ice or water) or near the detector, in the laboratory reference frame, is [96]:

• Eµ− ∼ 1
2Eνµ for νµd→ µ−u;
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• Eµ+ ∼ Eν̄µ for ν̄µu→ µ+d.

These estimations imply that if a detector has an energy threshold Eµth, the lowest
accessible WIMP mass is:

mχ,min ' 2Eth (5.12)

For example, for a generic energy threshold Eth = 20 GeV, mχ,min is about 40
GeV.

The estimation (5.12) can be extended to the sterile neutrino candidate. If we
consider the sterile neutrino decay N1 → γ+νa, the active neutrinos energy is Eνa ∼
mN1 ∼ keV, since the interesting sterile neutrino mass range from the dark matter
search point of view is ∼O(keV), as discussed in the previous chapter. The ratio
between the sterile neutrino mass and the energy threshold for the muon detection
is of the same order of magnitude of (5.12); therefore the neutrino telescopes energy
threshold would be of order keV to contribute to the sterile neutrino search via
muon-neutrino induced detection.
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Conclusions

The cosmological and astrophysical observations impose to the researchers the
strenuous and fascinating task of solving the missing mass problem. The coopera-
tion of cosmology and particle physics, together with the experimental efforts, allows
to constrain the possible dark matter parameters, that to a first glance appears ar-
bitrarly large. The mass scale relative to the several candidates is discussed. For the
axion, proposed as solution of the strong CP problem and whose theoretical back-
ground predicts a mass range between 10−12eV to 106eV, the experiments indicate
a mass range 10−5eV to 10−3eV. For the sterile neutrino, in order to accommodate
with it the dark matter problem, astrophysical observations constrain its mass to be
of order of the keV. For the Weakly Interactive Massive Particle (WIMP), the old-
est candidate proposed and on which the attention is particularly focused, the mass
range is more extended with respect to the interval of 10GeV-1TeV usually encoun-
tered in literature, that is only indicative. This restricted interval was considered for
the agreement with the experimental limits. Furthermore its fortune is due to the
initial common conviction that the electroweak theory could have accommodated
the new particle. About that, we discussed the popular ’WIMP Miracle’, that is the
intriguing coincidence between the WIMP annihilation cross section order of magni-
tude, that results by cosmological constraints, and the electroweak scale. However,
against the expectations, the so far null results at colliders suggest that the possible
mediator could be more massive than the gauge bosons of the electroweak theory.
The two candidates accommodated in the WIMP proposal and discussed in this
work are the supersymmetric neutralino and the Kaluza-Klein photon, this latter
belonging to the Universal Extra Dimension (UED) models. As remarked, the re-
sulting allowed mass intervals are quite arbitrary, since new quantum numbers are
introduced in both the theories to make stable this potential new particle. The
arguments that support the various candidates and the relative theories have been
discussed.
The WIMP paradigm is the main topic of the second part of this work. The exper-
imental search dedicates numerous efforts to probe the space of parameters associ-
ated to this hypothesis, therefore a deep understanding of its phenomenology and
of the available results is necessary. A particular attention is devoted to clarify the
conditions under which the comparison between direct and indirect search results
is possible. The direct search can provide limits on the possible WIMP nuclear
elastic scattering. The indirect search aim to detects the potential WIMP annihila-
tion products. The experimental data are also presented as a combination of direct
search and neutrino telescope results, since the comparison is allowed by the com-
mon process of nuclear scattering that occurs in the detector for the direct search
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and in the WIMP capture process in the center of celestial bodies. These latter pro-
cesses are relevant for the indirect dark matter search with neutrino telescopes. In
these processes the extrapolation of the WIMP nuclear cross section is possible only
under the condition of equilibrium between capture and annihilation processes. The
estimate of the numerical limit on the minimum WIMP mass detectable by neutrino
telescopes, establishes that this latter are more competitive for higher dark mat-
ter masses. The comparison between direct detection and space telescope results
is not possible because γ and charged cosmic rays cannot be associated to a bor-
dered source. An integral on the halo dark matter density along the line of sight is
necessary and the process of WIMP nuclear elastic scattering cannot be exploited.
Finally the numerical analysis on the counting rate that occurs in direct detection
experiments provides interesting results that could be useful to solve the tension
among the available data. For a fixed dark matter mass of 10GeV, for a Maxwellian
velocity distribution and for a spin-independent cross section, the counting rate per
day×kg as a function of the recoil energy results greater for germanium, sodium and
silicium with respect to that of iodide and xenon, for recoil energies greater than
∼ 3keV. This result is in agreement with the panorama of published data, since
the DAMA, CDMS-Si and CoGeNT regions of parameter space are centered in a
WIMP mass of ∼ 10GeV. Furthermore it would be consistent with the null result in
experiments as XENON. The results are checked also in presence of a possible form
factor, whose contribution appears to be negligible at the recoil energies involved,
while it is an important factor of suppression for larger dark matter masses.
The results obtained are potentially relevant but this work need a more deep anal-
ysis, in particular through the comparison with experimental data. At this state of
the study, we consider the results an interesting hint for future studies.
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