

Methods in Experimental Particle Physics

Antonio Di Domenico Dipartimento di Fisica, Sapienza Università di Roma

II semester a.y. 2018-2019 (also I semester only this year)

Methods in Experimental Particle Physics

30/09/18

Aim of these lectures*

* Many thanks to Prof. C. Bini for the provided material.

Experimental Physics:

define the "question to nature"

design the experiment

build the experimental apparatus

run the experiment

analyze the data and get the "answer"

Learn in this course:

How to design an EPP experiment How to analyze data in order to extract physics results

Outline of the Lectures

Short introduction: the goal and the main "numbers"

- The language of the random variables and of the statistical inference (a recap of things you already know...)
- The Logic of a PP experiment
- Quantities to measure in PP
- How to analyze data
- How to design a PP experiment
 - The projectiles and the targets: cosmic rays, particle accelerators

The detectors: examples of detector designs

The unreasonable effectiveness of Mathematics in the Natural Sciences

Eugene P. Wigner, "The unreasonable effectiveness of Mathematics in the Natural Sciences", Communications in Pure and Applied Mathematics, Vol. 13, No. I (February 1960)

Eugene P. Wigner

L'irragionevole efficacia della matematica nelle scienze naturali

Adelphi eBook

<<...it is not at all natural that "laws of nature" exist, much less that man is able to discover them.>>

<<...The exploration of the conditions which do, and which do not, influence a phenomenon is part of the early experimental exploration of a field. It is the skill and ingenuity of the experimenter which show him phenomena which depend on a relatively narrow set of relatively easily realizable and reproducible conditions.>>

EPP= Elementary Particle Physics alternatively used HEP=High Energy Physics

Introduction

- The "Question to Nature" in EPP: it is the quest for the "fundamental" aspects of the Nature: not single phenomena but the common grounds of all physics phenomena.
- Historical directions of the EPP:
 - Atomic physics → Nuclear Physics → Subnuclear Physics: the ∞ly small; Nature = point-like particles interacting through forces..
 - Look at the ∞ ly large: connections with cosmology, cosmic rays, etc..
 - Paradigm: unification of forces, theory of everything.
- What shall we do in this course ?
 - We concentrate on subnuclear physics, presently at the forefront of "fundamental" Physics, and will select few experiments
 - We review some "basic statistics" and then will extend it to more "advanced" methods for data analysis EPP experiments

The EPP experiment

- Something present through all the 20° century and continuing in 21°: the best way to understand the elementary particles and how do they interact, is to send *projectiles* on *targets*, or, more generally, "to make things collide". And look at the *final state*: a+b→ X (assuming existence of asymptotic states)
- "Mother-experiment" (Rutherford): 3 main elements:
 - a projectile
 - a target
 - a detector
- Main rule: the higher the momentum *p* of the projectile, the smaller the size δx one is able to resolve.

 $\delta x \approx \frac{\hbar c}{pc} \Rightarrow \delta x(fm) \approx \frac{197}{p(MeV/c)}$

The scale: $\hbar c = 197 MeV \times fm$

• From Rutherford, a major line of approach to nuclear and nucleon structure using electrons as projectiles and different nuclei as targets.

The Rutherford experiment

A(He)=4
Z(Au)=79
A(Au)=197
Mp=938 MeV/c²

$$p(\alpha)=\sqrt{(4*938+5)^2-4*938^2}=194 \text{ MeV/c}$$

 $E(\alpha)=4*938+5=3757 \text{ MeV}$
 $M(\alpha)=4*938=3752 \text{ MeV/c}^2$
 $M(Au)=197*938=184786 \text{ MeV/c}^2$
 $\sqrt{s}=\sqrt{M(\alpha)^2 + M(Au)^2 + 2} E(\alpha)M(Au) =$
 $=\sqrt{3752^2+184786^2+2*184786*3757=188543 \text{ MeV}=188.5 \text{ GeV}}$

Key elements in the Rutherford experiment – physical quantities

- Energy of the collision (driven by the kinetic energy of the α particles) the meaning of \sqrt{s}
- Beam Intensity (how many α particles /s)
- Size and density of the target (how many gold nuclei encountered by the α particles);
- Deflection angle θ
- Probability/frequency of a given final state (fraction of α particles scattered at an angle θ);
- **Detector efficiency** (are all scattered α particles detected?)
- **Detector resolution** (how good θ angle is measured?)

The Rutherford experiment – original results

10

Break: the Rutherford experiment only ?

- Actually more than the Rutherford experiment
- Particle Physics without beams
 - \rightarrow cosmic ray based experiments
 - In space
 - In Underground Laboratories
 - In DeepSea Detectors
 - \rightarrow Search for very rare or forbidden decays of ordinary matter
 - Mostly in underground detectors
- Examples during the course
- NOW: let's concentrate on EPP with beams

Energy: what is \sqrt{s} ?

- This is a fundamental quantity to define the "effective energy scale" you are probing your system. It is how much energy is available for each collision in your experiment.
- It is relativistically invariant.
- If the collision is $a+b \rightarrow X$

$$s = \left(\tilde{p}_a + \tilde{p}_b\right)^2 = M_a^2 + M_b^2 + 2\tilde{p}_a \bullet \tilde{p}_b$$
$$= M_a^2 + M_b^2 + 2\left[E_a E_b - \vec{p}_a \bullet \vec{p}_b\right]$$

- M_X cannot exceed \sqrt{s} .
- What about Rutherford experiment ? $a=\alpha$, b=Au, X=a+b $s = M_{\alpha}^{2} + M_{Au}^{2} + 2E_{\alpha}M_{Au} =$ $\sqrt{s} = 188.5 GeV$ Maybe Rutherford produced a Higgs ??

Methods in Experimental Particle Physics

Development along the years

- WARNING: Not only Rutherford: in the meantime EPP developed several other lines of approaches.
- More was found: It was seen that going up with the projectile momentum something unexpected happened: more particles and also new kinds of particles were "**created**".
- → high energy collisions allow to create and study a sort of "Super-World". The properties and the spectrum of these new particles can be compared to the theory of fundamental interactions (the Standard Model).
- Relation between projectile momentum and "creation" capability:
- → Colliding beams are more effective in this "creation" program (developed in Frascati from an idea of Bruno Touschek).
 - ep colliders (like HERA)
 - e⁺e⁻ storage rings
 - p-pbar or pp colliders

$$\sqrt{s} = \sqrt{M_1^2 + M_2^2 + 2E_1M_2} \approx \sqrt{2E_1M_2} \quad \text{(fixed target)}$$
$$\sqrt{s} = 2\sqrt{E_1E_2} \quad \text{(colliding beams)}$$

Electron beam E=100 GeV on Hydrogen target $\sqrt{s}\approx13.7$ GeV

Electron/positron colliding beams E=100 GeV $\sqrt{s}\approx 200$ GeV

Units - I

- $\Delta E_k = q \Delta V$
- Joule "=" C×V in MKS
- Suppose we have an electron $q = e = 1.602 \times 10^{-19} \text{ C}$ and a $\Delta V = 1 \text{ V}$: $\Rightarrow \Delta E_k = 1.6 \times 10^{-19} \text{ J} = = 1 \text{ eV}$
- Particularly useful for a linear accelerator
 - Electrons are generated through cathodes by thermoionic effect;
 - Protons and ions are generated through ionization of atoms;
 - Role of "electric field": how many V/m can be provided ?
 - Present limit $\approx 30 \div 50 \text{ MV/m} (100 \text{ MV/m} \text{ CLIC})$
 - → 1 km for $30\div50$ GeV electrons !

Units - II

- Unit system
 - By posing **c** = **1**, **energy**, **momentum** and **mass** can all be expressed in terms of a single fundamental unit. All can be expressed using the eV.

$$E^{2} = (pc)^{2} + (mc^{2})^{2} - - > E^{2} = p^{2} + m^{2}$$

c=1 implies also the following dimensional equation:
[L] = [T]

Lengths and times have the same units

- Then we also pose h=1, this have implications on energy vs. l and t (hc=1)
 - $[E] = [L]^{-1} = [T]^{-1}$
 - \rightarrow time and length are (energy)⁻¹
- Numerically we need few conversion factors:
 - 1 MeV == 0.00506 fm^{-1} == 1.519 ns^{-1}

Energy scales

- In the following we try to see which scales of energy correspond to different phenomenologies. We consider equivalently space and energy scales (since we know it is somehow the same..)
- This quantity is one of the driving element to design HEP experiments: you need to know first of all at which energy you have to go.

Energy scales in the ∞ ly small - l

• Electromagnetic interactions have not a length scale

$$V = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}$$

• $[V \times r] = [E][L] = [\hbar c] \rightarrow$ we can define an adimensional quantity α : $\frac{e^2}{4\pi\varepsilon_0\hbar c} = \alpha = \frac{(1.610^{-19}C)^2}{4\pi 8.8510^{-19}F/m1.0510^{-34}Js310^8m/s} = \frac{1}{137} = 0.0073$

• α sets the scale of the *intensity* of the electromagnetic interactions. In natural units ($\hbar = c = \epsilon_0 = \mu_0 = 1$) *e* is also adimensional: $e = \sqrt{4\pi\alpha}$

Energy scales in the ∞ ly small - II

- Electromagnetic scales:
 - 1. Classical electron radius: The distance *r* of two equal test charges *e* such that the electrostatic energy is equal to the rest mass *mc*² of the charges

$$r_e = \frac{e^2}{4\pi\varepsilon_0 m_e c^2} = \frac{\alpha}{m_e} \frac{\hbar}{c} \rightarrow \frac{\alpha}{m}$$
 In natural units

• Electron Compton wavelength: which wavelength has a photon whose energy is equal to the electron rest mass.

$$\hat{\lambda}_e = \frac{\hbar}{m_e c} = \frac{r_e}{\alpha} \longrightarrow \frac{1}{m_e}$$

• Bohr radius: radius of the hydrogen atom orbit

$$a_{\infty} = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2} = \frac{r_e}{\alpha^2} \longrightarrow \frac{1}{\alpha m_e}$$

Energy scales in the ∞ ly small - III

• Weak interactions: Fermi theory introduces the constant G_F with dimensions [E]⁻² (making the theory non-renormalizable). In the electroweak theory G_F is:

$$\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}$$

- Where g_W is the "fundamental" adimensional coupling directly related to e through the Weinberg angle: $e = g_W \sin \theta_W$
- The "Electroweak scale" is the scale at which the electroweak unification is at work, *O*(100 GeV). By convention it is given by *v*, the Higgs vacuum expectation value:

$$v = \frac{1}{\sqrt{\sqrt{2}G_F}} = 246 GeV \quad r_{EW} \approx \sqrt{\sqrt{2}G_F} (\hbar c)$$

Energy scales in the ∞ ly small - IV

Strong interaction: Yukawa potential

$$V(r) = \frac{g^2}{4\pi} \frac{1}{r} \exp(-\frac{r}{\lambda})$$

 λ is 1/m(pion)

• Strong Interaction scale: α_s depends on q². There is a natural scale given by the "confinement" scale, below which QCD predictions are not reliable anymore.

$$r_{QCD} = \frac{1}{\Lambda_{QCD}} \approx \left\langle r_{proton} \right\rangle$$

Methods in Experimental Particle Physics

30/09/18

Energy scales in the ∞ly small - V

• Gravitational Interaction scale: the "problem" of the gravity is that the coupling constant is not adimensional, to make it adimensional you have to multiply by m^2 . The adimensional quantity here is

$$\frac{Gm^2}{\hbar c}$$
 (equivalent to $\frac{e^2}{4\pi\varepsilon_0\hbar c} = \alpha$)

depending on the mass. For typical particle masses it is << 1. The mass for which it is equal to 1 is the "Planck Mass" M_{Planck} . λ_{Planck} is the "Planck scale" (Compton wavelength of a mass M_{Planck})

$$M_{Planck} = \sqrt{\frac{\hbar c}{G}} \quad \lambda_{Planck} = \sqrt{\frac{\hbar G}{c^3}}$$

 M_{planck} is $\approx 20 \ \mu g$, a "macroscopic" quantity.

Energy scales in the ∞ly small - V

• Gravitational Interaction scale: the "problem" of the gravity is that the coupling constant is not adimensional, to make it adimensional you have to multiply by m^2 . The adimensional quantity here is

$$\frac{Gm^2}{\hbar c}$$
 (equivalent to $\frac{e^2}{4\pi\varepsilon_0\hbar c} = \alpha$)

depending on the mass. For typical particle masses it is << 1. The mass for which it is equal to 1 is the "Planck Mass" M_{Planck} . λ_{Planck} is the "Planck scale" (Compton wavelength of a mass M_{Planck})

$$M_{Planck} = \sqrt{\frac{\hbar c}{G}} \quad \lambda_{Planck} = \sqrt{\frac{\hbar G}{c^3}}$$

 M_{planck} is $\approx 20 \ \mu g$, a "macroscopic" quantity.

Methods in Experimental Particle Physics

The Planck scale

- When you increase a mass
 - → you are reducing its Compton wavelength (that is the scale at which quantum effects are relevant)
 - \rightarrow you increase the Schwarzschild radius $r=2MG/c^2$ (that is the radius of the event horizon of the black hole with that mass)
- The mass for which Compton wavelength = Schwarzschild radius is the Planck Mass → is supposed to be the domain of the "quantum gravity".
- N.B. The theory of general relativity (i.e. the classical theory of gravitation) and Quantum Mechanics are highly incompatible. Does a Quantum theory of gravitation exist? Hints (by S.Hawking): black hole evaporation, information loss paradox etc..