Counting

- So we do collisions at a given \sqrt{s} . What do we actually measure ?
- We "count" the number of times a final state is obtained. This frequency is somehow related to the probability of that final state and so it allows to measure the cross-section/decay width/branching ratios
- Connection btw probability and frequency:
 - Population \rightarrow probability
 - Sample \rightarrow frequency
- Sampling fluctuations

Random Variables – Outline - I

- Concept of PDF
 - Meaning and connection to actual probabilities
 - Discrete vs. real variables
 - Single vs. multiple variables: factorization
- Definitions/properties
 - Physical dimension, positivity, normalization
 - Momenta \rightarrow "functional"
 - Mean, variance, standard deviation, skewness, kurtosys
 - Covariance matrix
 - Propagation

Random variables - II

- The average and the RMS: two particular and interesting random variables, functions of random variables
- Few random variables that allow to have good statistical models of typical situations in experimental physics:
 - Binomial
 - Poissonian
 - Exponential
 - Gaussian
 - χ^2
- BUT: up to here only "populations"
- =>Statistical inference

Event: a "photo" of a collision/decay

Inclusive Event: measure the electron only

Exclusive Event: measure all particles to "close" the kinematics

"Logic" of an EPP experiment - II

- An *ideal detector* allows to measure the quadri-momentum of each particle involved in the reaction.
 - Direction of flight;
 - Energy *E* and/or momentum modulus | *p* | ;
 - Which particle is (e.g. from independent measurements of *E* and |p|, $m^2 = E^2 |p|^2$) \rightarrow Particle ID
- BUT for a *real detector*:
 - Not all quadri-momenta are measured: some particles are out of acceptance, or only some quantities are accessible, there are unavoidable **inefficiencies**;
 - Measurements are affected by **resolution**
 - Sometimes the particle nature is "confused"

"Logic" of an EPP experiment - III

• Selection steps:

1. TRIGGER SELECTION

- Retain only "interesting events": from bubble chambers to electronic detectors
- \rightarrow "logic-electronic" eye: decides in a short time O(µs) if the event is interesting or not.
- In some cases (e.g. pp), it is crucial since interactions are so probable...
- LHC: every 25 ns is a bunch crossing giving rise to interactions: can I write 40 MHz on "tape" ? A tipical event has a size of 1 MB → 40 TB/s. Is it conceivable ? And how many CPU will be needed to analyze these data ? At LHC from 40 MHz to 200 Hz ! Only one bunch crossing every 200000 !
- "pre-scale" is an option
- e⁺e⁻: the situation is less severe but a trigger is in any case necessary.

"Logic" of an EPP experiment - IV

- 2. **EVENT RECONSTRUCTION**: Once you have the final event sample, for each trigger you need to reconstruct at your best the kinematic variables.
- **3. OFFLINE SELECTION**: choice of a set of discriminating variables on which apply one of the following:
 - cut-based selection
 - discriminating variables selection
 - multivariate classifier selection

4. **PHYSICS ANALYSIS**: analysis of the sample of *CANDIDATES*

The selection strategy is a crucial part of the experimentalist work: defined and optimized using *simulated data samples*.

"Logic" of an EPP experiment - V

- Simulated samples of events: the Montecarlo.
 - "Physics" simulation: final state with correct kinematic distributions; also dynamics in some cases is relevant.
 - "Detector" simulation: the particles are traced through the detector, interactions, decays, are simulated.
 - "Digitization": based on the particle interactions with the detector, signals are simulated with the same features of the data.
- → For every interesting final state MC samples with the same format of a data sample are built. These samples can be analyzed with the same program. In principle one could run on a sample without knowing if it is data or MC.
- To design a "selection" strategy for a given searched signal one needs: *signal MC samples* and *background MC samples*.

"Logic" of an EPP experiment - VI

- End of the selection: CANDIDATES sample N_{cand}
- Which relation is there between N_{cand} and N_X ?
 - *Efficiency*: not all searched final states are selected and go to the candidates sample.(Trigger efficiencies are particularly delicate to treat.) Efficiency includes also the **acceptance**.
 - **Background**: few other final states are faking good ones and go in the candidates sample.

$$\varepsilon N_X = N_{cand} - N_b$$

- where:
 - $\varepsilon = \text{efficiency} \ (0 < \varepsilon < 1); \ \varepsilon = A \times \varepsilon_d$
 - N_b = number of background events
- Estimate ε and N_b is a crucial work for the experimentalist and can be done either using simulation (this is tipically done before the experiment and updated later) or using data themselves.

Meaning of parameter estimate

- We are interested in some physical unknown parameters
- Experiments provide samplings of some PDF which has among its parameters the physical unknowns we are interested in
- Experiment's results are statistically "related" to the unknown PDF
 - PDF parameters can be determined from the sample within some approximation or uncertainty
- Knowing a parameter within some error may mean different things:
 - **Frequentist**: a large fraction (68% or 95%, usually) of the experiments will contain, in the limit of large number of experiments, the (fixed) unknown true value within the quoted confidence interval, usually $[\mu \sigma, \mu + \sigma]$ ('coverage')
 - Bayesian: we determine a degree of belief that the unknown parameter is contained in a specified interval can be quantified as 68% or 95%
- We will see that there is still some more degree of arbitrariness in the definition of confidence intervals...

Statistical inference

Hypothesis tests

12

Parameter estimators

- An estimator is a function of a given sample whose statistical properties are known and related to some PDF parameters
 - "Best fit"
- Simplest example:
 - Assume we have a Gaussian PDF with a known $\,\sigma$ and an unknown μ
 - A single experiment will provide a measurement x
 - We estimate μ as $\mu^{est} = x$
 - The distribution of μ^{est} (repeating the experiment many times) is the original Gaussian
 - 68.27%, *on average*, of the experiments will provide an estimate within: $\mu \sigma < \mu^{est} < \mu + \sigma$
- We can determine: $\mu = \mu^{est} \pm \sigma$

Likelihood function

• Given a sample of *N* events each with variables $(x_1, ..., x_n)$, the likelihood function expresses the probability density of the sample, as a function of the unknown parameters:

$$L = \prod_{i=1}^{n} f(x_1^i, \cdots, x_n^i; \theta_1, \cdots, \theta_m)$$

 Sometimes the used notation for parameters is the same as for conditional probability:

$$f(x_1,\cdots,x_n|\theta_1,\cdots,\theta_m)$$

• If the size *N* of the sample is also a random variable, the extended likelihood function is also used:

$$L = p(N; \theta_1, \cdots, \theta_m) \prod_{i=1}^N f(x_1^i, \cdots, x_n^i; \theta_1, \cdots, \theta_m)$$

- Where *p* is most of the times a Poisson distribution whose average is a function of the unknown parameters
- In many cases it is convenient to use $-\ln L$ or $-2\ln L$: $\prod_{i} \rightarrow \sum_{j}$

Maximum likelihood estimates

- ML is the widest used parameter estimator
- The "best fit" parameters are the set that maximizes the likelihood function
 - "Very good" statistical properties
- The maximization can be performed analytically, for the simplest cases, and numerically for most of the cases
- Minuit is historically the most used minimization engine in High Energy Physics
 – F. James, 1970's; rewritten in C++ recently

CL&CImeasurement
$$\hat{\mu} = 1.1 \pm 0.3$$
 $L(\mu) = G(\mu; \hat{\mu}, \sigma_{\hat{\mu}})$ $\Rightarrow CI of \ \mu = [0.8, 1.4] at 68\% CL$

- A confidence interval (CI) is a particular kind of interval estimate of a population parameter.
- Instead of estimating the parameter by a single value, an interval likely to include the parameter is given.
- How likely the interval is to contain the parameter is determined by the confidence level
- Increasing the desired confidence level will widen the confidence interval.

Confidence Interval & Coverage

-Say you have a measurement μ_{meas} of μ with μ_{true} being the unknown true value of μ

-Assume you know the probability distribution function $\rho(\mu_{meas}|\mu)$

•based on your statistical method you deduce that there is a 95% Confidence interval $[\mu_1, \mu_2]$. (it is 95% likely that the μ_{true} is in the quoted interval)

The correct statement:

In an ensemble of experiments 95% of the obtained confidence intervals will contain the true value of μ .

Meaning of a confidence interval

N.B. the interval is random, the true θ is an unknown constant. Often report interval [a, b] as $\hat{\theta}_{-c}^{+d}$, i.e. $c = \hat{\theta} - a, d = b - \hat{\theta}$. So what does $\hat{\theta} = 80.25^{+0.31}_{-0.25}$ mean? It does not mean: $P(80.00 < \theta < 80.56) = 1 - \alpha - \beta$, but rather: repeat the experiment many times with same sample size, construct interval according to same prescription each time, in $1 - \alpha - \beta$ of experiments, interval will cover θ .

Confidence Interval & Coverage

•You claim, $Cl_{\mu} = [\mu_1, \mu_2]$ at the 95% CL

i.e. In an ensemble of experiments CL (95%) of the obtained confidence intervals will contain the true value of $\mu.$

olf your statement is accurate, you have full coverage

olf the true CL is>95%, your interval has an over coverage

•If the true CL is <95%, your interval has an undercoverage

Neyman, J. (1937) <u>"Outline of a Theory of Statistical Estimation Based on the Classical Theory of</u> <u>Probability</u> Philosophical Transactions of the Royal Society of London A, 236, 333-380.

The Frequentist Game a 'la Neyman Or How to ensure a Coverage with Neyman construction

Fig. 7.1 Graphical illustration of Neyman belt construction (*left*) and inversion (*right*)

$$1 - \alpha = \int_{x^{\mathrm{lo}}(\theta_0)}^{x^{\mathrm{up}}(\theta_0)} f(x \mid \theta_0) \,\mathrm{d}x$$

22

