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�  So we do collisions at a given √s. What do we actually 
measure ? 

�  We “count” the number of times a final state is obtained. This 
frequency is somehow related to the probability of that final 
state and so it allows to measure the cross-section/decay 
width/branching ratios 

�  Connection btw probability and frequency: 
�  Population ! probability 
�  Sample ! frequency 

�  Sampling fluctuations 



Random Variables – Outline - I 
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�  Concept of PDF 
� Meaning and connection to actual probabilities 
� Discrete vs. real variables 
�  Single vs. multiple variables: factorization 

�  Definitions/properties 
�  Physical dimension, positivity, normalization 
� Momenta ! “functional” 
� Mean, variance, standard deviation, skewness, kurtosys 
� Covariance matrix 
�  Propagation 



Random variables - II 
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�  The average and the RMS: two particular and interesting 
random variables, functions of random variables 

�  Few random variables that allow to have good statistical 
models of typical situations in experimental physics: 
�  Binomial 
�  Poissonian 
�  Exponential 
� Gaussian 
� χ2 

�  BUT: up to here only “populations” 
�  =>Statistical inference 



Event: a “photo” of a collision/decay 
Inclusive Event: measure 
the electron only 

Exclusive Event: measure 
all particles to “close” the 
kinematics 
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“Logic” of an EPP experiment - II 
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�  An ideal detector allows to measure the quadri-momentum 
of each particle involved in the reaction. 
� Direction of flight; 
�  Energy E and/or momentum modulus|p|; 
� Which particle is (e.g. from independent measurements of E 

and |p|, m2=E2-|p|2) " Particle ID 
�  BUT for a real detector: 

� Not all quadri-momenta are measured: some particles are out 
of acceptance, or only some quantities are accessible, there are 
unavoidable inefficiencies; 

� Measurements are affected by resolution 
�  Sometimes the particle nature is “confused” 



“Logic” of an EPP experiment - III 
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�  Selection steps: 
1.  TRIGGER SELECTION 

�  Retain only “interesting events”: from bubble chambers to electronic 
detectors 

�  " “logic-electronic” eye: decides in a short time O(µs) if the event is 
interesting or not. 

�  In some cases (e.g. pp), it is crucial since interactions are so probable… 
�  LHC: every 25 ns is a bunch crossing giving rise to interactions: can I 

write 40 MHz on “tape” ? A tipical event has a size of 1 MB " 40 TB/s. Is 
it conceivable ? And how many CPU will be needed to analyze these data ? 
At LHC from 40 MHz to 200 Hz ! Only one bunch crossing every 
200000 ! 

�  “pre-scale” is an option 
�   e+e-: the situation is less severe but a trigger is in any case necessary.  



“Logic” of an EPP experiment - IV 
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2.  EVENT RECONSTRUCTION: Once you have the final 
event sample, for each trigger you need to reconstruct at your 
best the kinematic variables. 

3.  OFFLINE SELECTION: choice of a set of discriminating 
variables on which apply one of the following: 

�  cut-based selection 
�  discriminating variables selection 
�  multivariate classifier selection 

4.    PHYSICS ANALYSIS: analysis of the sample of      
 CANDIDATES 

The selection strategy is a crucial part of the experimentalist 
work: defined and optimized using simulated data samples. 



“Logic” of an EPP experiment - V 
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�  Simulated samples of events: the Montecarlo. 
�  “Physics” simulation: final state with correct kinematic distributions; 

also dynamics in some cases is relevant. 
�  “Detector” simulation: the particles are traced through the detector, 

interactions, decays, are simulated. 
�  “Digitization”: based on the particle interactions with the detector, 

signals are simulated with the same features of the data. 
�  " For every interesting final state MC samples with the same 

format of a data sample are built. These samples can be analyzed 
with the same program. In principle one could run on a sample 
without knowing if it is data or MC. 

�  To design a “selection” strategy for a given searched signal one 
needs: signal MC samples and background MC samples. 



“Logic” of an EPP experiment - VI 
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�  End of the selection: CANDIDATES sample Ncand 

�  Which relation is there between Ncand and NX ? 
�  Efficiency: not all searched final states are selected and go to the candidates 

sample.(Trigger efficiencies are particularly delicate to treat.) Efficiency 
includes also the acceptance. 

�  Background: few other final states are faking good ones and go in the 
candidates sample. 

�  where:  
�  ε = efficiency (0<ε<1); ε  = A × εd 
�  Nb = number of background events 

�  Estimate ε and Nb is a crucial work for the experimentalist and can be 
done either using simulation (this is tipically done before the experiment 
and updated later) or using data themselves. 

 

€ 

εNX = Ncand − Nb
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Meaning of parameter estimate 
•  We are interested in some physical unknown parameters 
•  Experiments provide samplings of some PDF which has among 

its parameters the physical unknowns we are interested in 
•  Experiment’s results are statistically “related” to the unknown 

PDF 
–  PDF parameters can be determined from the sample within some 

approximation or uncertainty 
•  Knowing a parameter within some error may mean different 

things: 
–  Frequentist: a large fraction (68% or 95%, usually) of the 

experiments will contain, in the limit of large number of 
experiments, the (fixed) unknown true value within the quoted 
confidence interval, usually [µ � σ,µ + σ] (‘coverage’) 

–  Bayesian: we determine a degree of belief that the unknown 
parameter is contained in a specified interval can be quantified as 
68% or 95% 

•  We will see that there is still some more degree of arbitrariness 
in the definition of confidence intervals… 
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Statistical inference 

Theory 
Model Data 

Data fluctuate according  
to process randomness 

Theory 
Model Data 

Inference 

Probability 

Model uncertainty due to 
fluctuations of the data sample 



16/10/18 Methods in Experimental Particle Physics 12 
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Hypothesis tests 

Theory 
Model 1 

Data 

Theory 
Model 2 

Which hypothesis is the most 
consistent with the experimental 
data? 
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Parameter estimators 
•  An estimator is a function of a given sample whose 

statistical properties are known and related to some 
PDF parameters 
–  “Best fit” 

•  Simplest example: 
–  Assume we have a Gaussian PDF with a known  σ and an 

unknown µ 
–  A single experiment will provide a measurement x 
–  We estimate µ as µest = x 
–  The distribution of µest (repeating the experiment many times) 

is the original Gaussian 
–  68.27%, on average, of the experiments will provide an 

estimate within: µ � σ < µest < µ + σ  
•  We can determine: µ = µest ± σ 
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Likelihood function 
•  Given a sample of N events each with variables (x1, …, xn), the 

likelihood function expresses the probability density of the sample, as a 
function of the unknown parameters: 

  
 
 

•  Sometimes the used notation for parameters is the same as for 
conditional probability: 

•  If the size N of the sample is also a random variable, the extended 
likelihood function is also used: 

–  Where p is most of the times a Poisson distribution whose average is a 
function of the unknown parameters 

•  In many cases it is convenient to use –ln L or –2ln L:  
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Maximum likelihood estimates 

•  ML is the widest used parameter estimator  
•  The “best fit” parameters are the set that 

maximizes the likelihood function 
–  “Very good” statistical properties, as will be seen 

in the following 
•  The maximization can be performed 

analytically, for the simplest cases, and 
numerically for most of the cases 

•  Minuit is historically the most used 
minimization engine in High Energy Physics 
–  F. James, 1970’s; rewritten in C++ recently 
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Eilam Gross Statistics in PP

CL & CI 

● A confidence interval (CI) is a particular kind of 
interval estimate of a population parameter.  

● Instead of estimating the parameter by a single value, 
an interval likely to include the parameter is given.  

● How likely the interval is to contain the parameter is 
determined by the confidence level  

●  Increasing the desired confidence level will widen the 
confidence interval. 

March 2017�53

measurement µ̂ = 1.1± 0.3
L(µ) = G(µ; µ̂,σ µ̂ )

⇒CI of µ = 0.8,1.4[ ] at 68%CL
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Confidence Interval & Coverage
●Say you have a measurement μmeas of μ with μtrue being 

the unknown true value of μ 

●Assume you know the probability distribution function  
p(μmeas|μ)  

●based on your statistical method you deduce 
 that there is a 95% Confidence interval [μ1,μ2].

   (it is 95% likely that the μtrue is in the quoted interval)  

The correct statement:  
●In an ensemble of experiments 95% of the obtained 
confidence intervals will contain the true value of μ.

March 2017�54
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G. Cowan  Statistical Data Analysis / Stat 4 8 

Meaning of a confidence interval 
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Confidence Interval & Coverage
●You claim, CIμ=[μ1,μ2] at the 95% CL  
i.e. In an ensemble of experiments CL (95%) of the 
obtained confidence intervals will contain the true 
value of μ. 

●If your statement is accurate, you have full 
coverage 

●If the true CL is>95%, your interval has an over 
coverage 

●If the true CL is <95%, your interval has an 
undercoverage

March 2017�55
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● One can show that if the data is 
distributed normal around the 
average i.e. P(data|μ )=normal  
 

● then one can construct a 68% CI 
around the estimator of μ to be 

    

•However, not all distributions 
are normal, many distributions 
are even unknown and 
coverage might be a real issue

Eilam Gross Statistics in PP

How to deduce a CI?

x̂±σ

March 2017�57

Side Note: 
A CI is an interval in the 
true parameters phase-
space

i.e. xtrue ∈ x̂ −σ x̂ , x̂ +σ x̂[ ]@68%CL

•One can guarantee a  
coverage with the  
Neyman Construction 
(1937)

Neyman, J. (1937) "Outline of a Theory of Statistical Estimation Based on the Classical Theory of 
Probability" Philosophical Transactions of the Royal Society of London A, 236, 333-380.
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Eilam Gross Statistics in PP

The Frequentist Game a ’la  
Neyman

Or

How to ensure a Coverage with 

Neyman construction

March 2017�58
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144 7 Confidence Intervals
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Fig. 7.1 Graphical illustration of Neyman belt construction (left) and inversion (right)

7.2.1 Construction of the Confidence Belt

In the first step, the confidence belt is determined by scanning the parameter space,
varying ! within its allowed range. For each fixed value of the parameter ! D !0,
the corresponding PDF, which describes the distribution of x; f .x j !0/, is known.

According to the PDF f .x j !0/, an interval Œxlo.!0/; xup.!0/" is determined whose
corresponding probability is equal to the specified confidence level, defined as CL D
1 ! ˛, and usually equal to 68.27% .1#/ , 90 or 95%:

1 ! ˛ D
Z xup.!0/

xlo.!0/
f .x j !0/ dx : (7.1)

Neyman’s construction of the confidence belt is graphically illustrated in Fig. 7.1,
left.

Equation (7.1) can be satisfied exactly for a continous random variable x. In case
of a discrete variable, instead, it’s usually difficult to find an interval that corresponds
exactly to the desired confidence level, and the interval will be constructed in
order to correspond to a probability at least equal to the desired confidence level
(overcoverage).

The choice of xlo.!0/ and xup.!0/ has still some arbitrariness, since there are
different possible intervals having the same probability, according to the condition
in Eq. (7.1). The choice of the interval is often called ordering rule. This arbi-
trariness was already encountered in Sect. 3.5.2 when discussing Bayesian credible
intervals.

For instance, one could chose an interval centered around the central value Nx of x
corresponding to !0, i.e. an interval:

Œxlo.!0/; xup.!0/" D Œ Nx.!0/ ! ı; Nx.!0/C ı" ; (7.2)
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Neyman Construction
θ ≡ strue x ≡ smeasured pdf f (x |θ ) is known
for each prospectiveθ generate x
construct an interval in DATA phase− space

Interval =
xl

xh∫ f (x |θ )dx = 68%

repeat for eachθ

Use the Confidence belt to construct the
CI = [θ1,θ2 ] ( for a given xobs )
inθ phase− space

Figure from K Cranmer


