Counting

e So we do collisions at a given \/s. What do we actually

measure ¢

* We “count” the number of times a final state is obtained. This
frequency is somehow related to the probability of that final
state and so it allows to measure the cross-section/decay
width/branching ratios

* Connection btw probability and frequency:

* Population > probability
e Sample =2 frequency

° Sampling fluctuations
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Random Variables - Outline - |

* Concept of PDF
® Meaning and connection to actual probabilities
® Discrete vs. real variables
® Single vs. multiple variables: factorization
® Definitions/properties
® Physical dimension, positivity, normalization
® Momenta =2 “functional”
® Mean, variance, standard deviation, skewness, kurtosys
® Covariance matrix

® Propagation

Methods in Experimental Particle Physics

16/10/18



Random variables - ||

® The average and the RMS: two particular and interesting
random variables, functions of random variables

® Few random variables that allow to have good statistical
models of typical situations in experimental physics:
® Binomial
® Poissonian
® Exponential

® (Gaussian
° X2
® BUT: up to here only “populations”

e =>Statistical inference
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Event: a “photo” of a collision/decay

Inclusive Event: measure

the electron only

e(k)

>

Y(q)

5
p(P)

e(k’

Hadrons
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Exclusive Event: measure
all particles to “close” the

kinematics
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“Logic” of an EPP experiment - |

® An ideal detector allows to measure the quadri-momentum
of each particle involved in the reaction.
® Direction of flight;
® Energy E and/or momentum modulus | p ]| ;
® Which particle is (e.g. from independent measurements of E
and |p|, m’=E>-|p|?) =P Particle ID
e BUT for a real detector:

® Not all quadri-momenta are measured: some particles are out
of acceptance, or only some quantities are accessible, there are
unavoidable inefficiencies;

® Measurements are affected by resolution

® Sometimes the particle nature is “confused”
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“Logic” of an EPP experiment - |l

e Selection steps:
1. TRIGGER SELECTION

Retain only “interesting events’: from bubble chambers to electronic
detectors

=> “logic-electronic” eye: decides in a short time O(us) if the event is
interesting or not.

In some cases (e.g. pp), it is crucial since interactions are so probable...

LHC: every 25 ns is a bunch crossing giving rise to interactions: can I
write 40 MHz on “tape” ? A tipical event has a size of 1 MB =» 40TB/s. Is
it conceivable ? And how many CPU will be needed to analyze these data ?
At LHC from 40 MHz to 200 Hz ! Only one bunch crossing every
200000 !

« » . .
pre—scale 1S an OpthIl

ete : the situation is less severe but a trigger 1S In any case necessary.
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“Logic” of an EPP experiment - |V
2.  EVENT RECONSTRUCTION: Once you have the final

event sample, for each trigger you need to reconstruct at your
best the kinematic variables.

3. OFFLINE SELECTION: choice of a set of discriminating
variables on which apply one of the following:

cut-based selection
discriminating variables selection

multivariate classifier selection

4. PHYSICS ANALYSIS: analysis of the sample of
CANDIDATES

The selection strategy is a crucial part of the experimentalist
work: defined and optimized using simulated data samples.
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“Logic” of an EPP experiment -V

e Simulated samples of events: the Montecarlo.
® “Physics” simulation: final state with correct kinematic distributions;

also dynamics in some cases is relevant.

® “Detector” simulation: the particles are traced through the detector,
interactions, decays, are simulated.

* “Digitization”: based on the particle interactions with the detector,
signals are simulated with the same features of the data.

e =» For every interesting final state MC samples with the same
format of a data sample are built. These samples can be analyzed
with the same program. In principle one could run on a sample
without knowing if it is data or MC.

e To design a “selection” strategy for a given searched signal one
needs: signal MC samples and background MC samples.
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“Logic” of an EPP experiment - Vi

* End of the selection: CANDIDATES sample N

cand

® Which relation is there between N__,and N, ?

* Efficiency: not all searched final states are selected and go to the candidates
sample. (Trigger efficiencies are particularly delicate to treat.) Efficiency

includes also the acceptance.

® Background: few other final states are faking good ones and go in the
candidates sample.

eN, =N, —N,

cand

® where:
® &= efficiency (0<e<1); &€ = A X g,
® N, = number of background events

* Estimate € and N, is a crucial work for the experimentalist and can be
done either using simulation (this is tipically done before the experiment
and updated later) or using data themselves.
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Meaning of parameter estimate ok

 We are interested in some physical unknown parameters

« Experiments provide samplings of some PDF which has among
its parameters the physical unknowns we are interested in

« Experiment’s results are statistically “related” to the unknown
PDF

— PDF parameters can be determined from the sample within some
approximation or uncertainty

« Knowing a parameter within some error may mean different
things:
— Frequentist: a large fraction (68% or 95%, usually) of the
experiments will contain, in the limit of large number of

experiments, the (fixed) unknown true value within the quoted
confidence interval, usually [u — o,u + o] (‘coverage’)

— Bayesian: we determine a degree of belief that the unknown
parameter is contained in a specified interval can be quantified as
68% or 95%

«  We will see that there is still some more degree of arbitrariness
in the definition of confidence intervals...
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Statistical inference INFN

Probability

Data fluctuate according
to process randomness

Inference

Model uncertainty due to

fluctuations of the data sample

e Methods in Experimental Particle Physics 16/10/18



Hypothesis tests

Which hypothesis is the most
consistent with the experimental
data?

Q Methods in Experimental Particle Physics
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Parameter estimators INFN

* An estimator is a function of a given sample whose
statistical properties are known and related to some
PDF parameters

— “Best fit”

« Simplest example:

— Assume we have a Gaussian PDF with a known o and an
unknown wu

— A single experiment will provide a measurement x
— We estimate uw as ust=x

— The distribution of u*t (repeating the experiment many times)
is the original Gaussian

— 68.27%, on average, of the experiments will provide an
estimate within:u-o<u®'<u+o

« We can determine: u=u*t+ o
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Likelithood function INFN

« Given a sample of N events each with variables (x,, ..., x ), the
likelihood function expresses the probability denS|ty of the sample, as a
function of the unknown parameters:

I — Hfllv"' Zh 0y, 0,)

* Sometimes the used notation for parameters is the same as for
conditional probability:

f($1,-~ 7%‘91,... ,Qm)'

» If the size N of the sample is also a random variable, the extended
likelihood function is also used:

L=p(N:6y,--- >‘9m>Hf<5U?17'” a0y, 0,)

— Where p is most of the times a Poisson distribution whose average is a
function of the unknown parameters

* In many cases it is convenient to use —In L or —2In L: I->
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Maximum likelithood estimates INFN

ML is the widest used parameter estimator
* The “best fit" parameters are the set that
maximizes the likelihood function
— “Very good” statistical properties

* The maximization can be performed
analytically, for the simplest cases, and
numerically for most of the cases

» Minuit is historically the most used
minimization engine in High Energy Physics
— F. James, 1970’s; rewritten in C++ recently
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/CL & Cl measurement [1=1.1£0.3

L(u)= G f1,0,)
= CI of 1=[0.8,14]ar 68% CL

o A confidence interv-al (Cl) is a particular kind of
interv-al estimate of a population parameter.

o Instead of estimating the parameter by a single \ralue,
an interv-al likely to include the parameter is giv-en.

o How likely. the interv-alis to contain the parameter is
determined by the confidence lev-el

o Increasing the desired confidence lev-el will widen the
confidence interv-al.




Confidence Interval & Coverage

«Say you have a measurement p_ of p with p, ,, being
the unknown true vralue of p

«Assume you know the probability distribution function
P(Hyneqs!H)

ebased on your statistical method you deduce
that there is a 95% Confidence interval [p,,u,].

(it is 95% likely that the ... is in the quoted interval)

The correct statement:
oln an ensemble of experiments 95% of the obtained
confidence interv-als will contain the true v-alue of p.




Meaning of a confidence interval

N.B. the interval is random, the true @ is an unknown constant.

A

Often report interval [a, b] as éfg, lLe. C = é — a, d=0b-—20.

So what does 8 = 80.25"’8:%% mean? It does not mean:

P(80.00 < # < 80.56) = 1 — o — 3, but rather:

repeat the experiment many times with same sample size,
construct interval according to same prescription each time,

in 1 — a — 3 of experiments, interval will cover 6.
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Confidence Interval & Coverage

oYou claim, Cl,=[p,,K,] at the 95% CL

i.e. In an ensemble of experiments CL (95%) of the
obtained confidence interv-als will contain the true

Vvalue of M.

off your statement is accurate, you hav-e full
coverage

off the true CL is>95%, your interv-al has an over
coverage

off the true CL is <95%, your interv-al has an
undercoverage
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How to deduce a Cl RN

o One can show that if the data is
distributed normal around the

34% 34
average i.e. P(datalp )=normal ° 7 aecoemes
| —'3’.,"‘1"2 Side Note:

A Clis an intervalin the
true parameters phase-
space

fl@|mo)=—=c

o then one can construct a 68% CI
around the estimator of p to be

X+0 lie.x,, €[i-0.,k+0,|@68% CL

o Howev-er, nlot all dts;c.rtf\f;to:}s eOne can guarantee a
are normal, many distributions coverage with the

are even un:known and . Neyman Construction
cov-erage might be a real issue (1937)

Neyman, J. (193#)
Philosophical Transactions of the Royal Society. of London A, 236, 333-380. 1017

true




The Frequentist Game a ’la
Neyman

Or

How to ensure a Coverage with
Neyman construction




Y Y
o(8)  x4:(0p) X

Y

\

Fig. 7.1 Graphical illustration of Neyman belt construction (left) and inversion (right)

x"P (6)
l—a= J(x]6)dx
x1°(6o)
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Neyman Construction

Prob(s, |s,)is known

St




Neyman Construction

Prob(s, |s,)is known

St




) Neyman Construction

Prob(s,, |s,)is known

St

s [ 8ts. 15,)ds, =68% The INTERVAL contains 68% of the
t1 fet

Acceptance Interval terms with t|'1c maximum likc[zhood




Yl
' e
Neyman Construction
Prob(s,, |s,)is known
St
3 [ 8ts. 15,)ds, = 68% The INTERVAL contains 68% of the
t1 Acce \t‘-{,@u-_@ Interval  terms with the maximum likelihood




- Ney.man Construction

Prob(s, |s,)is known

St

S f"'g(sa |5, )ds, = 68% The INTERVAL contains 68% of the
t1

Aéiovibniee kel terms with t]'wc maximum lil«:lxhooci




Ney.man Construction

Prob(s, |s,)is known
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Neyman Construction

Prob(s, |s,)is known

Confidence Belt




Prob(s, |s,)is known

Neyman Constructic)/n
St

Confidence Belt




Neyman Construction

Prob(s, |s,)is known

“onfidence Belt

[s,,s,] 68% Confidence Interval
In 68% of the experiments the derived C.l. contains the unknown true value of s




- Ney.man Construction

Prob(s, |s,)is known

—o>3
& i Sl R L
u
Cénfidence Belt
g
_&!Z'
Sl """""""""""""""""""""""""""""""""
Sm1 =

- With Neyman Construction we guarantee a coverage via construction, i.e. for
any value of the unknown true s, the Construction Confidence Interval will
\ with the correct rate.




Ney.ma,n Construction
=g X=S pdf f(x10)is known

for each prospective 8 generate x

true measured

f(z|@) construct aninterval in DATA phase— space

Interval = | f (x10)dx = 68%

repeat for each 0
92 / A

Use the Confidence belt to construct the
CI =[6,,6,](for a given x,,)

in 6 phase — sﬁace

Figure from K Cranmer L T




