Ney.ma,n Construction

=s,, X=S pdf f(x10)is known

for each prospective 8 generate x

measured

f(z|@) construct aninterval in DATA phase— space

Interval = | f (x10)dx = 68%

repeat for each 0
6o / /a

Use the Confidence belt to construct the
CIl=[6,,0,](for a given x,,)

in 0 phase — sﬁace

Figure from K Cranmer L T




Confidence intervals in practice

The recipe to find the interval [a, b] boils down to solving

o0 R - 0. —~ —~
a =/ g(e;e)dezﬁ 9(0:a) do

ua(0) Oobs
vg(0) R 0 . .
B = /B 9(9;8)d8=/0bsg(9;b)d9.
—00 —00
(% 1 a 9obs @ ‘% ®

05 05 F

— a 1s hypothetical value of 8 such that P(§ > 0,pc) = «.
— b 1s hypothetical value of 6 such that P(0 < 0,,5) = 3.
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Meaning of a confidence interval

N.B. the interval is random, the true @ is an unknown constant.

A

Often report interval [a, b] as 074 ie c =0 — a,d=b-—0.

So what does 8 = 80.25"'8:%% mean? It does not mean:

P(80.00 < # < 80.56) = 1 — o — 3, but rather:

repeat the experiment many times with same sample size,
construct interval according to same prescription each time,

in 1 — a — 3 of experiments, interval will cover 6.
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“Logic” of an EPP experiment - Vi

* End of the selection: CANDIDATES sample N

cand
® Which relation is there between N__,and N, ?

® Efficiency: not all searched final states are selected and go to the candidates
sample. (Trigger efficiencies are particularly delicate to treat.) Efficiency

includes also the acceptance.

® Background: few other final states are faking good ones and go in the
candidates sample.

¢eN, =N, —N,

cand

® where:
® &= efficiency (0<e<1); € = A X g,
® N, = number of background events

* Estimate £ and N, is a crucial work for the experimentalist and can be
done either using simulation (this is tipically done before the experiment
and updated later) or using data themselves.
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Binomial distribution

Consider N independent experiments (Bernoulli trials):

outcome of each is ‘success’ or ‘failure’,
probability of success on any given trial 1s p.

Define discrete r.v. n = number of successes (0 <n < N).

Probability of a specific outcome (in order), e.g. ‘ssfsf” 1s

pp(1 —p)p(1 — p) = p™(1 — p)N— 7
N!
TL!(N — fn,)!

But order not important; there are

ways (permutations) to get n successes 1n N trials, total
probability for #n 1s sum of probabilities for each permutation.
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Binomial distribution (2)

The binomial distribution is therefore

N
' N, — ne1 _ N—n
f/@ p) DTN — )P (1-p)
random parameters

variable

For the expectation value and variance we find:
N
E[ln] = ) nf(n;N,p) = Np

n=0

Vin] = E[n?] — (E[n])? = Np(1 — p)

Methods in Experimental Particle Physics 17/10/18



Binomial distribution (3)

Binomial distribution for several values of the parameters:

= 04 = 04
Z N=5 = N=20
;S\ 02 + H H p:05 i é 02 + N N P:OI i
0 Il H H Il 0 1 H ” 0 o
0 5 10 15 20 0 5 10 15 20
n n
y 04 2 0.4
> N=10 > N=20
S 02t N P=05 4 S o2t N p=02
0 HHH HHH OHHHN H”ﬂn
0 5 10 15 20 0 5 10 15 20
n n
2 04 2 04
= N=20 > N=20
é 02 + P:05 | é 02 + P:06 _
. e , ol .
0 5 10 15 20 0 5 10 15 20

n n

Example: observe N decays of W=, the number n of which are

W—Lv 1s a binomial r.v., p = branching ratio.
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Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

m
1=1

For N trials we want the probability to obtain:

n, of outcome 1,
n, of outcome 2,

n, of outcome m.

This is the multinomial distribution for 7 = (n1,...,nm)
N
f(7#; N,p) = S Sy T
nilnol- - npy!
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Multinomial distribution (2)

Now consider outcome 7 as ‘success’, all others as ‘failure’.

— all n; individually binomial with parameters N, p,

E[n;] = Np;, VIn;] = Np;(1 —p;) foralli
One can also find the covariance to be
Vij = Np;(6;; — pj)

Example: 7 = (nq,...,ny,) represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution

Consider binomial 7 in the Iimit

N — oo, p — 0O, Flnl]=Np—v.
< 04
= v=2
— n follows the Poisson distribution: =, | N N
Vn 0 } H ” 0 o
f(niv) ="-e (n>0) o
- > 0.4 "
E[n]zy, V[n]:l/ <0.2—
0 lon [ H H H H 10,
0 5 10 15 20
Example: number of scattering events  _ | '
n with cross section o found for a fixed £ v=10
. . . . 0.2
integrated luminosity, with v = o [ L dt. I
0 n 1l 1
0 5 10 15 20

n
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“In a Nut Shell

The binomial distribution with parameters n and p

is

the discrete probability distribution of the number of
successes in a sequence of n independent experiments.

(Wikipedia)
n ) k n—k
P(k:n,p)= p (1-p)
k-
i X ~B(n, p)
ElX]=np
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P(k:n,p)=( Z )p"(l—p)"“'

The Poisson distribution with parameter A = np can be used
as an approximation to B(n, p) of the binomial distribution
if nis sufficiently large and p is sufficiently small.

lke_k
k!

P(k:n,p) N np=A > Poiss(k; ) =
If X ~ Poiss(k; /)
E[X]=Var[X]=A
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,

From Binomial to Poisson to Gaussian
P(k:n,p)=( Z )pk(l—p)’”‘

/lke_k
P(k:n,p) n np=A > Poiss(k; ) = X

(kY=2A, 0, =2

k—>co=x=k

Using Stirling Formula

1 2 2
prob(x)=G(x,0 = 1) = (=AY 120

e
N2mo

This is a Gaussian, or Normal distribution

with mean and variance of A
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Histograms

N collisions

Lo(pp— H) Ae,
Lo(pp)
obs

Prob to see ny; in N collisions is

p(Higgs event) =

N obs _0bs
P(ni,’”)=[ | obs ]p”’f (1-p)* "

H
—l nobs
A H
timyy ,P(n") = Poiss(n}l" ) = <=
ny |
Lo(pp— H) Aeﬁ

A=Np=Lo(pp) Cotm)
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Histograms

. . . B 30 T T T T = 100 T T T T
pdf = histogram with = w | = i
75+ -
infinite data sample, 2T I
50 1
zero bin width, ark )
o | |
normalized to unit area. N L
° D 2 4 B 8 10 ° D 2 4 B 8 10
f(a;.) — N(ZU> 2 500 T T T T —~ D5 T T T T
A . @ | =
n XL 400 | - 04 L
. 300 - D3 -
N = number of entries
200 P - D2 -
Ax = bin width =T 1 wf :
° D 2 4 B 8 10 ° D 2 4 B 8 10
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Uniform distribution

Consider a continuous r.v. x with —oo <x < oo . Uniform pdf is:

1 a<z< g "
f(m;a,ﬂ)={ﬁ_a Sesp £ 4| o B
O otherwise | L
1 ae | B-(l
Elz] = 5(0‘ + 3) |
Viz] = 2(8 - a)? .
12 o 4 1 : :

N.B. For any r.v. x with cumulative distribution F(x),

y = F(x) 1s uniform 1n [0,1].

Example: for ¥ — vy, £, is uniform in [E,; , £, .. ], with
1 1

Emin = 5E7T(1 —B3), Emax = §E7r(1 + 58)
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Exponential distribution

The exponential pdf for the continuous r.v. x is defined by:

1

f(x:8)

%e—x/ﬁ x>0 08 |
f(z; §) =
O otherwise 06 |
E[:U] p— g 04 N

0.2 [

Viz] = €2

Example: proper decay time ¢ of an unstable particle

F(tir) = Se=t/7 (7= mean lifetime)
T

Lack of memory (unique to exponential): f(t — to|t > tg) = f(t)
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Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x 1s defined by:

~~

3 — u=0, o=1
(i1, 0) = e (2 1)?/207 2 00T S

V21O ceee =, 61

04 |

Elz] =p  (N.B. often u, 6 denote
mean, variance of any 02

V[z] = 02 1.V, notonly Gaussian.)

0 k=2l

Special case: £=0, 0°=1 (‘standard Gaussian’):

xr) = - eT°/2 D= [ z') dz’
pa) = =2, o) =[ p@)d

If y ~ Gaussian with u, 0%, then x = (y — ) /o follows ¢(x).

Methods in Experimental Particle Physics 17/10/18



Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random
variable that 1s a sum of a large number of small contributions
follows it. This follows from the Central Limit Theorem:

For n independent r.v.s x; with finite variances 0%, otherwise
arbitrary pdfs, consider the sum

n
y= )
=1

In the limit n — oo, y 1s a Gaussian r.v. with
n

Elyl = 3 u Viyl = 3 o?
1=1 )

=1

Measurement errors are often the sum of many contributions, so
frequently measured values can be treated as Gaussian r.v.s.
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Quantities to measure

® In order to estimate N, we need to measure:
¢ ]\Qand
L)
) Nb
e We already know that each of these variables have a
fluctuation model:

® N_. is described by a Poisson process

® ¢£is described by a Bernoulli process

.Nb
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N

* If events come in a random way (without any time structure)

4- @ Poisson variable

can

the event count N is a Poisson variable.

o =» if ] count N, the best estimate of Ais N itself and the
uncertainty is \/N

* If Nis large enough (N>20) Poisson = Gaussian. "> NN
is a 68% probability interval for N.

® It Nis small (close to 0) the Gaussian limit is not ok, a

specific treatment is required (see later in the course).
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N, .4 @ Poisson variable

® If events come in a random way (without any time structure)

can

the event count N is a Poisson variable.

* = if [ count N, the best estimate of A is N itself ( or better N
+1) and the uncertainty is VN
P(N,A)=A"e?/N!= P(AIN)=A"e?/N!
E[A]=N+1
var[A]=N+1

* If Nis large enough (N>20) Poisson = Gaussian. = NN
is a 68% probability interval for N.

® It Nis small (close to 0) the Gaussian limit is not ok, a
specific treatment is required (see later in the course).
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Efficiency: a binomial variable - |

® Bernoulli process: success/failure N proofs, 0<n<N, p =
success probability. p == €
P(n/N,p)=()p"d-p)*™"
E[n]=Np
var[n|= Np(1-p)

* Inference: given n and N which is the best estimate of p?

And its uncertainty ? (see previous lectures)

e n+l
P N+2
G(n) 1 ~ ~
= - Jp( -
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Efficiency: a binomial variable - |

® Bernoulli process: success/failure N proofs, 0<n<N, p =
success probability. p == €
P(n/N,p)=()p"d-p)*™"
E[n]=Np
var[n|= Np(1-p)

* Inference: given n and N which is the best estimate of p?

And its uncertainty ? (see previous lectures)

s
P N
o(s)="(”)=jﬁ 51-p)
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Efficiency: a binomial variable - |l

® How measure it ?

® From data: Sample of N true particles and I measure how many,

out of these give rise to a Signal in my detector

® From MC: I generate Ngen “signal” events. If I select N_; of these
events out of N ons the efficiency is (assume N, and N, large

numbers):

o(e)=TWer) L1 [Nuafy Ny
N Ngen N Ngen
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Background N,

¢ Simulation of N, “bad final states”; N_, are selected. What
about N, ?

® We detine the “rejection factor” R = Ngen/ N > 1

® We also need a correct normalization in this case: we need to

know NeXP = total number of expected “bad final states” in

our sample (N, related to luminosity and cross-section).

_ exXp _ exXp

G(N)_G(N )Nexp_ N Nexp_ Nexp
b sel N selN \/W

gen gen gen
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Statistical Errors

® In alla cases there is an unreducible error on Ny given by
limited statistics. It is a random error, coming from the

rocedure of “sampling” that is intrinsic in our experiments.
P pung P

® In all cases increasing the statistics, the error decreases

O(Ncand) — 1
Ncand V Ncand
o(g) = !
Ngen
1
O(Nb) =
N

gen
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