
The quest for high Luminosity 
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�  Luminosity formula: 
�  f is fixed by the collider radius  
�  High N1 and N2 and nb 
�  Low σx, σy 

�  Integrated Luminosity Lint: [Lint] 
= l-2 ! nbarn-1 = 1033 cm-2 

�  Problems: 
�  Increase number of particles / 

bunch ? ! beam-beam effects 
generate instabilities; 

�  Increase number of bunches 
reduces the inter-bunch time TBC; 

�  Decrease σx and  σy ? (see next 
slides on beam dynamics). 
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The pile-up 
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�  How many interactions take place per bunch crossing ? It 
depends on: 
�  Interaction rate that in turns depends on: 

�  Luminosity 
�  Total Cross-section  

�  Bunch crossing rate that depends on 
�  Bunch frequency 
�  Number of bunches circulating 

�  Pile-up µ = average number of interactions per bunch-
crossing 

µ = !nTBC =
Lσ tot

fnb



Comparison: e+e- vs pp 
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�  DAFNE: e+e- @ 1 GeV c.o.m. energy, σtot=5 µb, 
L=1033cm-2s-1, nb=120, f=c/100 m = 3 MHz 

 ! TBC= , µ= 
�  LHC: pp @ 13 TeV c.o.m. energy, σtot=70 mb, 

L=1034cm-2s-1, nb=3000, f=c/27 km = 10 kHz 
 ! TBC= , µ=  

  



Heavy Ion collisions. 
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�  Lead nuclei @ LHC: 
�  Z=82, A=208, M ≈ 195 GeV 
�  ΔEK = ZeV (proton × Z) 
�  p= ZeRB (proton × Z) 
� !EPb = 574 TeV=82 × 7 

TeV 
� !EPb/Nucleon = 574/A = 

2.77 TeV 
�  √sNN=5.54 TeV 

�  Luminosity: ≈ 1027 cm-2s-1 

�  nb = 600 
�  N1=N2=7×107 ions/bunch 

�  Heavy ions program @ RHIC 
�  Au, Cu, U ions up to 100 

GeV/nucleon 
�  Luminosity ≈1028÷1029 

cm-2s-1 

�  Cross-sections: 
�  σpp ≈ 70 mb 
�  σpPb ≈ σpp × A2/3  

(≈ σpp×RNuc
2) 

�  σPbPb ≈ σpp × Ncoll ≈ 10 barn! 
�  How much is the pile-up ? 
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12. We want to set-up a trigger to detect Z ! µ+µ� decays in pp collisions at LHC.
We have a low threshold (LT, pT >4 GeV) and a high threshold (HT, pT > 20 GeV)
single muon triggers. The e�ciencies of the two triggers for the muons coming from
Z decays are ✏(LT)=89.2%, ✏(HT)=62.1%. Determine the e�ciencies for triggering
on Z decays in the two configurations: (1) LT1 AND LT2, (2) HT1 OR HT2 .

13. The fraction of KL produced in e+e� collisions at the � peak interacting in the
KLOE calorimeter is approximately 5%. Determine the KL-lead cross-section, using
the following assumptions: The KLOE calorimeter is a single lead spherical layer 12
cm thick; the inner surface of the KLOE calorimeter is 2 m away from the e+e�

interaction region.

14. Consider the decay � ! ⌘� in the center of mass frame of the �. Calculate the energy
of the photon and the maximum and minimum energy of the photons in case the ⌘
decays in ��. We want to identify this decay looking at the inclusive radiative photon
spectrum from a sample of 106 � produced at rest. If we know that the combinatorial
photon spectrum in the energy region between 300 and 400 MeV is almost flat with
a number of events equal to 300 evts/MeV/104�, determine the energy resolution
required to observe with enough significance the searched decay.

15. Consider the parameters of the three accelerators:

• LHC: protons, R = 4.3 km, Emax = 7 TeV, TBC = 25 ns;

• LEP: electrons, R = 4.3 km, Emax = 100 GeV, TBC = 22 µs;

• DAFNE: electrons, R = 15 m, Emax = 500 MeV, TBC = 2.7 ns;

Evaluate for each accelerator the following quantities: the revolution frequency f ;
the number of bunches nb; the minimum value of the magnetic field Bmin required
to hold the particles in orbit. From the luminosity and current profile plots shown as
examples in the course slides, determine for DAFNE and LHC, the products �x ⇥ �y

16. Design a pp machine at
p
s = 40 TeV and L = 1036 cm�2s�1. Which values of �x

and �y are needed ? The following limits have to be respected:

• B < 5T

• N1, N2 < 1011/bunch

• TBC > 10 ns

17. Evaluate the maximum
p
sNN that can be obtained at LHC for Cu-Cu and Pb-Pb

collisions respectively.

18. Evaluate the value of
p
sNN for Au-Au collisions if the energy of the Au ions is 10.5

TeV. In case these collisions are done at RHIC for which value of the luminosity the
pile-up becomes of order 1 ? (RHIC circumference = 3.834 km, nb=111)

3

Proposed exercises 
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5. Analysis of event distributions: the fit

5.1. Introduction. In the previous section measurements based on event counting have
been described. In general we are also interested in analyzing specific distributions
of variables among the candidate events sample15: particle momenta, emission angles,
invariant masses and many others. These analyses are done essentially for two reasons:
(i) to compare the distributions with expectations from theories, and (ii) to extract from
them physical quantities of interest like masses, widths, couplings, spins and so on. We
call fit the method to do both these important things.

To make the fit, we go through the following ”logical” steps.

(1) First of all we have to define the hypothesis. It can be the theoretical function
y(x/✓), x being the variable or the set of variables, and ✓ a set of K parameters
. K could be even 0, in this case the theory makes an ”absolute prediction” and
there is no need to adjust parameters to compare it to theory.

(2) Then we have to define a test statistics t, that is a variable depending on the
data that, if the hypothesis is correct, has a known distribution function (in
the following we use pdf to indicate probability distribution functions). The
meaning of this pdf is the following: if we repeat the experiment many times
and if every time we evaluate t, if the hypothesis is correct the histogram of the
sample statistics will follow the pdf within the statistical errors of the sample.

(3) Finally we do the experiment. In case the theory depends on few parameters, we
adjust the parameters in such a way to get the best possible agreement between
data and theory. From this we obtain the estimates of the parameters with their
uncertainties. We evaluate then the actual value of t, let’s call it t⇤ from the data
after parameter adjustment, and see if in the t pdf this value corresponds to a
region of high or low probability. In case it is in a region of high probability,
it’s likely that the theory is correct, so that we conclude that the experiment
corroborates the theory. In case it corresponds to a region of low probability
it’s unlikely that the theory is correct, so that we say that the experiment falsifies
the theory, or, in other words, that we have not found any parameter region that
allows an acceptable agreement.

These steps have been described here in a qualitative way. Each step will be described
in detail in the following.

In this section we review first how the di↵erent approaches to the fit are founded by
defining how to build the test statistics. Then we’ll see how to proceed for hypothesis
testing (problem (i) above) and for parameter and interval estimation (problem (ii)
above). Finally the frequentist and bayesian approaches in interval estimation will be
presented and compared.

5.2. Choice of the test statistics. We consider separately the case of binned data
(histogram fitting), then the study of the functional dependence between two physical
quantities, the case of unbinned data and finally we consider the case of correlated data.

15Di↵erential cross-sections are examples of distributions on which we can apply our fit procedures.
However in many cases the overall normalization of the distribution is not important, so that non-
normalized distributions are fit.

Analysis of event distributions: the fit 



Analysis of event distributions: the fit 

30

5. Analysis of event distributions: the fit

5.1. Introduction. In the previous section measurements based on event counting have
been described. In general we are also interested in analyzing specific distributions
of variables among the candidate events sample15: particle momenta, emission angles,
invariant masses and many others. These analyses are done essentially for two reasons:
(i) to compare the distributions with expectations from theories, and (ii) to extract from
them physical quantities of interest like masses, widths, couplings, spins and so on. We
call fit the method to do both these important things.

To make the fit, we go through the following ”logical” steps.

(1) First of all we have to define the hypothesis. It can be the theoretical function
y(x/✓), x being the variable or the set of variables, and ✓ a set of K parameters
. K could be even 0, in this case the theory makes an ”absolute prediction” and
there is no need to adjust parameters to compare it to theory.

(2) Then we have to define a test statistics t, that is a variable depending on the
data that, if the hypothesis is correct, has a known distribution function (in
the following we use pdf to indicate probability distribution functions). The
meaning of this pdf is the following: if we repeat the experiment many times
and if every time we evaluate t, if the hypothesis is correct the histogram of the
sample statistics will follow the pdf within the statistical errors of the sample.

(3) Finally we do the experiment. In case the theory depends on few parameters, we
adjust the parameters in such a way to get the best possible agreement between
data and theory. From this we obtain the estimates of the parameters with their
uncertainties. We evaluate then the actual value of t, let’s call it t⇤ from the data
after parameter adjustment, and see if in the t pdf this value corresponds to a
region of high or low probability. In case it is in a region of high probability,
it’s likely that the theory is correct, so that we conclude that the experiment
corroborates the theory. In case it corresponds to a region of low probability
it’s unlikely that the theory is correct, so that we say that the experiment falsifies
the theory, or, in other words, that we have not found any parameter region that
allows an acceptable agreement.

These steps have been described here in a qualitative way. Each step will be described
in detail in the following.

In this section we review first how the di↵erent approaches to the fit are founded by
defining how to build the test statistics. Then we’ll see how to proceed for hypothesis
testing (problem (i) above) and for parameter and interval estimation (problem (ii)
above). Finally the frequentist and bayesian approaches in interval estimation will be
presented and compared.

5.2. Choice of the test statistics. We consider separately the case of binned data
(histogram fitting), then the study of the functional dependence between two physical
quantities, the case of unbinned data and finally we consider the case of correlated data.

15Di↵erential cross-sections are examples of distributions on which we can apply our fit procedures.
However in many cases the overall normalization of the distribution is not important, so that non-
normalized distributions are fit.



Analysis of event distributions: the fit 

30

5. Analysis of event distributions: the fit

5.1. Introduction. In the previous section measurements based on event counting have
been described. In general we are also interested in analyzing specific distributions
of variables among the candidate events sample15: particle momenta, emission angles,
invariant masses and many others. These analyses are done essentially for two reasons:
(i) to compare the distributions with expectations from theories, and (ii) to extract from
them physical quantities of interest like masses, widths, couplings, spins and so on. We
call fit the method to do both these important things.

To make the fit, we go through the following ”logical” steps.

(1) First of all we have to define the hypothesis. It can be the theoretical function
y(x/✓), x being the variable or the set of variables, and ✓ a set of K parameters
. K could be even 0, in this case the theory makes an ”absolute prediction” and
there is no need to adjust parameters to compare it to theory.

(2) Then we have to define a test statistics t, that is a variable depending on the
data that, if the hypothesis is correct, has a known distribution function (in
the following we use pdf to indicate probability distribution functions). The
meaning of this pdf is the following: if we repeat the experiment many times
and if every time we evaluate t, if the hypothesis is correct the histogram of the
sample statistics will follow the pdf within the statistical errors of the sample.

(3) Finally we do the experiment. In case the theory depends on few parameters, we
adjust the parameters in such a way to get the best possible agreement between
data and theory. From this we obtain the estimates of the parameters with their
uncertainties. We evaluate then the actual value of t, let’s call it t⇤ from the data
after parameter adjustment, and see if in the t pdf this value corresponds to a
region of high or low probability. In case it is in a region of high probability,
it’s likely that the theory is correct, so that we conclude that the experiment
corroborates the theory. In case it corresponds to a region of low probability
it’s unlikely that the theory is correct, so that we say that the experiment falsifies
the theory, or, in other words, that we have not found any parameter region that
allows an acceptable agreement.

These steps have been described here in a qualitative way. Each step will be described
in detail in the following.

In this section we review first how the di↵erent approaches to the fit are founded by
defining how to build the test statistics. Then we’ll see how to proceed for hypothesis
testing (problem (i) above) and for parameter and interval estimation (problem (ii)
above). Finally the frequentist and bayesian approaches in interval estimation will be
presented and compared.

5.2. Choice of the test statistics. We consider separately the case of binned data
(histogram fitting), then the study of the functional dependence between two physical
quantities, the case of unbinned data and finally we consider the case of correlated data.

15Di↵erential cross-sections are examples of distributions on which we can apply our fit procedures.
However in many cases the overall normalization of the distribution is not important, so that non-
normalized distributions are fit.



Analysis of event distributions: the fit 

30

5. Analysis of event distributions: the fit

5.1. Introduction. In the previous section measurements based on event counting have
been described. In general we are also interested in analyzing specific distributions
of variables among the candidate events sample15: particle momenta, emission angles,
invariant masses and many others. These analyses are done essentially for two reasons:
(i) to compare the distributions with expectations from theories, and (ii) to extract from
them physical quantities of interest like masses, widths, couplings, spins and so on. We
call fit the method to do both these important things.

To make the fit, we go through the following ”logical” steps.

(1) First of all we have to define the hypothesis. It can be the theoretical function
y(x/✓), x being the variable or the set of variables, and ✓ a set of K parameters
. K could be even 0, in this case the theory makes an ”absolute prediction” and
there is no need to adjust parameters to compare it to theory.

(2) Then we have to define a test statistics t, that is a variable depending on the
data that, if the hypothesis is correct, has a known distribution function (in
the following we use pdf to indicate probability distribution functions). The
meaning of this pdf is the following: if we repeat the experiment many times
and if every time we evaluate t, if the hypothesis is correct the histogram of the
sample statistics will follow the pdf within the statistical errors of the sample.

(3) Finally we do the experiment. In case the theory depends on few parameters, we
adjust the parameters in such a way to get the best possible agreement between
data and theory. From this we obtain the estimates of the parameters with their
uncertainties. We evaluate then the actual value of t, let’s call it t⇤ from the data
after parameter adjustment, and see if in the t pdf this value corresponds to a
region of high or low probability. In case it is in a region of high probability,
it’s likely that the theory is correct, so that we conclude that the experiment
corroborates the theory. In case it corresponds to a region of low probability
it’s unlikely that the theory is correct, so that we say that the experiment falsifies
the theory, or, in other words, that we have not found any parameter region that
allows an acceptable agreement.

These steps have been described here in a qualitative way. Each step will be described
in detail in the following.

In this section we review first how the di↵erent approaches to the fit are founded by
defining how to build the test statistics. Then we’ll see how to proceed for hypothesis
testing (problem (i) above) and for parameter and interval estimation (problem (ii)
above). Finally the frequentist and bayesian approaches in interval estimation will be
presented and compared.

5.2. Choice of the test statistics. We consider separately the case of binned data
(histogram fitting), then the study of the functional dependence between two physical
quantities, the case of unbinned data and finally we consider the case of correlated data.

15Di↵erential cross-sections are examples of distributions on which we can apply our fit procedures.
However in many cases the overall normalization of the distribution is not important, so that non-
normalized distributions are fit.



Choice of test statistics: binned data 

31

5.2.1. Binned data: fit of histograms. Let’s consider the distribution of the variable x
out of a sample of N events. We divide the range of variability of x in M bins, each
of dimension �x. The histogram of the variable x for the actual sample is given by a
sequence of numbers ni, i=1,...,M , each number giving the content of the bin i.

(90)
MX

i=1

ni = N

On the other hand we have a theory that predicts a x distribution depending on a list
of K parameters ✓i, i=1,...K, we call y(x/✓) this function16. In the bin i the theory
predicts a number of events yi that can be either the value of the function at the center
xi of the bin, multiplied by �x:

(91) yi = y(xi/✓)�x

or, more exactly the integral of the function in the bin17

(92) yi =

Z x
i

+�x/2

x
i

��x/2
y(x/✓)dx

In both cases the expected bin content yi depends on the parameters. The sum of the
yi on the bins, gives the predicted total number of events N0.

(93)
MX

i=1

yi = N0

Now let’s turn to the bin experimental contents ni. Each ni is a random variable,
since if we repeat the experiment and get another sample of events, we will get in general
di↵erent values of ni. So we ask which kind of random variable is ni. We distinguish
between two cases.

• We repeat the experiment holding the total number of events N fixed. In this
case ni has a multinomial distribution. The joint distribution of the ni, with
i=1,...,M is

(94) p(n1, ..nM ) = N !
MY

i=1

pni

i

ni!

where pi is the probability associated to the bin i. Notice that the joint distribu-
tion cannot be factorized in a product of single bin probability distributions, since
the fixed value of events N determines a correlation between the bin contents.

• We repeat the experiment holding fixed the integrated luminosity or the obser-
vation time of the experiment. In this case N is not fixed and fluctuates in

16The function y is dimensionally a number of events per units of x. To compare it with the actual
number of events n

i

it has to be multiplied by �x or integrated in x (see eqs.91 and 92).
17The two definitions of y

i

are equal in the limit of small bin size, with respect to the typical scale of
variation of the distribution.

Theory:  y=y(x/θ)     θi , i=1….K 
 
 
 
Prediction of the theory in bin i: 
 
1) Value of the function at the center       of the bin 
     multiplied by the bin width δx  (note: [y]=[dN/dx]) 
 
2) or more exactly integrating y over the bin i  

Histogram: 
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The two definitions are equivalent in the limit of small bin size wrt to the typical 
scale of variations in the distribution   
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The predicted total number 
of events is: 
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On the other hand we have a theory that predicts a x distribution depending on a list
of K parameters ✓i, i=1,...K, we call y(x/✓) this function16. In the bin i the theory
predicts a number of events yi that can be either the value of the function at the center
xi of the bin, multiplied by �x:

(91) yi = y(xi/✓)�x

or, more exactly the integral of the function in the bin17

(92) yi =

Z x
i

+�x/2

x
i

��x/2
y(x/✓)dx

In both cases the expected bin content yi depends on the parameters. The sum of the
yi on the bins, gives the predicted total number of events N0.

(93)
MX

i=1

yi = N0

Now let’s turn to the bin experimental contents ni. Each ni is a random variable,
since if we repeat the experiment and get another sample of events, we will get in general
di↵erent values of ni. So we ask which kind of random variable is ni. We distinguish
between two cases.

• We repeat the experiment holding the total number of events N fixed. In this
case ni has a multinomial distribution. The joint distribution of the ni, with
i=1,...,M is

(94) p(n1, ..nM ) = N !
MY

i=1

pni

i

ni!

where pi is the probability associated to the bin i. Notice that the joint distribu-
tion cannot be factorized in a product of single bin probability distributions, since
the fixed value of events N determines a correlation between the bin contents.

• We repeat the experiment holding fixed the integrated luminosity or the obser-
vation time of the experiment. In this case N is not fixed and fluctuates in

16The function y is dimensionally a number of events per units of x. To compare it with the actual
number of events n

i

it has to be multiplied by �x or integrated in x (see eqs.91 and 92).
17The two definitions of y

i

are equal in the limit of small bin size, with respect to the typical scale of
variation of the distribution.

Which statistics for the ni data in the histogram?  
two possibilities: 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Correlation negligible  for events distributed over a large number of bins 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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5.2.1. Binned data: fit of histograms. Let’s consider the distribution of the variable x
out of a sample of N events. We divide the range of variability of x in M bins, each
of dimension �x. The histogram of the variable x for the actual sample is given by a
sequence of numbers ni, i=1,...,M , each number giving the content of the bin i.

(90)
MX

i=1

ni = N

On the other hand we have a theory that predicts a x distribution depending on a list
of K parameters ✓i, i=1,...K, we call y(x/✓) this function16. In the bin i the theory
predicts a number of events yi that can be either the value of the function at the center
xi of the bin, multiplied by �x:

(91) yi = y(xi/✓)�x

or, more exactly the integral of the function in the bin17

(92) yi =

Z x
i

+�x/2

x
i

��x/2
y(x/✓)dx

In both cases the expected bin content yi depends on the parameters. The sum of the
yi on the bins, gives the predicted total number of events N0.

(93)
MX

i=1

yi = N0

Now let’s turn to the bin experimental contents ni. Each ni is a random variable,
since if we repeat the experiment and get another sample of events, we will get in general
di↵erent values of ni. So we ask which kind of random variable is ni. We distinguish
between two cases.

• We repeat the experiment holding the total number of events N fixed. In this
case ni has a multinomial distribution. The joint distribution of the ni, with
i=1,...,M is

(94) p(n1, ..nM ) = N !
MY

i=1

pni

i

ni!

where pi is the probability associated to the bin i. Notice that the joint distribu-
tion cannot be factorized in a product of single bin probability distributions, since
the fixed value of events N determines a correlation between the bin contents.

• We repeat the experiment holding fixed the integrated luminosity or the obser-
vation time of the experiment. In this case N is not fixed and fluctuates in

16The function y is dimensionally a number of events per units of x. To compare it with the actual
number of events n

i

it has to be multiplied by �x or integrated in x (see eqs.91 and 92).
17The two definitions of y

i

are equal in the limit of small bin size, with respect to the typical scale of
variation of the distribution.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
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ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Neiman χ2 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i
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ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1
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i e��
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ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Pearson χ2 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Neiman χ2 
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Gaussian pdf and the Central Limit Theorem 
The Gaussian pdf is so useful because almost any random 
variable that is a sum of a large number of small contributions 
follows it.  This follows from the Central Limit Theorem: 

For n independent r.v.s xi with finite variances σi2, otherwise 
arbitrary pdfs, consider the sum 

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s. 

In the limit n → ∞, y is a Gaussian r.v. with 
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Central Limit Theorem (2) 
The CLT can be proved using characteristic functions (Fourier 
transforms), see, e.g., SDA Chapter 10. 

Good example:  velocity component vx of air molecules. 

OK example:  total deflection due to multiple Coulomb scattering. 
(Rare large angle deflections give non-Gaussian tail.) 

Bad example:  energy loss of charged particle traversing thin 
gas layer.  (Rare collisions make up large fraction of energy loss, 
cf. Landau pdf.) 

For finite n, the theorem is approximately valid to the 
extent that the fluctuation of  the sum is not dominated by 
one (or few) terms.  

Beware of measurement errors with non-Gaussian tails. 
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Chi-square (χ2) distribution 
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by 

n = 1, 2, ... =  number of ‘degrees of 
                       freedom’ (dof) 

For independent Gaussian xi, i = 1, ..., n, means µi, variances σi2, 

follows χ2 pdf with n dof. 

Example:  goodness-of-fit test variable especially in conjunction 
with method of least squares. 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1
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i
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Pearson χ2 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Neiman χ2 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !
MY

i=1

pni

i

ni!
= N !

MY

i=1

yni

i

ni!N
n
i

0

while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1

e�y
iyni

i

ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:

(107) Lm(n/y) = N !
MY

i=1

yni

i

ni!N
n
i

0

=
N !

NN
0

MY

i=1

yni

i

ni!

On the other hand

(108) Lp(n/y) = e�N0

MY

i=1

yni

i

ni!
=

e�N0NN
0

N !
Lm(n/y)

that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !
MY

i=1

pni

i

ni!
= N !

MY

i=1

yni

i

ni!N
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i

0

while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1

e�y
iyni

i

ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:

(107) Lm(n/y) = N !
MY

i=1

yni

i

ni!N
n
i

0
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NN
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On the other hand

(108) Lp(n/y) = e�N0

MY

i=1

yni

i

ni!
=

e�N0NN
0

N !
Lm(n/y)

that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Neiman χ2 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !
MY

i=1

pni

i

ni!
= N !

MY

i=1

yni

i

ni!N
n
i

0

while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1

e�y
iyni

i

ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:

(107) Lm(n/y) = N !
MY

i=1

yni

i

ni!N
n
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0

=
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On the other hand

(108) Lp(n/y) = e�N0
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i

ni!
=

e�N0NN
0

N !
Lm(n/y)

that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !
MY

i=1

pni

i

ni!
= N !

MY

i=1

yni

i

ni!N
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0

while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1

e�y
iyni

i

ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:

(107) Lm(n/y) = N !
MY

i=1

yni

i
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On the other hand

(108) Lp(n/y) = e�N0
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i
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=

e�N0NN
0
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that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.

N fixed (multinomial case) 
(negligible bin correlation assumed) 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

N not fixed (poisson case) 
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !
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i
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while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1

e�y
iyni

i

ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:

(107) Lm(n/y) = N !
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On the other hand

(108) Lp(n/y) = e�N0
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that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1
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i e��
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ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =
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i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

N not fixed (poisson case) 
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !
MY
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pni

i

ni!
= N !

MY

i=1

yni

i

ni!N
n
i

0

while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1

e�y
iyni

i

ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:
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i
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i
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On the other hand

(108) Lp(n/y) = e�N0
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i=1
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ni!
=

e�N0NN
0

N !
Lm(n/y)

that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.

yi=λi 
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in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):
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correlations are absent, we get:
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that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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More general the test statistics t :  Likelihood method 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Which test statistics for the Likelihood function? 
 
The pdf of a likelihood function in general depends on the 
specific problem, and can be evaluated by means of  
a MonteCarlo simulation of the situation we are 
considering (TOY MC), i.e. simulations done for different values of 
the parameters θi
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity

(109) �2
� = �2 ln

L(n/y)

L(n/⌫)

has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:

(111) �2
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✓
ni ln

yi
ni

� (yi � ni)

◆
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✓
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yi
ni

◆
+ 2(N0 �N)

By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:

(112) Lg(z/✓) =
MY

i=1

1p
2⇡�i

e
� (z

i

�f(x
i

/✓))2

2�2
i

This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity
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to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:
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This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity
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has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:
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This likelihood is used in many circumstances (linear fit, polynomial fit,...).

( νi gaussians) 

⇒ We can use Likelihood ratios as test statistics with known pdf, more general 
than Pearson χ2, it holds in asymp. limit but whatever is the stat. model. 
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Connection with the 
Neyman-Pearson Lemma 

23

and type-II errors. We call ↵ and � respectively the probabilities associated to the two
kinds of errors:

(64) P (type� Ierrors) = 1� ✏ = ↵

(65) P (type� IIerrors) =
1

R
= �

Given the two hypotheses Hs and Hb and given a set of K discriminating variables x1,
x2,...xK , we can define the two ”likelihoods”

(66) L(x1, ..., xK/Hs) = P (x1, ...xK/Hs)

(67) L(x1, ..., xK/Hb) = P (x1, ...xK/Hb)

equal to the probabilities to have a given set of values xi given the two hypotheses, and
the likelihood ratio defined as

(68) �(x1, ...xK) =
L(x1, ..., xK/Hs)

L(x1, ..., xK/Hb)

that is also a discriminating variable. The Neyman-Pearson Lemma states that, once ↵
is fixed, a selection based on � is the one that allows to have the lowest � value. This
theorem, even if of somehow di�cult use in practice, shows that the ”likelihood ratio”
is the most powerful quantity to discriminate between hypotheses. In the following we’ll
see several examples of likelihood ratios.

23

and type-II errors. We call ↵ and � respectively the probabilities associated to the two
kinds of errors:

(64) P (type� Ierrors) = 1� ✏ = ↵

(65) P (type� IIerrors) =
1

R
= �

Given the two hypotheses Hs and Hb and given a set of K discriminating variables x1,
x2,...xK , we can define the two ”likelihoods”

(66) L(x1, ..., xK/Hs) = P (x1, ...xK/Hs)

(67) L(x1, ..., xK/Hb) = P (x1, ...xK/Hb)

equal to the probabilities to have a given set of values xi given the two hypotheses, and
the likelihood ratio defined as

(68) �(x1, ...xK) =
L(x1, ..., xK/Hs)

L(x1, ..., xK/Hb)

that is also a discriminating variable. The Neyman-Pearson Lemma states that, once ↵
is fixed, a selection based on � is the one that allows to have the lowest � value. This
theorem, even if of somehow di�cult use in practice, shows that the ”likelihood ratio”
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Neyman-Pearson Lemma: 
For fixed α value, a selection based on the discriminant variable λ has the lowest β value. 
 
=> The “likelihood ratio” is the most powerful quantity to discriminate between hypotheses. 
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity

(109) �2
� = �2 ln
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L(n/⌫)

has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:
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This likelihood is used in many circumstances (linear fit, polynomial fit,...).


