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Exercise: 
 
Determine the tracking efficiency for charged pions as a function of momentum  
in the KLOE detector exploiting the decay: 
 
φ -> π+π-π0
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Proposed exercises 

In DAFNE operations for KLOE-2 experiment: 
 
Top-up injection 
20 mA injections at a rate of 2 Hz with 60% duty cycle 
Veto of KLOE-2 DAQ for 50ms at each single injection 
Dead time DAQ 4 µs 
Trigger rate ~ 8 kHz 
 
Determine DAQ inefficiency 



Goodness-of-fit test : P-value  

Test of hypothesis H0  (null hypothesis) 
 
Fit done (best estimate of θi) => t* obtained for the test statistics 
 
Suppose pdf of test statistics t known => f(t|H0) 
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Figure 9. �2 distribution for 5 degrees of freedom. The case of t⇤ = 8.2
is illustrated. The blue hatched area correspond to the p0 value.

”primitive function” corresponding to the p-value we are talking about) and g(F ) the
pdf of the primitive, we have:

(119) g(F )dF = f(t)dt

so that

(120) g(F ) =
f(t)

dF/dt
=

f(t)

f(t)
= 1

since by definition dF/dt = f(t).
So that by repeating many times the same experiment, all p-values are obtained with

the same probability. From this point of view, very small p-values are as probable as
p-values close to 122.

What can we say if p0 is close to 1? In some situations we can prefer to reject also p0
values close to 1. In this case we have indeed a 2-tails test, where our test statistics is
defined in such a way that only values within a certain range are allowed. For example
we will accept the hypothesis if the p-value is between, say 5% and 95% or any other
interval we define. The choice of making a 2-tails or 1-tail hypothesis test depends

22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
alternative hypothesis.
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parameters variances in the diagonal elements and the covariances in the o↵-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final �2:

(117) �2 =
MX

j,k=1

(zj � f(xj/✓))V
�1
jk (zk � f(xk/✓))

that is still a �2 variable with M �K degrees of freedom.

5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a �2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector e↵ects, to
get the sample statistics pdf when the hypothesis is verified. In general the Montecarlo
allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters ✓.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:

(118) p0 =

Z 1

t⇤
f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called

P-value 



Goodness-of-fit test : P-value  

Meaning of P-value 
 
 
Probability that - if H0 is true - the result t of the experiment will fluctuate  
more than t*.  
Repeating the experiment N times, p0 is the fraction in which we get t>t* 
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p0 ≈0  => rejection of null H0 hypothesis,  
i.e. scarce agreement data-theory 
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Figure 9. �2 distribution for 5 degrees of freedom. The case of t⇤ = 8.2
is illustrated. The blue hatched area correspond to the p0 value.

”primitive function” corresponding to the p-value we are talking about) and g(F ) the
pdf of the primitive, we have:

(119) g(F )dF = f(t)dt

so that

(120) g(F ) =
f(t)

dF/dt
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f(t)
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since by definition dF/dt = f(t).
So that by repeating many times the same experiment, all p-values are obtained with

the same probability. From this point of view, very small p-values are as probable as
p-values close to 122.

What can we say if p0 is close to 1? In some situations we can prefer to reject also p0
values close to 1. In this case we have indeed a 2-tails test, where our test statistics is
defined in such a way that only values within a certain range are allowed. For example
we will accept the hypothesis if the p-value is between, say 5% and 95% or any other
interval we define. The choice of making a 2-tails or 1-tail hypothesis test depends

22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
alternative hypothesis.



Goodness-of-fit test : P-value  

Meaning of P-value 
 
 

36

parameters variances in the diagonal elements and the covariances in the o↵-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final �2:

(117) �2 =
MX

j,k=1

(zj � f(xj/✓))V
�1
jk (zk � f(xk/✓))

that is still a �2 variable with M �K degrees of freedom.

5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a �2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector e↵ects, to
get the sample statistics pdf when the hypothesis is verified. In general the Montecarlo
allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters ✓.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:

(118) p0 =

Z 1

t⇤
f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called
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The P-value is a random variable itself uniformly distributed between 0 and 1: 
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Figure 9. �2 distribution for 5 degrees of freedom. The case of t⇤ = 8.2
is illustrated. The blue hatched area correspond to the p0 value.
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What can we say if p0 is close to 1? In some situations we can prefer to reject also p0
values close to 1. In this case we have indeed a 2-tails test, where our test statistics is
defined in such a way that only values within a certain range are allowed. For example
we will accept the hypothesis if the p-value is between, say 5% and 95% or any other
interval we define. The choice of making a 2-tails or 1-tail hypothesis test depends

22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
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All p-values are equally probable!  e.g. p0 ≈0 or p0 ≈1  
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Figure 9. �2 distribution for 5 degrees of freedom. The case of t⇤ = 8.2
is illustrated. The blue hatched area correspond to the p0 value.
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useful to discriminate between hypotheses. However we have always to remind that while for the good
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All p-values are equally probable!  e.g. p0 ≈0 or p0 ≈1 
If H0 is true, if H0 is false usually p0 ≈0.  
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value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:

(118) p0 =

Z 1

t⇤
f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called

The P-value is a random variable itself uniformly distributed between 0 and 1: 

All p-values are equally probable!  e.g. p0 ≈0 or p0 ≈1 
If H0 is true, if H0 is false usually p0 ≈0. 
 
What if p0 ≈1 ? 
 
 p0 ≈1  => underfluctuations of experimental points or overestimate 

  of the uncertainties , i.e. scarce self-consistency of data 

2-tails test vs 1-tail test 
 
e.g.   Accept H0  if    5% < p0 < 95 % 
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Figure 9. �2 distribution for 5 degrees of freedom. The case of t⇤ = 8.2
is illustrated. The blue hatched area correspond to the p0 value.

”primitive function” corresponding to the p-value we are talking about) and g(F ) the
pdf of the primitive, we have:

(119) g(F )dF = f(t)dt

so that

(120) g(F ) =
f(t)

dF/dt
=

f(t)

f(t)
= 1

since by definition dF/dt = f(t).
So that by repeating many times the same experiment, all p-values are obtained with

the same probability. From this point of view, very small p-values are as probable as
p-values close to 122.

What can we say if p0 is close to 1? In some situations we can prefer to reject also p0
values close to 1. In this case we have indeed a 2-tails test, where our test statistics is
defined in such a way that only values within a certain range are allowed. For example
we will accept the hypothesis if the p-value is between, say 5% and 95% or any other
interval we define. The choice of making a 2-tails or 1-tail hypothesis test depends

22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
alternative hypothesis.



alternative one. The compatibility between these two numbers is studied using pseudo-experiments; the

difference in signal yield is found to correspond to 1.1 standard deviations.

The result of the fit to the spin-0 hypothesis in the nominal analysis is illustrated in Fig. 1. The

distribution of | cos θ∗| from the data (in the signal region only) is overlaid with the projection of the

signal and background components of the pdf.
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Figure 1: Observed numbers of events (dots) in the signal region as a function of | cos θ∗|, overlaid with

the projection of the signal (blue/dark band) and background (yellow/light band) components of the pdf

obtained from the inclusive fit of the data in the nominal analysis under the spin-0 hypothesis.

The | cos θ∗| distributions for the two analyses are shown after background subtraction in Fig. 2. Two

sets of points are obtained in each analysis, corresponding to the conditional fits assuming the spin-

0 or spin-2 shape of | cos θ∗| for signal events, with the background pdf and normalisation determined

independently in each fit. The expected distributions of spin-0 and spin-2 signals are also overlaid. The

cyan bands represent the (pre-fit) systematic uncertainties on the background modelling.

The expected distributions of the test statistics q defined in Eq. 2 for the spin-0 and spin-2 hypotheses

are shown in Fig. 3. Both are calculated from pseudo-experiments. The observed values in data are

indicated by the vertical black lines. The p-values are summarised in Table 3. In both analyses, the data

are compatible with the spin-0 hypothesis, whereas the spin-2 p-value is 0.3% (8.4%) for the nominal

(alternative) analysis leading to an exclusion limit of the spin-2 hypothesis of 99.3% confidence level

(89.4% CL). From pseudo-experiments studies, the probability to observe spin-2 p-values for the two

analyses as different as those observed in the data is computed to be about 10%.

As a cross-check, the de-correlation between mγγ and | cos θ∗| can also be enforced in the alternative

analysis by sharing the parameters of the background pdf amongst all bins of | cos θ∗|. In this case, the

invariant mass model of background events is the same one as in the nominal analysis (a fifth degree

polynomial) and the uncertainty on the background model is updated accordingly. The results obtained

in this check are similar to the ones of the nominal analysis.

By performing a series of checks such as repeating the alternative analysis using different functions

for the background model or enlarging the systematic uncertainties related to residual correlations in the

nominal analysis, one concludes that the de-correlation assumption between mγγ and | cos θ∗| is strongly

supported by the behaviour of the invariant mass sidebands in data. No bias at the level of, or beyond the
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Example of two alternate hypotheses  H0 and H1 

In the two-body decay H → γγ, the spin information is extracted from the distribution of the polar angle θ∗ of the 
photons with respect to the z-axis of the Collins-Soper frame.  
 
 
 
 
With this choice, the impact of initial state radiation is expected to be minimized and a better discrimination power 
compared to other choices of axis, such as the beam axis or the boost axis of the particle, is achieved. A spin-0 particle 
decays isotropically in its rest frame; before any acceptance cuts, the distribution dN/d cos θ∗ is thus uniform. The 
corresponding distribution for a spin-2 particle follows a combination of Wigner functions for the production and decay 
whose probabilities are specified in particular models. 

Two photon candidates are selected in each event. Both are required to be in the fiducial region of the

electromagnetic calorimeter (|η| < 2.37), excluding the transition region between the barrel and endcap

calorimeters (1.37 < |η| < 1.56). Each photon is required to pass tight identification criteria based on

calorimeter shower shapes and to satisfy isolation cuts based on the scalar sum of the transverse energy

(momentum) around each photon measured in the calorimeters (inner detector) [14]. The leading and

sub-leading photons of each event are retained, and must satisfy ET > 35 GeV and 25 GeV, respectively.

The cuts on the transverse energies are lowered compared to the previous result [18] in order to maximize

the signal selection efficiency, as discussed below.

The diphoton invariant mass is calculated using the energies measured in the calorimeter and the

opening angle between the two photons, where the photon direction is reconstructed taking into account

the position of the diphoton vertex. The diphoton vertex in each event is selected from the reconstructed

vertices with at least three tracks with pT > 0.4 GeV each, using an artificial-neural-network algo-

rithm [14] that combines information provided by the electromagnetic calorimeter and the inner detector.

The efficiency for selecting vertices within 0.3 mm (15 mm) of the true production point is expected to

be around 82% (94%). The contribution of the vertex position resolution to the invariant mass resolution

is negligible. Candidates with diphoton invariant masses (mγγ) in the range 105–160 GeV are retained 2.

Within this range, a signal region is defined between 122–130 GeV and the sideband regions are defined

as 105 GeV < mγγ < 122 GeV and 130 GeV < mγγ < 160 GeV.

In addition to the selection outlined above, the leading and sub-leading photons are required to sat-

isfy p
γ1

T
/mγγ > 0.35 and p

γ2

T
/mγγ > 0.25, respectively, where p

γ
T

is the transverse energy of each photon

calculated using the vertex position. These cuts are introduced in order to minimize the correlation be-

tween mγγ and cos θ∗ induced by fixed cuts on the transverse momenta. The near absence of correlations

when using relative pT cuts is a consequence of the cos θ∗ definition in the Collins-Soper frame:

cos θ∗ =
sinh(ηγ1 − ηγ2)
√

1 +
(

p
γγ
T
/mγγ
)2
·

2p
γ1

T
p
γ2

T

m2
γγ

, (1)

where p
γγ
T

is the transverse momentum of the diphoton system. The residual correlation between | cos θ∗|
and mγγ is mainly due to the

(

p
γγ
T
/mγγ
)

term, which is negligible except at large values of | cos θ∗| where

only very high pT photon pairs pass the selection cuts.

The residual correlations are studied in detail using both the mass sidebands in data, and high statis-

tics background MC samples. The number of observed events in bins of mγγ × | cos θ∗| is compared

with the expected numbers from the product of the marginal distributions, obtained by projecting the

two-dimensional distributions (mγγ × | cos θ∗|) in either dimension (mγγ or | cos θ∗|). In background MC

samples, the residual correlations do not exceed the percent level in the range | cos θ∗| < 0.8. For higher

values of | cos θ∗|, remaining correlations of about 3–4% are observed in few mass bins. In the data mass

sidebands, no sign of residual correlation is visible within the available statistics (corresponding to an

uncertainty between 1 and 2–3%), except in the large | cos θ∗| region (at a similar level as in the MC).

This de-correlation simplifies the modelling of the | cos θ∗| distribution, as discussed below.

2The range of mγγ is reduced compared to the one used in previous result (100–160 GeV) due to the adoption of photon pT

cuts just above the trigger threshold in the present analysis.
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Figure 2: Distributions of background-subtracted data as a function of | cos θ∗| for the nominal analysis

(in (a), for the signal region only) and the alternative analysis (b). The two sets of points correspond to

the subtraction of the different profiled background shapes in the case of the conditional spin-0 and spin-2

fits (assuming the spin-0/spin-2 | cos θ∗| shapes). The spin-0 and spin-2 (produced by gluon fusion) pdfs

(normalized to the fitted number of signal events) are overlaid. The cyan bands around the horizontal

line at zero show the systematic uncertainties on the background modelling before the fits which, for the

nominal analysis, includes the statistical uncertainty on the data sidebands. The error bars on the points

reflect only the data statistics.
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Figure 3: Expected distributions of the test statistics q for the spin-0 and spin-2 (produced by gluon

fusion) hypotheses for the nominal (a) and alternative (b) analyses. The observed value is indicated by a

vertical line. The coloured areas correspond to the integrals of the expected distributions used to compute

the p-values for the rejection of each hypothesis.
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Example of two alternate hypotheses  H0 and H1 
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on the nature of the problem. If the test statistics is a �2 like in most of the fits, p-
values close to 1 in general correspond to underfluctuations of the experimental points,
or overestimate of the uncertainties on the single measurements. So, while the rejection
of a null hypotheses with small p0 is motivated by the scarce agreement between data
and theory pointing to an alternative hypothesis, the rejection of a large p0 is related to
scarce self-consistency in the data.

Figure 10. One of the results of the ATLAS experiment for the study
of the spin of the Higgs boson. The pdf’s of the test statistics q (defined
as the logarithm of the likelihood ratio) are shown for two alternative
hypotheses: spin 0 and spin 2. The black vertical line corresponds to the
experimental value of the test statistics. The blue hatched area is the
1-p-value. (taken from ATLAS Collaboration, ATLAS-CONF-2013-029).

Let’s consider now the comparison between two alternative hypotheses. Fig.10 shows
an example of the pdf’s of two alternative hypothesesH0 andH1, the null and alternative
hypotheses respectively. Clearly the lower is the overlap between the two pdf’s the
better will be the capability to discriminate between the two alternative theories. Here
the problem becomes very similar to the one outlined in Sect.3, with the di↵erence that
here the two alternative hypotheses are not on a single event, but on a distribution of
events. So we define a cut at a value tcut. If t⇤ < tcut we accept the null hypothesis
H0, if t⇤ > tcut we accept the alternative hypothesis H1. By applying this cut we accept
two possible errors: the type-I errors when we reject H0 even if it is true; the type-II
errors when we accept H0 even if H1 is true and H0 is wrong. The probabilities ↵ and



Two alternate hypotheses  H0 and H1 
 
Define tcut 
If t* < tcut  => accept the null hypothesis 
 
If t* > tcut => accept the alternate hypothesis 
 
By applying a cut we accept  type-I  and type-II errors (similarly to single events…) 
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� associated at the two kinds of errors are:

↵ =

Z 1

t
cut

f(t/H0)dt(121)

� =

Z t
cut

�1
f(t/H1)dt(122)

The Neyman-Pearson lemma also applies here, and can be used for the definition of
the test statistics.

We finally remark that the p-value is not the probability of the hypothesis. It is rather
a probabilistic statement on the repetition of the experiment, namely the probability that
by repeating the experiment and if the hypothesis is correct, we obtain a disagreement
larger than the one found. It is possible to evaluate the probability of the hypothesis H,
but for doing that, the Bayes theorem, including priors, has to be used.

5.4. Parameter estimation. If the theory depends on one or more parameters ✓, we
have to determine the best values of the parameters ✓̂23. The value of the sample
statistics t⇤ will depend in this case on the estimated values of the parameters t⇤(✓̂).

The most important method for parameter estimation is the maximum likelihood
(ML) method. Suppose we have the likelihood of our data L(x/✓). Once the experimen-
tal data have been taken and are fixed, L can be considered a function of the parameters,
L(✓). It is reasonable to think that the best values of the parameters are those corre-
sponding to the maximum value of the function L(✓). With this method the problem
of finding parameter estimators becomes essentially a problem of finding the maxima
of a K-dimensional function, K being the number of parameters. This problem can be
approached in two ways.

• Analytically, by doing the derivatives of the function (of the logarithm of the
function to simplify the calculations) with respect to the parameters and putting
them equal to 0.

(123)
@ lnL

@✓k
= 0

This is possible in several cases, like the linear fits or other situations that will be
described in the following. It results in a system of M equations in M unknowns.

• Numerically, in all cases. The ”hystorical” programMINUIT developed at CERN
in the ’70s is still now the most used package for this kind of problems.

The Maximum Likelihood method is not the unique method used, but is a robust
method widely used. Another popular method, the Least Squares method, can be derived
under general hypotheses from the maximum likelihood method. Other methods are not
discussed in these notes.

An estimator ✓̂ is a random variable with its own pdf, a mean E[✓̂] and a variance
V ar[✓̂]. It is required to have some properties. We quote here the most important of
them that typical ML estimators have.

23Here and in the following when we put the ”hat” on a parameter, it means it is the estimator of
the parameter.

Apply Neyman-Pearson lemma, i.e. construct a Likelihood ratio variable  
as best test statistics 


