CLs method

7.4. A modified frequentist approach: the C'L; method. Now we consider a
method, developed in the last years and applied in many analyses especially from LHC
experiments, including the search for the Higgs boson. It is the modified frequentist
approach to the problem of setting upper/lower limits in search experiments.
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CLs method

Add histogram of control regions, mj, background enriched

E|m;| = u;(0) depending on the nuisance parameters (and not on )
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CLs method

Define the test statistics
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symbols: ji and 6 are the best values of the parameters obtained by maximizing L; 0 are
the values of the nuisance parameters obtained by maximizing L at p fixed. The test



CLs method

7.4.2. Discovery. In order to falsify a null hypothesis Hy we need to test the background-
only hypothesis. This can be done by using the test statistics qg, that is eq. 207 for

p=20
L(0,9)
L(i1, )

If we call q(o)bs the value of ¢y obtained using the data, we can easily define a p-value

(210) go = —21In

oo

(211) po = f(q0/0)dqo

ngs

that, for what we have seen in the previous paragraph, is essentially a x? test. If pg is
below the defined limit we falsify the hypothesis and we have done the discovery.



CLs method

The Wilks theorem (see sect.5) has the consequence that under general hypotheses
and in the large sample limit, since g, is a likelihood ratio, the pdf f(g,/p) has a x?
distribution with 1 degree of freedom. In particular the distribution of ¢y for a sample
of purely background simulated events has a x7 pdf. It is interesting to notice that a x?
variable is essentially the square of a standard gaussian variable:

(208) = (“”)2

o

so that its square root is a standard gaussian variable. This allows to use the quantity

|y L0.0)
(209) Vo = 4| —21 L0

as a measure, in number of standard deviation, of the agreement of the data with the
null hypothesis. Such a quantity is used in many circumstances to define the statis-
tical significance that can be reached by an experiment to reject the background-only
hypothesis. The ”score function” defined by eq.59 is an application of this formula.

S
SIGNIFICANCE Z, = \/2(5 + B)In (1 + E) — 25



Have we really observed the final state
X7?-1

® We need a criterium to say ok, we have seen the signal or our
data are compatible with the background.
® Which statistical uncertainty have we on N, ?

* Assume a Poisson statistics to describe N__, negligible

uncertainty on €. We call (using more “popular” symbols):

e N=N_, (O(NX))2_az(N)+02(B)_N+02(B)
- 2 - 2
e f :Nb Ny \) S
N, S s s
® S=SN-B=N, s

a(Ny) o(S) JN +0*(B) ~Js+B

Additional assumption: 0%(B)<< N
O(S)/S is the relative uncertainty on S, its inverse is “how many

st.devs. away from 0” =2 S/ \/B when low Signals on top of large bck
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Have we really observed the final state
X7?-1l

® This quantity is the “significance” of the signal. The higher is

S/0(S) =S/ VS+B , the larger is the number of std.dev. away
from O of my measurement of S (SCORE FUNCTION)

o S/VS+B <3 probably I have not osserved any signal (my

candidates can be simply a fluctuation of the background)

¢ 3 <S/\S+B< 5 probably I have observed a signal (probability
of a background fluctuation very small), however no definite
conclusion, more data needed.=® evidence

oS/ \/S+B> 5 observation is accepted. =» observation

e NB1: All this is “conventional” it can be discussed

e NB2: S/VS+B is an approximate figure, it relies on some
assumptions (see previous slide).

Methods in Experimental Particle Physics 17/12/18



The New s/\b

The new s/\b

ZA = qO,A

med(Zo[1] = \/@ox = 1/2((s +b)In(1 + s/b) - s)

ZA _ qO,A s/b«1 S \/STD + qs/ b)




The New s/\b

s/\b ?

The new s/vb 10° 1 10 102

med[Z 1]

med|Zo|l] = \/qo,a = \/2 ((s+b)In(1 +s/b) — s)




CLs method

7.4.3. Signal exclusion: CLgy,. We consider now how the test statistics shown in eq.

207 can be used for the exclusion of a given theory. Eq. 207 is rewritten with p = 13°
L(1,8

(212) g1 = —21In (A’T)
L(f,0)

The lower is g1, the more compatible the data are with the theory, and the less compatible
the data are with the pure background expectations. The pdf of ¢; can be evaluated
starting from MC samples, either generated with = 1 or for samples of pure background
events generated with p = 0. We call respectively f(q1/1) and f(q1/0) the two pdf’s. A
graphical example of these pdf’s is shown in Figure 22. The separation between the two
pdf’s determines the capability to discriminate the searched model with respect to the
background?”.



CLs method

Test statistics distribution
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FIGURE 22. Example of ¢; distributions in the two hypotheses, namely
1 =1 and pu = 0. The separation between the two distributions indicate
the capability to discriminate the two hypotheses.



CLs method

evaluate the sensitivity of the experiment.

define §; as the median of the f(q;/0) function®

expected

CLe” = / Flan/1)dan
q

1



CLs method

Test statistics distribution

0.35

0.3

f(a/1)

0.25

0.2

f(a/0)

F1GURE 23. For the same example of alternative hypotheses shown in
Fig. 22: construction of CLY, (upper plot) and of C'L%, (lower plot).
In both cases the C'L is given by the blue area. In the upper plot the
median ¢; from background experiments is indicated as ¢;; in the lower

obs

plot the ¢; obtained by data is indicated as g



CLs method

However, we have determined the median C'L only. In actual background-only ex-
periments, we will have background fluctuations, in such a way that ¢; values will be
obtained distributed according to f(q1/0). So we can evaluate an interval of confidence

levels, by repeating the procedure above for two positions of ¢q; , cﬁl) and q~§2) such that
respectively:

gt

(214) RO -
@
(215 " fa/odg = EE

with e.g. 8 = 68.3% to have a gaussian one-std.deviation interval. Confidence levels are

then evaluated applying eq. 213 to dil) and q~£2).



CLs method

Observation

(216) CLY, = /OO flar/1)dq
q

obs
1

and this is the observed confidence level. If it is below, say 5% we exclude the signal
at 95% C'L.



CLs method

Test statistics distribution
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F1GURE 23. For the same example of alternative hypotheses shown in
Fig. 22: construction of CL;Y, (upper plot) and of CL%%, (lower plot).
In both cases the C'L is given by the blue area. In the upper plot the
median ¢; from background experiments is indicated as ¢;; in the lower

obs

plot the ¢; obtained by data is indicated as g



CLs method

7.4.4. Signal exclusion: C'Ls. A problem in the procedure outlined in the previous sec-
tion has been put in evidence, and a correction to it, the so called modified frequentist
approach has been proposed. We discuss now this method, also called C'Ls method that
is now widely employed for exclusion of new physics signals.

Let’s consider the situation shown in Figure 24 where the two pdf’s f(q:1/0) and
f(q1/1) have a large overlap signaling a small sensitivity. If we evaluate in this situation

CL;Y, we find a large value, so that we do not expect to be sensitive to exclusion.

However what happens if ¢?°° is the one shown in the same Figure ? The observed

CLglfb is well below 5% and the signal has to be excluded at 95% CL. But, are we sure
that we have to exclude it 7 In the same Figure the quantity C’Lgbs is reported:

oo

(217) CLy” = (q1/0)dq

qus

that is also very small in this case. Apparently the signal is small and the background
"under-fluctuates”, so that ¢¢*° is scarcely compatible with the signal+background hy-
pothesis but also with the background-only hypothesis. So, we are excluding the signal,
essentially because the background has fluctuated.

In order to avoid this somehow unmotivated exclusion, the C'Ls procedure has been

defined. The idea is to use, as confidence level, the C'Lg quantity, either expected or



CLs method

Test statitics distribution
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FIGURE 24. Same construction of Fig. 23 for a situation where the
discrimination between the two hypotheses is particularly poor and the
overlap between the two distributions is high. The CLY is high (up-
per plot) but for a particular experiment with a under fluctuation of the
background the CLgffb can be small in such a way to reject the signal
hypothesis (lower plot). In the lower plot the magenta area shows CLgbs
from which C'Lg is built. In this case using the C'Lg prescription rather

than the C'Ls, one the signal is not rejected.



CLs method

CLS—I—b
CLy

CLs =

The C'Ls; method is also said modified frequentist approach. In fact, the confidence
interval obtained in this way has not the coverage properties required by the ”orthodox”
frequentist paradigm. So if we build a confidence interval with a C'Ls of «, the coverage
is in general larger than «, so that the Type-I errors are less than 1 — a.



Basic Definitions: POWER

* o =Prob(rejectH,| H,)

o« The POWER of an hypothesis
test is the probability to reject
the null hypothesis when it is indeed
wrong
(the alternate analysis is true)

. POWER="Prob(reject H,| H,)
S = Prob(accept H, | H,)
1— B = Prob(reject H,| H,)

H =H

0 1

POWER = Prob(reject H,| H,)

1- B = Prob(reject H,| H,)

o« The power of a test increases as
the rate of typell error decreases -o

! I X

B

H, :~H1
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o=significance
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Birnbaum (1977)
"A concept of statistical evidence 1s not plausible unless it finds
'strong evidence for H, as against H '

with small probability (o) when H, is true,

and with much larger probability ( 1— ) when H, is true. "

:J' q} ) Birnbaum (1962) suggested that o /1 -

(significance | power)should be used as a measure of

the strength of a statistical test .rather than o alone

Gimbll) peliup s

A 'Pft)b(r@) Ho) Ho) p'=CL;



If p<a reject null
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POWER=Prob(rejH, ,|H,)
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CLs method

Determination of u=w* such that CLs = 1-a => confidence level o.
Repeat the previous analysis for a generic u
©.@)

CLY), = | flau/mdag,
qzbs
oL = f(a,/0)dg,
qzbs
(»)
OL® CLif
5 C’Lb(“)

By increasing p, CLg“ ) decreases, and the value p* such that C’Lg“ ) —1_qisthe upper

limit on u at the required confidence level .



.
p-Vralue - testing the null hypothesis

When testing the b hypotheis (null=b), it is custom to set

X =2910*%
> if p,<L.910-*the b hypothesis is rejected
->Discovery

When testing the s+b hypothesis (null=s+b), set o« =5%
if p.,,<5% the signal hypothesis is rejected at the 95%
Confidence Lev-el (CL)

- Exclusion




C L S Birnbaum (1962) suggested that ¢/ 1- 3

(significance | power)should be used as a measure of

the strength of a statistical test .rather than « alone

p=5%— p'=5%/0.155 = 32%

ﬁ-
I
)
-

(R p.u
Pu I—p,

The CLs method

Was brought into

HEP By Alex Read (2002)

ALL. Read.

Presentation of search results:

The CL(s) technique,

"I\ Phys.\ G {\bI 28}, 2693 (2002).

Birnbaum was re-discovered later

By O. Vitells
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Look Elsewhere Effect = = ¢

 E.G., O. Vitells “Trial factors for the look elsewhere effect in high energy
- e
~ physics”,

Eur. Phys. J. C 70 (2010) 525




Look Elsewhere Effect

- Is there a
signal here?




Look Elsewhere Effect

-Looks like a
signal at m=30
‘What is its
significance?

Test the BG hypothesis
At m=30

q,(©) = L(1d,0)

L(h)
o ==2In——— — = .
L L(us(m=30)+b) Z \/qo .Jix ,0bs




Look Elsewhere Effect

== mﬂoan o)

_f(tﬁx ! Ho)

L 0
o =21 (u=0)
L(f1s(30)+b)

f(qO,ﬁx lHO) NZ

P = J f(qO |Ho)d6]0 10°:
4 fix obs -

. : 10, 15 20 25 30

—
qO fix ,obs
P . answers the question :

What is the probability to have a fluctuation

as or bigger than the observed one”!




Look Elsewhere Effect

- Would you
ignore this
signal, had
you seen it?

10+

291786 |




Look Elsewhere Effect
-Or this?

25730




Look Elsewhere Effect
-Or this?
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Look Elsewhere Effect
-Or this? |
-Obv-iously
NOT!

.ALL THESE
“SIGNALS” ARE
BG
FLUCTUATIONS

3.10325

The right ques;l:)o.n ;

What is the probability to have a fluctuation
as or bigger than the observed one
ANYWHERE in the mass search range”!




It is reasonable to think that, if AM is the mass range and o) is the experimental
mass resolution®” the enhancement LEE will be:

global AM
(222) LEE=2__ o

Do oM

In fact the mass range can be considered as given by a number AM /o), of independent
observations.



More specifically, if gg is used as test statistics for the particle discovery, this quantity

will be a function of the mass go(m). Given a specified C'L « corresponding to a threshold
c on qq, the Look-Elsewhere enhancement, also called trial factor is defined as:

~ plgg"™*(m) > ¢)
(223) LEE = p(go(m) > c)

where ¢***(m) is the maximum value of the test statistics in the full explored range.




More specifically, if gg is used as test statistics for the particle discovery, this quantity
will be a function of the mass go(m). Given a specified C'L « corresponding to a threshold
c on qp, the Look-Elsewhere enhancement, also called trial factor is defined as:

(223) Lpp = P (m) > )

p(go(m) > c)

where ¢***(m) is the maximum value of the test statistics in the full explored range.

A generally accepted estimate is

1AM
224 LEE = ———Z¢;
( ) 3 o Jiz
where Zy;, is the local ”significance” in number of gaussian standard deviations of the

assumed threshold Z¢;, ~ /c. This becomes equal to eq. 222 for Z;, = 3, that is for a
3 std. deviation local signal.



A generally accepted estimate is

1AM
(224) LEE = ——Z ¢,
3 oMp

where Zy;, is the local ”significance” in number of gaussian standard deviations of the
assumed threshold Z;; ~ /c. This becomes equal to eq. 222 for Zs;, = 3, that is for a
3 std. deviation local signal.

Let’s consider a resonance search on a 100 GeV wide mass range where a 30 signal is
found at a given mass, with a resolution of 2 GeV. If we apply eq. 224 we get a trial of

50, so that: pleedl = 1.34 x 1073 — p?°** = 6.7%. On the other hand, in case of a 5o

local effect, the trial is 80 but pi*® = 2.86 x 1077 — pgl(’bal = 2.3 x 107°. This explains
why, in the search for an unknown particle, a 50 effect is normally required, a 30 one
not being considered sufficient.




Sliding Window

. Lu=0)
L(lis(m)+b)

qy = —21




Sliding Window

_Lu=0)
L(fis(m)+b)

qy =21




Sliding Window

-Assuming the
signal can be
only at one
place

-.pick the one
with the
MAXIMUM
SIGNIFICANCE

9o o = N AX (26 (M))




Look Elsewhere Effect

’ Th'e . Elmﬁx q,(m) 2 qO(mﬁx)
distribution
‘f(G,floa,t‘Ho)
does not follow a
chi-squared with
2dof because
the mass
parawmeter is not
defined under

the null N
hy.pothesis

The y! distribution is pushed to the right

eufit,  IH)

-3




trial#
-Assume a maximal
local fluctuation at

10~

mass M= 3()
-The observ-ed qo is
giv-en by

L(u=0)

q obs n A
0eb L(fts(m)+b)
pfix — J‘qO,Obe(qo,fix lHO )dQO,ﬁx

P foar = J% Obsf(qo,ﬂoat |H, )dqo,ﬂoat

107 ¢

f‘"llnm I "u' -

—ftty 1 Hp

trial # =

p float

pfix
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FIGURE 25. Discovery plot. Observed (solid) and expected (dashed)
local pgs as a function of the Higgs mass. The corresponding gaussian
significance is shown in the right hand scale. At Mpy=125 GeV a large
and narrow fluctuation is observed. The probability that the background
only can give rise to an equal or larger fluctuation than the one observed,
is of order 107 and corresponds to slightly less than 6 gaussian standard
deviations. The observed fluctuation is larger than the one expected
for a Standard Model Higgs boson. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29)



Local significance
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FIGURE 26. Same as figure 25 but expressed in terms of significance,

namely in number of gaussian standard deviations. (taken from ATLAS
collaboration, Phys.Lett. B716 (2012) 1-29)

At My=125 GeV a significance of 5.90 is observed.

Global significance is 5.10 if we consider the full explored mass range 110600 GeV.



10*E- ATLAS 2011 + 2012 Data
10° —— Obs. Vs=7TeV: [Ldt=4.6-4.8fb"
Vs =8TeV: [Ldt =5.8-5.9 fb"
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FIGURE 27. Exclusion plot. The CL; is plotted vs. Mpy. For all the
masses where C'L; is below a fixed confidence level (95% and 99% are
explicitly indicated in the plot), the Standard Model signal is excluded
at that C'L. Using a 95% limit only the region around 125 GeV is not
excluded. (taken from ATLAS collaboration, Phys.Lett. B716 (2012)
1-29)

This is the first exclusion plot, since all the values of My with a CLs below e.g. 5%
are excluded at the 95% CL. Almost the full mass range considered by the experiment
is excluded apart from the region around the signal.
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FIGURE 28. Exclusion ”Brazilian plot”. Observed (solid) and ex-

pected(dashed) 95% CL upper limits on the signal strength p as a
function of Mpy. 41 (green) and +2 (yellow) std.deviations bands are
also shown for the expected limit. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29)

7.6.4. Upper limits on . Figure 28 shows the upper limit on p as a function of My.
The solid line shows the observed 95% upper limit on u, that is that value of p for which
the observed value of C'Lg (given by eq. 228) is equal to 5%. The dashed line shows the
expected 95% upper limit, based on the median value of ¢; (according to eq. 229).
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FIGURE 29. Best estimate of the signal strength with a confidence inter-
val of 1 std.deviation as a function of Mpy. For all the excluded region,
the result is compatible with 0. In the signal region i deviates from the
Standard Model expected value of 1 by slightly more than 1 st. devia-
tion.(taken from ATLAS collaboration, Phys.Lett. B716 (2012) 1-29)

7.6.5. Signal Strength. Figure 29 shows the best value of the signal strength p as a
function of My . For each mass value, the profile likelihood ratio (eq. 207) is minimized
with respect to u, and a central confidence interval with a probability content of 68.3%



