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The question is how to translate this result in an upper limit. Let’s consider the two
approaches, in both cases the likelihood function is a gaussian with � = 30 eV2.

In the frequentist approach, the 95% CL upper limit is the value ofm2, let’s call itm2
up

such that if m2
t = m2

up, the probability to get a value lower than the one experimentally
found of -54 eV2, is 5%. We obtain m2 < 4.6 eV2. The same argument for a 90% CL
gives the quite ”disturbing” result m2 < �16 eV2.

In the bayesian approach it is possible to constraint m2
t to be positive by using a prior

⇡(m2
t )constant for m

2
t > 0 and 0 for m2

t < 0. From the Bayes theorem the resulting pdf
of m2

t is:

(202) p(m2
t /m

2) =
L(m2/m2

t )⇡(m
2
t )R

dm2
tL(m

2/m2
t )

The 95% CL upper limit is m2
t < 34 eV2 (m2

t < 27 eV2 at 90% CL).
The construction of the upper limit is shown in fig.21 for both approaches.
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Figure 21. Example of the square neutrino mass. Construction of the
upper limit in the frequentist approach (left plot) and in the bayesian
approach (right plot). (left) The red gaussian is the experimental like-
lihood, the blue gaussian corresponds to the 95% CL upper limit that
leaves 5% of possible the experiment outcomes below the present experi-
mental average. (right) The blue curve is the result of the Bayes theorem
when a prior forcing to positive values is applied (eq.202).

7.4. A modified frequentist approach: the CLs method. Now we consider a
method, developed in the last years and applied in many analyses especially from LHC
experiments, including the search for the Higgs boson. It is the modified frequentist
approach to the problem of setting upper/lower limits in search experiments.
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7.4.1. The test statistics. A selection procedure has been applied and for the N selected
events an histogram of the variable x (e.g. an invariant mass) is done with M bins of size
�x. Let’s call ni the number of events in the bin i and yi the number of expected events
in the same bin. yi will be the sum of a number of events due to all known processes
based on the Standard Model bi that we call background and of a number of events due
to the searched particle or new phenomenon, si that we call signal. So we write:

(203) yi = µsi + bi

where we have multiplied the number of signal events by a quantity µ that we call signal
strength that has the following properties: µ = 1 corresponds to the theory expectation,
µ = 0 corresponds to no e↵ect at all, any other value corresponds to a di↵erent rate for
the theory. If we call �th the expected cross-section according to the searched theory,
and � the actual observed cross-section:

(204) µ =
�

�th

Following sect. 6.6 we can write the likelihood function for this histogram:

(205) L(n/µ, ✓) =
MY

i=1

(µsi + bi)nie�(µs
i

+b
i

)

ni!

where we have separated the parameter µ from all the other parameters ✓. µ is the
parameter on which we are interested in making our inference (e.g. estimating an interval
for it) while all other parameters are the nuisance parameters: as already stated, we have
to evaluate them but they are less interesting. The nuisance parameters can be either
known or estimated by MC or, in many cases they have to be evaluated from the data
themselves. From this point of view the technique of the control regions can be very
useful. It consists in selecting events with a background-enriched selection34 and,
once counted, in transferring them to the signal region. This transfer makes use of
”transfer factors” that have to be evaluated based on Montecarlo. The control regions
can be also used to constrain the nuisance parameters in such a way to reduce their
uncertainty and hence to reduce their impact on the final result on µ. The control
regions can be considered as K additional bins35 with contents mj , with j=1,...,K and
expected values E[mj ] = uj(✓) depending on the nuisance parameters (and not on µ),
so that the likelihood can be rewritten as:

(206) L(n/µ, ✓) =
MY

i=1

(µsi + bi)nie�(µs
i

+b
i

)

ni!

KY

j=1

u
m

j

j e�u
j

mj !

Any constraint on the nuisance parameters can be added as additional terms to ac-
count for systematic uncertainties. For example the expected number of signal events
si depends on the e�ciency for signal events, on the integrated luminosity and on the

34A background-enriched selection is designed in such a way that the probability that signal events
are selected is very low, possibly negligible, so that only Standard Model predictable events are present.
A typical approach consists in reverting one or more cuts of the baseline selection.

35The side-bands defined in sect.4 are an example of background-enriched sample, and are widely
used to constraint the background average value in the signal region.
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theory uncertainties. All these are sources of systematic uncertainties that will a↵ect
the resulting value of µ and its uncertainty, if properly added to the likelihood.

Starting from eq.206, or any similar likelihood we can define the test statistics qµ:

(207) qµ = �2 ln
L(µ, ˆ̂✓)

L(µ̂, ✓̂)

Here we have first of all omitted for simplicity from the arguments of L the ni (so that
we now consider L a function of the parameters) and we have introduced the following

symbols: µ̂ and ✓̂ are the best values of the parameters obtained by maximizing L; ˆ̂✓ are
the values of the nuisance parameters obtained by maximizing L at µ fixed. The test
statistics defined in eq. 207 is a function of µ and is called profile likelihood ratio. Its
value, once plotted as a function of µ shows the behavior of the likelihood for di↵erent
possibile values of the parameter.

In the following the notation f(qµ/µ
0
) is used. It represents the pdf of the test statistics

qµ (defined in eq. 207) for a sample of simulated events generated assuming µ = µ
0
.

The Wilks theorem (see sect.5) has the consequence that under general hypotheses
and in the large sample limit, since qµ is a likelihood ratio, the pdf f(qµ/µ) has a �2

distribution with 1 degree of freedom. In particular the distribution of q0 for a sample
of purely background simulated events has a �2

1 pdf. It is interesting to notice that a �2
1

variable is essentially the square of a standard gaussian variable:

(208) �2
1 =

✓
x� µ

�

◆2

so that its square root is a standard gaussian variable. This allows to use the quantity

(209)
p
q0 =

vuut�2 ln
L(0, ˆ̂✓)

L(µ̂, ✓̂)

as a measure, in number of standard deviation, of the agreement of the data with the
null hypothesis. Such a quantity is used in many circumstances to define the statis-
tical significance that can be reached by an experiment to reject the background-only
hypothesis. The ”score function” defined by eq.59 is an application of this formula.

7.4.2. Discovery. In order to falsify a null hypothesis H0 we need to test the background-
only hypothesis. This can be done by using the test statistics q0, that is eq. 207 for
µ = 0

(210) q0 = �2 ln
L(0, ˆ̂✓)

L(µ̂, ✓̂)

If we call qobs0 the value of q0 obtained using the data, we can easily define a p-value

(211) p0 =

Z 1

qobs0

f(q0/0)dq0

that, for what we have seen in the previous paragraph, is essentially a �2 test. If p0 is
below the defined limit we falsify the hypothesis and we have done the discovery.

Define	
  the	
  test	
  sta8s8cs	
  

64

theory uncertainties. All these are sources of systematic uncertainties that will a↵ect
the resulting value of µ and its uncertainty, if properly added to the likelihood.

Starting from eq.206, or any similar likelihood we can define the test statistics qµ:

(207) qµ = �2 ln
L(µ, ˆ̂✓)

L(µ̂, ✓̂)

Here we have first of all omitted for simplicity from the arguments of L the ni (so that
we now consider L a function of the parameters) and we have introduced the following

symbols: µ̂ and ✓̂ are the best values of the parameters obtained by maximizing L; ˆ̂✓ are
the values of the nuisance parameters obtained by maximizing L at µ fixed. The test
statistics defined in eq. 207 is a function of µ and is called profile likelihood ratio. Its
value, once plotted as a function of µ shows the behavior of the likelihood for di↵erent
possibile values of the parameter.

In the following the notation f(qµ/µ
0
) is used. It represents the pdf of the test statistics

qµ (defined in eq. 207) for a sample of simulated events generated assuming µ = µ
0
.

The Wilks theorem (see sect.5) has the consequence that under general hypotheses
and in the large sample limit, since qµ is a likelihood ratio, the pdf f(qµ/µ) has a �2

distribution with 1 degree of freedom. In particular the distribution of q0 for a sample
of purely background simulated events has a �2

1 pdf. It is interesting to notice that a �2
1

variable is essentially the square of a standard gaussian variable:

(208) �2
1 =

✓
x� µ

�

◆2

so that its square root is a standard gaussian variable. This allows to use the quantity

(209)
p
q0 =

vuut�2 ln
L(0, ˆ̂✓)

L(µ̂, ✓̂)

as a measure, in number of standard deviation, of the agreement of the data with the
null hypothesis. Such a quantity is used in many circumstances to define the statis-
tical significance that can be reached by an experiment to reject the background-only
hypothesis. The ”score function” defined by eq.59 is an application of this formula.

7.4.2. Discovery. In order to falsify a null hypothesis H0 we need to test the background-
only hypothesis. This can be done by using the test statistics q0, that is eq. 207 for
µ = 0

(210) q0 = �2 ln
L(0, ˆ̂✓)

L(µ̂, ✓̂)

If we call qobs0 the value of q0 obtained using the data, we can easily define a p-value

(211) p0 =

Z 1

qobs0

f(q0/0)dq0

that, for what we have seen in the previous paragraph, is essentially a �2 test. If p0 is
below the defined limit we falsify the hypothesis and we have done the discovery.

64

theory uncertainties. All these are sources of systematic uncertainties that will a↵ect
the resulting value of µ and its uncertainty, if properly added to the likelihood.

Starting from eq.206, or any similar likelihood we can define the test statistics qµ:

(207) qµ = �2 ln
L(µ, ˆ̂✓)

L(µ̂, ✓̂)

Here we have first of all omitted for simplicity from the arguments of L the ni (so that
we now consider L a function of the parameters) and we have introduced the following

symbols: µ̂ and ✓̂ are the best values of the parameters obtained by maximizing L; ˆ̂✓ are
the values of the nuisance parameters obtained by maximizing L at µ fixed. The test
statistics defined in eq. 207 is a function of µ and is called profile likelihood ratio. Its
value, once plotted as a function of µ shows the behavior of the likelihood for di↵erent
possibile values of the parameter.

In the following the notation f(qµ/µ
0
) is used. It represents the pdf of the test statistics

qµ (defined in eq. 207) for a sample of simulated events generated assuming µ = µ
0
.

The Wilks theorem (see sect.5) has the consequence that under general hypotheses
and in the large sample limit, since qµ is a likelihood ratio, the pdf f(qµ/µ) has a �2

distribution with 1 degree of freedom. In particular the distribution of q0 for a sample
of purely background simulated events has a �2

1 pdf. It is interesting to notice that a �2
1

variable is essentially the square of a standard gaussian variable:

(208) �2
1 =

✓
x� µ

�

◆2

so that its square root is a standard gaussian variable. This allows to use the quantity

(209)
p
q0 =

vuut�2 ln
L(0, ˆ̂✓)

L(µ̂, ✓̂)

as a measure, in number of standard deviation, of the agreement of the data with the
null hypothesis. Such a quantity is used in many circumstances to define the statis-
tical significance that can be reached by an experiment to reject the background-only
hypothesis. The ”score function” defined by eq.59 is an application of this formula.

7.4.2. Discovery. In order to falsify a null hypothesis H0 we need to test the background-
only hypothesis. This can be done by using the test statistics q0, that is eq. 207 for
µ = 0

(210) q0 = �2 ln
L(0, ˆ̂✓)

L(µ̂, ✓̂)

If we call qobs0 the value of q0 obtained using the data, we can easily define a p-value

(211) p0 =

Z 1

qobs0

f(q0/0)dq0

that, for what we have seen in the previous paragraph, is essentially a �2 test. If p0 is
below the defined limit we falsify the hypothesis and we have done the discovery.



CLs	
  method	
  

64

theory uncertainties. All these are sources of systematic uncertainties that will a↵ect
the resulting value of µ and its uncertainty, if properly added to the likelihood.

Starting from eq.206, or any similar likelihood we can define the test statistics qµ:

(207) qµ = �2 ln
L(µ, ˆ̂✓)

L(µ̂, ✓̂)

Here we have first of all omitted for simplicity from the arguments of L the ni (so that
we now consider L a function of the parameters) and we have introduced the following

symbols: µ̂ and ✓̂ are the best values of the parameters obtained by maximizing L; ˆ̂✓ are
the values of the nuisance parameters obtained by maximizing L at µ fixed. The test
statistics defined in eq. 207 is a function of µ and is called profile likelihood ratio. Its
value, once plotted as a function of µ shows the behavior of the likelihood for di↵erent
possibile values of the parameter.

In the following the notation f(qµ/µ
0
) is used. It represents the pdf of the test statistics

qµ (defined in eq. 207) for a sample of simulated events generated assuming µ = µ
0
.

The Wilks theorem (see sect.5) has the consequence that under general hypotheses
and in the large sample limit, since qµ is a likelihood ratio, the pdf f(qµ/µ) has a �2

distribution with 1 degree of freedom. In particular the distribution of q0 for a sample
of purely background simulated events has a �2

1 pdf. It is interesting to notice that a �2
1

variable is essentially the square of a standard gaussian variable:

(208) �2
1 =

✓
x� µ

�

◆2

so that its square root is a standard gaussian variable. This allows to use the quantity

(209)
p
q0 =

vuut�2 ln
L(0, ˆ̂✓)

L(µ̂, ✓̂)

as a measure, in number of standard deviation, of the agreement of the data with the
null hypothesis. Such a quantity is used in many circumstances to define the statis-
tical significance that can be reached by an experiment to reject the background-only
hypothesis. The ”score function” defined by eq.59 is an application of this formula.

7.4.2. Discovery. In order to falsify a null hypothesis H0 we need to test the background-
only hypothesis. This can be done by using the test statistics q0, that is eq. 207 for
µ = 0

(210) q0 = �2 ln
L(0, ˆ̂✓)

L(µ̂, ✓̂)

If we call qobs0 the value of q0 obtained using the data, we can easily define a p-value

(211) p0 =

Z 1

qobs0

f(q0/0)dq0

that, for what we have seen in the previous paragraph, is essentially a �2 test. If p0 is
below the defined limit we falsify the hypothesis and we have done the discovery.



CLs	
  method	
  

64

theory uncertainties. All these are sources of systematic uncertainties that will a↵ect
the resulting value of µ and its uncertainty, if properly added to the likelihood.

Starting from eq.206, or any similar likelihood we can define the test statistics qµ:

(207) qµ = �2 ln
L(µ, ˆ̂✓)

L(µ̂, ✓̂)

Here we have first of all omitted for simplicity from the arguments of L the ni (so that
we now consider L a function of the parameters) and we have introduced the following

symbols: µ̂ and ✓̂ are the best values of the parameters obtained by maximizing L; ˆ̂✓ are
the values of the nuisance parameters obtained by maximizing L at µ fixed. The test
statistics defined in eq. 207 is a function of µ and is called profile likelihood ratio. Its
value, once plotted as a function of µ shows the behavior of the likelihood for di↵erent
possibile values of the parameter.

In the following the notation f(qµ/µ
0
) is used. It represents the pdf of the test statistics

qµ (defined in eq. 207) for a sample of simulated events generated assuming µ = µ
0
.

The Wilks theorem (see sect.5) has the consequence that under general hypotheses
and in the large sample limit, since qµ is a likelihood ratio, the pdf f(qµ/µ) has a �2

distribution with 1 degree of freedom. In particular the distribution of q0 for a sample
of purely background simulated events has a �2

1 pdf. It is interesting to notice that a �2
1

variable is essentially the square of a standard gaussian variable:

(208) �2
1 =

✓
x� µ

�

◆2

so that its square root is a standard gaussian variable. This allows to use the quantity

(209)
p
q0 =

vuut�2 ln
L(0, ˆ̂✓)

L(µ̂, ✓̂)

as a measure, in number of standard deviation, of the agreement of the data with the
null hypothesis. Such a quantity is used in many circumstances to define the statis-
tical significance that can be reached by an experiment to reject the background-only
hypothesis. The ”score function” defined by eq.59 is an application of this formula.

7.4.2. Discovery. In order to falsify a null hypothesis H0 we need to test the background-
only hypothesis. This can be done by using the test statistics q0, that is eq. 207 for
µ = 0

(210) q0 = �2 ln
L(0, ˆ̂✓)

L(µ̂, ✓̂)

If we call qobs0 the value of q0 obtained using the data, we can easily define a p-value

(211) p0 =

Z 1

qobs0

f(q0/0)dq0

that, for what we have seen in the previous paragraph, is essentially a �2 test. If p0 is
below the defined limit we falsify the hypothesis and we have done the discovery.
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We anticipate here that another score function is used in several applications based
on the likelihood ratio test (see sect.7 and discussion of eq.209):

(59)

s

2(S +B) ln

✓
1 +

S

B

◆
� 2S

The same considerations done for the other score functions apply to the resulting nu-
merical value of this quantity that also depend on S and B.
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Figure 7. Several quantities are shown as a function of the possible
value of tcut, the cut on the BDT variable. Blue and red curves show
respectively the signal and background e�ciency while the green curve is
the score function that, in this case, has a maximum around tcut = 0.25
although with a very low significance (below 1). (taken from A.Calandri
thesis, Sapienza University, A.A. 2011-2012)

3.5. Sample purity and contamination. Once the selection has been defined we are
left with a sample of N candidate events. If we take one of these events randomly,
how big is the probability that it is a ”signal event”? We have to understand well this
question. In fact all the candidate events are equal from the point of view of the selection.
If they had some di↵erences we could have used the di↵erence to select the events, but
at the end of the selection all of them are equal. So that we cannot distinguish signal
and background events on an event-by-event basis, but only in a ”statistical” sense,
by evaluating the probability that a given event is a signal event.
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�  We need a criterium to say ok, we have seen the signal or our 
data are compatible with the background. 

�  Which statistical uncertainty have we on NX ?  
� Assume a Poisson statistics to describe Ncand negligible 

uncertainty on ε. We call (using more “popular” symbols): 

� N = Ncand 

�  B =Nb  
�  S=N-B = Nx 

 Additional assumption: σ2(B)<< N 
σ(S)/S is the relative uncertainty on S, its inverse is “how many 
st.devs. away from 0” ! S/√B when low signals on top of large bck 
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�  This quantity is the “significance” of the signal. The higher is 
S/σ(S) = S/√S+B , the larger is the number of std.dev. away 
from 0 of my measurement of S  (SCORE FUNCTION) 
�   S/√S+B < 3 probably I have not osserved any signal (my 

candidates can be simply a fluctuation of the background) 
�  3 <S/√S+B< 5  probably I have observed a signal (probability 

of a background fluctuation very small), however no definite 
conclusion, more data needed." evidence 

�  S/√S+B> 5 observation is accepted. " observation 
�  NB1: All this is “conventional” it can be discussed 
�  NB2: S/√S+B is an approximate figure, it relies on some 

assumptions (see previous slide).  
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7.4.3. Signal exclusion: CLs+b. We consider now how the test statistics shown in eq.
207 can be used for the exclusion of a given theory. Eq. 207 is rewritten with µ = 136

(212) q1 = �2 ln
L(1, ˆ̂✓)

L(µ̂, ✓̂)

The lower is q1, the more compatible the data are with the theory, and the less compatible
the data are with the pure background expectations. The pdf of q1 can be evaluated
starting from MC samples, either generated with µ = 1 or for samples of pure background
events generated with µ = 0. We call respectively f(q1/1) and f(q1/0) the two pdf’s. A
graphical example of these pdf’s is shown in Figure 22. The separation between the two
pdf’s determines the capability to discriminate the searched model with respect to the
background37.
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Figure 22. Example of q1 distributions in the two hypotheses, namely
µ = 1 and µ = 0. The separation between the two distributions indicate
the capability to discriminate the two hypotheses.

First we evaluate the sensitivity of the experiment. Before doing the measurement,
we want to determine, using the simulation, at which confidence level we can exclude the
signal hypothesis. This expected exclusion of the signal is an important parameter in
the design of the experiment itself and can be obtained using the Montecarlo simulation.
Let’s define how such a sensibility can be determined. With reference to Figure 23 we

36Alternative likelihood ratios can be used for this exclusion test, in particular the L(s + b)/L(b)
likelihood ratio is generally used giving very good performance based on the Neyman-Pearson lemma.

37All the considerations done for the test of hypotheses apply here in the same way.
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Figure 22. Example of q1 distributions in the two hypotheses, namely
µ = 1 and µ = 0. The separation between the two distributions indicate
the capability to discriminate the two hypotheses.

First we evaluate the sensitivity of the experiment. Before doing the measurement,
we want to determine, using the simulation, at which confidence level we can exclude the
signal hypothesis. This expected exclusion of the signal is an important parameter in
the design of the experiment itself and can be obtained using the Montecarlo simulation.
Let’s define how such a sensibility can be determined. With reference to Figure 23 we

36Alternative likelihood ratios can be used for this exclusion test, in particular the L(s + b)/L(b)
likelihood ratio is generally used giving very good performance based on the Neyman-Pearson lemma.

37All the considerations done for the test of hypotheses apply here in the same way.
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Figure 22. Example of q1 distributions in the two hypotheses, namely
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the capability to discriminate the two hypotheses.

First we evaluate the sensitivity of the experiment. Before doing the measurement,
we want to determine, using the simulation, at which confidence level we can exclude the
signal hypothesis. This expected exclusion of the signal is an important parameter in
the design of the experiment itself and can be obtained using the Montecarlo simulation.
Let’s define how such a sensibility can be determined. With reference to Figure 23 we

36Alternative likelihood ratios can be used for this exclusion test, in particular the L(s + b)/L(b)
likelihood ratio is generally used giving very good performance based on the Neyman-Pearson lemma.

37All the considerations done for the test of hypotheses apply here in the same way.

66

define q̃1 as the median of the f(q1/0) function38. This is a sort of average outcome
for a background-only experiment. The hatched area in Figure 23(a) corresponds to a
probability content that we call CLexp

s+b:
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Figure 23. For the same example of alternative hypotheses shown in
Fig. 22: construction of CLexp

s+b (upper plot) and of CLobs
s+b (lower plot).

In both cases the CL is given by the blue area. In the upper plot the
median q1 from background experiments is indicated as q̃1; in the lower
plot the q1 obtained by data is indicated as qobs1 .

(213) CLexp
s+b =

Z 1

q̃1

f(q1/1)dq1

38The use of the median rather than the mean, is motivated by the fact that we are interested in
evaluating p-values so that integrals of the pdf’s have to be considered.
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evaluating p-values so that integrals of the pdf’s have to be considered.
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that has the following meaning: it is the median CL with which we exclude the signal
in case of a background-only experiment. Clearly, the smaller is the CLexp

s+b obtained in
this way, the higher is the capability of the experiment to exclude the signal.

However, we have determined the median CL only. In actual background-only ex-
periments, we will have background fluctuations, in such a way that q1 values will be
obtained distributed according to f(q1/0). So we can evaluate an interval of confidence

levels, by repeating the procedure above for two positions of q1 , q̃(1)1 and q̃
(2)
1 such that

respectively:

Z q̃
(1)
1

�1
f(q1/0)dq1 =

1� �

2
(214)

Z q̃
(2)
1

�1
f(q1/0)dq1 =

1 + �

2
(215)

with e.g. � = 68.3% to have a gaussian one-std.deviation interval. Confidence levels are

then evaluated applying eq. 213 to q̃
(1)
1 and q̃

(2)
1 .

Up to now only the expected CL’s have been defined. Now we consider the CL that
is obtained once the data have been taken. After data taking, we get a value qobs1 . At
this point we evaluate directly

(216) CLobs
s+b =

Z 1

qobs1

f(q1/1)dq1

and this is the observed confidence level. If it is below, say 5% we exclude the signal
at 95% CL.

7.4.4. Signal exclusion: CLs. A problem in the procedure outlined in the previous sec-
tion has been put in evidence, and a correction to it, the so called modified frequentist
approach has been proposed. We discuss now this method, also called CLs method that
is now widely employed for exclusion of new physics signals.

Let’s consider the situation shown in Figure 24 where the two pdf’s f(q1/0) and
f(q1/1) have a large overlap signaling a small sensitivity. If we evaluate in this situation
CLexp

s+b we find a large value, so that we do not expect to be sensitive to exclusion.

However what happens if qobs1 is the one shown in the same Figure ? The observed
CLobs

s+b is well below 5% and the signal has to be excluded at 95% CL. But, are we sure

that we have to exclude it ? In the same Figure the quantity CLobs
b is reported:

(217) CLobs
b =

Z 1

qobs1

f(q1/0)dq1

that is also very small in this case. Apparently the signal is small and the background
”under-fluctuates”, so that qobs1 is scarcely compatible with the signal+background hy-
pothesis but also with the background-only hypothesis. So, we are excluding the signal,
essentially because the background has fluctuated.

In order to avoid this somehow unmotivated exclusion, the CLs procedure has been
defined. The idea is to use, as confidence level, the CLs quantity, either expected or
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is now widely employed for exclusion of new physics signals.

Let’s consider the situation shown in Figure 24 where the two pdf’s f(q1/0) and
f(q1/1) have a large overlap signaling a small sensitivity. If we evaluate in this situation
CLexp
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essentially because the background has fluctuated.
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define q̃1 as the median of the f(q1/0) function38. This is a sort of average outcome
for a background-only experiment. The hatched area in Figure 23(a) corresponds to a
probability content that we call CLexp

s+b:
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Figure 23. For the same example of alternative hypotheses shown in
Fig. 22: construction of CLexp

s+b (upper plot) and of CLobs
s+b (lower plot).

In both cases the CL is given by the blue area. In the upper plot the
median q1 from background experiments is indicated as q̃1; in the lower
plot the q1 obtained by data is indicated as qobs1 .

(213) CLexp
s+b =

Z 1

q̃1

f(q1/1)dq1

38The use of the median rather than the mean, is motivated by the fact that we are interested in
evaluating p-values so that integrals of the pdf’s have to be considered.
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Figure 24. Same construction of Fig. 23 for a situation where the
discrimination between the two hypotheses is particularly poor and the
overlap between the two distributions is high. The CLexp

s+b is high (up-
per plot) but for a particular experiment with a under fluctuation of the
background the CLobs

s+b can be small in such a way to reject the signal

hypothesis (lower plot). In the lower plot the magenta area shows CLobs
b

from which CLs is built. In this case using the CLs prescription rather
than the CLs+b one the signal is not rejected.

observed, defined as

(218) CLs =
CLs+b

CLb

rather than CLs+b. CLs is always larger than CLs+b so that this is a ”conservative
choice”. With this prescription it is more di�cult to exclude signals. In the example of
Figure 24, eq. 218 returns a value above 5% so that the signal is not excluded.
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The CLs method is also said modified frequentist approach. In fact, the confidence
interval obtained in this way has not the coverage properties required by the ”orthodox”
frequentist paradigm. So if we build a confidence interval with a CLs of ↵, the coverage
is in general larger than ↵, so that the Type-I errors are less than 1� ↵.

7.4.5. The upper limit. Using the same approach, upper limits on the signal strength
can be obtained. Let’s go back to the likelihood ratio given in eq. 207. qµ is a function
of µ, the profile likelihood ratio, with a minimum for µ = µ̂. Now we are interested in
determining that value of µ, let’s call it µ⇤ for which CLs is equal to 1� ↵.

For each value of µ the analysis illustrated above for the case µ = 1 has to be repeated.

So that we need the pdf’s f(qµ/µ) and f(qµ/0). From these pdf’s we get expected CL
(µ)
s+b,

CL
(µ)
b and hence CL

(µ)
s values. Then once qobsµ is obtained from the data, we get the

observed CL
(µ)
s :

CL
(µ)
s+b =

Z 1

qobs
µ

f(qµ/µ)dqµ(219)

CL
(µ)
b =

Z 1

qobs
µ

f(qµ/0)dqµ(220)

CL(µ)
s =

CL
(µ)
s+b

CLb
(µ)

(221)

By increasing µ, CL
(µ)
s decreases, and the value µ⇤ such that CL

(µ⇤)
s = 1�↵ is the upper

limit on µ at the required confidence level ↵.

7.5. The Look-Elsewhere e↵ect. Several analyses in elementary particle physics ex-
periments concern the inspection of an invariant mass distribution where a ”peak” over a
background is searched. For these kinds of searches, a distinction has to be done between
two di↵erent situations: when the searched peak is expected to appear at a well-defined
value of the mass, or when the search is done in the full mass range because the mass of
the searched particle is unknown. In case we are searching for a rare or forbidden decay
of a known particle, we look for a peak at the known particle mass in the invariant mass
spectrum of the searched for final state. On the other hand, if we are looking for a new
particle of unknown mass, never observed before, the peak has to be searched in the full
mass range.

Let’s now concentrate on the second situation. The probability to have a positive
event fluctuation at any point in the mass range is larger than the probability to have
the same fluctuation in a defined place. So, in order to make an assessment on the
discovery of a new particle, it is needed to evaluate such probability enhancement to
account properly possible event fluctuations in a large mass range. In order words, given
a local p0 we have to evaluate a global p0. The occurrence of this enhancement is
normally called Look-Elsewhere e↵ect.
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The CLs method is also said modified frequentist approach. In fact, the confidence
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two di↵erent situations: when the searched peak is expected to appear at a well-defined
value of the mass, or when the search is done in the full mass range because the mass of
the searched particle is unknown. In case we are searching for a rare or forbidden decay
of a known particle, we look for a peak at the known particle mass in the invariant mass
spectrum of the searched for final state. On the other hand, if we are looking for a new
particle of unknown mass, never observed before, the peak has to be searched in the full
mass range.

Let’s now concentrate on the second situation. The probability to have a positive
event fluctuation at any point in the mass range is larger than the probability to have
the same fluctuation in a defined place. So, in order to make an assessment on the
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value of the mass, or when the search is done in the full mass range because the mass of
the searched particle is unknown. In case we are searching for a rare or forbidden decay
of a known particle, we look for a peak at the known particle mass in the invariant mass
spectrum of the searched for final state. On the other hand, if we are looking for a new
particle of unknown mass, never observed before, the peak has to be searched in the full
mass range.
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event fluctuation at any point in the mass range is larger than the probability to have
the same fluctuation in a defined place. So, in order to make an assessment on the
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Look Elsewhere Effect
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q0, fix = −2ln L(µ = 0)
L(µ̂s(30)+ b)

f (q0, fix |H0 ) ~ χ 2

pfix = q fix ,obs

∞

∫ f (q0 |H0 )dq0

q0, fix,obs
pfix answers the question :
What is the probability to have a fluctuation
as or bigger than the observed one?
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Look Elsewhere Effect
•Or this? 

•Obviously 
NOT! 
•ALL THESE 
“SIGNALS” ARE 
BG 
FLUCTUATIONS
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The right question :
What is the probability to have a fluctuation
as or bigger than the observed one
ANYWHERE in the mass search range?
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It is reasonable to think that, if �M is the mass range and �M is the experimental
mass resolution39 the enhancement LEE will be:

(222) LEE =
pglobal0

plocal0

⇠ �M

�M

In fact the mass range can be considered as given by a number �M/�M of independent
observations.

More specifically, if q0 is used as test statistics for the particle discovery, this quantity
will be a function of the mass q0(m). Given a specified CL ↵ corresponding to a threshold
c on q0, the Look-Elsewhere enhancement, also called trial factor is defined as:

(223) LEE =
p(qmax

0 (m) > c)

p(q0(m) > c)

where qmax
0 (m) is the maximum value of the test statistics in the full explored range.

The trial factor can be evaluated in several ways. However the results do not di↵er too
much from the simple evaluation given in eq. 222.

A generally accepted estimate is

(224) LEE =
1

3

�M

�M
Zfix

where Zfix is the local ”significance” in number of gaussian standard deviations of the
assumed threshold Zfix ⇠

p
c. This becomes equal to eq. 222 for Zfix = 3, that is for a

3 std. deviation local signal.
Let’s consider a resonance search on a 100 GeV wide mass range where a 3� signal is

found at a given mass, with a resolution of 2 GeV. If we apply eq. 224 we get a trial of
50, so that: plocal0 = 1.34 ⇥ 10�3 ! pglobal0 = 6.7%. On the other hand, in case of a 5�

local e↵ect, the trial is 80 but plocal0 = 2.86⇥ 10�7 ! pglobal0 = 2.3⇥ 10�5. This explains
why, in the search for an unknown particle, a 5� e↵ect is normally required, a 3� one
not being considered su�cient.

7.6. Example: the Higgs observation. The methods described in the previous sec-
tion are well illustrated by the Standard Model Higgs exclusion and discovery analysis.
In the following, the main plots of the ATLAS analysis published in July 2012, at the
time of the first announce of the Higgs boson observation are reported and described.

The plots reported below refer to the ”combined analysis” using the most sensitive
channels only. A profile likelihood ratio method is used, the likelihood being the product
of the likelihoods of the single channels. The likelihood is built combining the channels
and including several constraints on the nuisance parameters so that the obtained results
take directly into account all systematic e↵ects. The signal strength µ together with some
of the nuisance parameters are common in the likelihoods, other parameters are related
to single channels only.

In the plots each variable is reported as a function of the Higgs Mass MH . For each
value of the Higgs Mass, the shape of the Higgs mass reconstructed in each channel,

39In case the mass resolution is smaller than the resonance width, �
M

is the resonance width. In
intermediate cases it will be a combination of the two.
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It is reasonable to think that, if �M is the mass range and �M is the experimental
mass resolution39 the enhancement LEE will be:

(222) LEE =
pglobal0

plocal0

⇠ �M

�M

In fact the mass range can be considered as given by a number �M/�M of independent
observations.

More specifically, if q0 is used as test statistics for the particle discovery, this quantity
will be a function of the mass q0(m). Given a specified CL ↵ corresponding to a threshold
c on q0, the Look-Elsewhere enhancement, also called trial factor is defined as:

(223) LEE =
p(qmax

0 (m) > c)

p(q0(m) > c)

where qmax
0 (m) is the maximum value of the test statistics in the full explored range.

The trial factor can be evaluated in several ways. However the results do not di↵er too
much from the simple evaluation given in eq. 222.

A generally accepted estimate is

(224) LEE =
1

3

�M

�M
Zfix

where Zfix is the local ”significance” in number of gaussian standard deviations of the
assumed threshold Zfix ⇠

p
c. This becomes equal to eq. 222 for Zfix = 3, that is for a

3 std. deviation local signal.
Let’s consider a resonance search on a 100 GeV wide mass range where a 3� signal is

found at a given mass, with a resolution of 2 GeV. If we apply eq. 224 we get a trial of
50, so that: plocal0 = 1.34 ⇥ 10�3 ! pglobal0 = 6.7%. On the other hand, in case of a 5�

local e↵ect, the trial is 80 but plocal0 = 2.86⇥ 10�7 ! pglobal0 = 2.3⇥ 10�5. This explains
why, in the search for an unknown particle, a 5� e↵ect is normally required, a 3� one
not being considered su�cient.

7.6. Example: the Higgs observation. The methods described in the previous sec-
tion are well illustrated by the Standard Model Higgs exclusion and discovery analysis.
In the following, the main plots of the ATLAS analysis published in July 2012, at the
time of the first announce of the Higgs boson observation are reported and described.

The plots reported below refer to the ”combined analysis” using the most sensitive
channels only. A profile likelihood ratio method is used, the likelihood being the product
of the likelihoods of the single channels. The likelihood is built combining the channels
and including several constraints on the nuisance parameters so that the obtained results
take directly into account all systematic e↵ects. The signal strength µ together with some
of the nuisance parameters are common in the likelihoods, other parameters are related
to single channels only.

In the plots each variable is reported as a function of the Higgs Mass MH . For each
value of the Higgs Mass, the shape of the Higgs mass reconstructed in each channel,

39In case the mass resolution is smaller than the resonance width, �
M

is the resonance width. In
intermediate cases it will be a combination of the two.
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Figure 25. Discovery plot. Observed (solid) and expected (dashed)
local p0s as a function of the Higgs mass. The corresponding gaussian
significance is shown in the right hand scale. At MH=125 GeV a large
and narrow fluctuation is observed. The probability that the background
only can give rise to an equal or larger fluctuation than the one observed,
is of order 10�9 and corresponds to slightly less than 6 gaussian standard
deviations. The observed fluctuation is larger than the one expected
for a Standard Model Higgs boson. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29)

and the relative weight of each channel in the combination changes, hence a↵ecting the
likelihood value.

The notation developed in the previous section is used here. In particular we refer to
the general test statistics qµ defined in eq. 207, and we’ll make use of the two particular
realizations of the test statistics q0 and q1 corresponding respectively to no signal and
Standard Model signal.

7.6.1. Local p0. Figure 25 shows the local p0. For each value of MH , the observed p0
(solid line) is defined by:

(225) pobs0 =

Z 1

qobs0

f(q0/0)dq0

corresponding to the p-value for the background-only hypothesis. qobs0 is the q0 value
obtained by the data. Small values of p0 correspond to regions of the spectrum where the
background-only hypothesis has small chance. This is the typical ”discovery plot”. The
presence of a negative peak signals clearly an e↵ect not described by the background.
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The dashed line shows the ”expected” p0. It is defined by:

(226) pexp0 =

Z 1

q̃0

f(q0/0)dq0

where q̃0 is the median q0 of a MC sample of pseudo-experiments all with µ = 1. The
meaning of pexp0 is the following: the p0 that we would obtain at each mass if there
was a SM signal with µ = 1 at that mass. The lower is pexp0 the more sensitive is the
experiment to the signal.

Looking at figure 25 one understands the following: at MH = 125 GeV a very low
pobs0 is observed, smaller than pexp0 at the same mass. This means that the data suggest
a value of µ larger than 1.

Figure 26. Same as figure 25 but expressed in terms of significance,
namely in number of gaussian standard deviations. (taken from ATLAS
collaboration, Phys.Lett. B716 (2012) 1-29)

7.6.2. Local significance. Figure 26 shows the local significance. This plot contains
essentially the same informations of figure 25, with the p0s translated in significance,
namely in ”number of gaussian std.deviations”. The relation between p0 value and
significance Z (number of standard deviations) is

(227) p0 =

Z 1

Z
G(x/0, 1)dx

where G(x/0, 1) is a standardized gaussian distribution. The most common values are
reported in Table 3. At MH=125 GeV a significance of 5.9� is observed. The global
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significance is 5.1� if we consider the full explored mass range 110÷600 GeV. It is 5.3�
if we consider only the mass range not yet excluded before the measurement 110÷150
GeV.

Table 3. For a number of standard deviations between 1 and 7, the cor-
responding gaussian p0 is reported (see eq. 227). The probability to have
a fluctuation equal or larger than the one observed can be equivalently
expressed using both ”metrics”.

significance Z p0
1 15.8%
2 2.27%
3 1.34⇥10�3

4 3.16⇥10�5

5 2.86⇥10�7

6 9.87⇥10�10

7 1.28⇥10�12

7.6.3. CLs. Figure 27 shows the values of CLs as a function of MH . We repeat here the
definitions of the observed and expected CLss.

CLobs
s =

R1
qobs1

f(q1/1)dq1
R1
qobs1

f(q1/0)dq1
(228)

CLexp
s =

R1
q̃1

f(q1/1)dq1R1
q̃1

f(q1/0)dq1
(229)

where, q̃1 is the median q1 of a MC sample of pseudo.experiments all with µ = 0. Notice
that the denominator of eq. 229 is by definition equal to 1/2.

This is the first exclusion plot, since all the values of MH with a CLs below e.g. 5%
are excluded at the 95% CL. Almost the full mass range considered by the experiment
is excluded apart from the region around the signal.

7.6.4. Upper limits on µ. Figure 28 shows the upper limit on µ as a function of MH .
The solid line shows the observed 95% upper limit on µ, that is that value of µ for which
the observed value of CLs (given by eq. 228) is equal to 5%. The dashed line shows the
expected 95% upper limit, based on the median value of q1 (according to eq. 229).

The two coloured bands40 represent ± 1 and 2 std.deviations variations of the expected
upper limit, evaluated according to the method described with eqs. 214-215.

7.6.5. Signal Strength. Figure 29 shows the best value of the signal strength µ as a
function of MH . For each mass value, the profile likelihood ratio (eq. 207) is minimized
with respect to µ, and a central confidence interval with a probability content of 68.3%
is evaluated. The size of the interval is evaluated according to the prescription given in
eq. 130 (see also insert in the figure). The value of µ̂ at MH = 125 GeV is the best
estimate of the signal strength of the observed signal. Notice that the central value of µ̂

40The yellow and green colors is the reason why these plots are also called ”Brazilian plots”.
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Figure 27. Exclusion plot. The CLs is plotted vs. MH . For all the
masses where CLs is below a fixed confidence level (95% and 99% are
explicitly indicated in the plot), the Standard Model signal is excluded
at that CL. Using a 95% limit only the region around 125 GeV is not
excluded. (taken from ATLAS collaboration, Phys.Lett. B716 (2012)
1-29)

is larger than 1 as expected based on the local p0 plot. The di↵erence with the Standard
Model value µ = 1 is slightly larger than 1 std. deviation.
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Figure 28. Exclusion ”Brazilian plot”. Observed (solid) and ex-
pected(dashed) 95% CL upper limits on the signal strength µ as a
function of MH . ±1 (green) and ±2 (yellow) std.deviations bands are
also shown for the expected limit. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29)

8. Kinematic fits

8.1. Introduction. We go back to the subject described in the first section, namely
the event selection, describing an additional method used in several circumstances that
consists in applying a fitting procedure to each single event: the kinematic fit. As in
all the fits described above, even in this case the aim is two-fold: define a test statistics
that can be used to select the event and at the same time evaluate unknown or poorly
known kinematic parameters of the event.

Let’s consider the reaction41 e+e� ! � ! ⌘� with the subsequent decay ⌘ ! ��.
The final state consists of three photons coming from the same point in the space, the
interaction vertex42. The detector allows to select events with three photons and to
measure for each of them, energy, flight direction and eventually time of flight, all with
some resolutions. Not all the selected 3-photons events are � ! ⌘� decays, several
other processes can mimic this decay providing background sources. However we know
that, if the 3-photon final state is really due to the reaction we are hypothesizing, some
conditions should be verified. First of all the quadri-momentum conservation should

41This example is taken from the KLOE experiment.
42We assume that the � is produced at rest in the laboratory frame and the decay length of the ⌘

meson is negligible.
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where, q̃1 is the median q1 of a MC sample of pseudo.experiments all with µ = 0. Notice
that the denominator of eq. 229 is by definition equal to 1/2.

This is the first exclusion plot, since all the values of MH with a CLs below e.g. 5%
are excluded at the 95% CL. Almost the full mass range considered by the experiment
is excluded apart from the region around the signal.

7.6.4. Upper limits on µ. Figure 28 shows the upper limit on µ as a function of MH .
The solid line shows the observed 95% upper limit on µ, that is that value of µ for which
the observed value of CLs (given by eq. 228) is equal to 5%. The dashed line shows the
expected 95% upper limit, based on the median value of q1 (according to eq. 229).

The two coloured bands40 represent ± 1 and 2 std.deviations variations of the expected
upper limit, evaluated according to the method described with eqs. 214-215.

7.6.5. Signal Strength. Figure 29 shows the best value of the signal strength µ as a
function of MH . For each mass value, the profile likelihood ratio (eq. 207) is minimized
with respect to µ, and a central confidence interval with a probability content of 68.3%
is evaluated. The size of the interval is evaluated according to the prescription given in
eq. 130 (see also insert in the figure). The value of µ̂ at MH = 125 GeV is the best
estimate of the signal strength of the observed signal. Notice that the central value of µ̂

40The yellow and green colors is the reason why these plots are also called ”Brazilian plots”.
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significance is 5.1� if we consider the full explored mass range 110÷600 GeV. It is 5.3�
if we consider only the mass range not yet excluded before the measurement 110÷150
GeV.

Table 3. For a number of standard deviations between 1 and 7, the cor-
responding gaussian p0 is reported (see eq. 227). The probability to have
a fluctuation equal or larger than the one observed can be equivalently
expressed using both ”metrics”.
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Figure 29. Best estimate of the signal strength with a confidence inter-
val of 1 std.deviation as a function of MH . For all the excluded region,
the result is compatible with 0. In the signal region µ̂ deviates from the
Standard Model expected value of 1 by slightly more than 1 st. devia-
tion.(taken from ATLAS collaboration, Phys.Lett. B716 (2012) 1-29)

hold, namely:

E�1 + E�2 + E�3 =
p
s(230)

~p�1 + ~p�2 + ~p�3 = 0(231)

with [E�
i

, ~p�
i

] being the i-th photon quadri-momentum and s is the square of the center
of mass energy. Then, by combining two out of the three photons an invariant mass
equal to the ⌘ mass should be found. We have three choices for the photon pairings, and
for one of them, say the i-j pair, we have:

(232) E�
i

E�
j

(1� cos�↵ij) = M2
⌘

�↵ij being the angular separation between the two photons. Eqs. 230, 231 and 232
provide three conditions that the kinematics of the decay have to match if the decay is
the one we are hypothesizing. The third should be verified for at least one of the three
possible photon combinations.

The kinematic fit is a method that allows to use the constraints to make a fit of the
event. The outcome of such a fit will be a test statistics, normally a �2 allowing to
test the final state hypothesis (the 3-photon event is an ⌘� final state or a background
event) and estimates of the particle momenta and energies improved with respect to the
original measurements.
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