Neutrino oscillation

Pontecorvo
Sov.Phys.JETP 6:429,1957
$\frac{\text { Sov.Phys.JETP }}{\text { 26:984-988,1968 }}$

Maki, Nakagawa, Sakata

Prog.Theor.Phys. 28, 870 (1962)

- if neutrinos have mass...
- a neutrino that is produced as a v_{μ}
- (e.g. $\left.\pi^{+} \rightarrow \mu^{+} v_{\mu}\right)$
- might some time later be observed as a v_{e}
- (e.g. $\left.v_{e} n \rightarrow e^{-} p\right)$

Neutrino Basics

- Weakly interacting isospin partners of charged leptons

Neutral current

Charged current

- Standard model includes three massless stable neutrinos, but...
a) The weak neutrinos must be re-defined by a relation

$$
\begin{align*}
& \nu_{e}=\nu_{1} \cos \delta-\nu_{2} \sin \delta \\
& \nu_{\mu}=\nu_{1} \sin \delta+\nu_{2} \cos \delta .
\end{align*}
$$

As early as fifty-two years ago, discussions of massive neutrinos and oscillations had begun!

Maki, Nakagawa, Sakata
(June 1962)

The leptonic weak current (2.9) turns out to be of the same form with (2•1). In the present case, however, weak neutrinos are not stable due to the occurrence of a virtual transmutation $\nu_{\rho} \rightleftarrows \nu_{\mu}$ induced by the interaction (2•10). If the mass difference between ν_{2} and ν_{1}, i.e. $\left|m_{\nu_{2}}-m_{\nu_{1}}\right|=m_{\nu_{2}}{ }^{*)}$ is assumed to be a few Mev , the transmutation time $T\left(\nu_{\mathrm{c}} \rightleftarrows \nu_{\mu}\right)$ becomes $\sim 10^{-18} \mathrm{sec}$ for fast neutrinos with a momentum of $\sim \mathrm{Bev} / \mathrm{c}$. Therefore, a chain of reactions such $\mathrm{as}^{10)}$

$$
\begin{align*}
& \pi^{+} \rightarrow \mu^{+}+\nu_{\mu} \\
& \left.\nu_{\mu}+Z \text { (nucleus }\right) \rightarrow Z^{\prime}+\left(\mu^{-} \text {and/or } e^{-}\right)
\end{align*}
$$

is useful to check the two-neutrino hypothesis only when $\left|m_{\nu_{9}}-m_{\nu_{1}}\right| \lesssim 10^{-6} \mathrm{Mev}$

Neutrino oscillation

In a world with 2 neutrinos, if the weak eigenstates $\left(\mathrm{v}_{\mathrm{e}}, \mathrm{v}_{\mu}\right)$ are different from the mass eigenstates $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$:

$$
\binom{\mathrm{v}_{e}}{\mathrm{v}_{\mu}}=\left(\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\mathrm{v}_{1}}{\mathrm{v}_{2}}
$$

The weak states are mixtures of the mass states:

$$
\begin{aligned}
& \left|\mathrm{v}_{\mu}>=-\sin \theta\right| \mathrm{v}_{1}>+\cos \theta \mid \mathrm{v}_{2}> \\
& \mid \mathrm{v}_{\mu}(t)>=-\sin \theta\left(\mid \mathrm{v}_{1}>e^{-i E_{1} t}\right)+\cos \theta\left(\mid \mathrm{v}_{2}>e^{-i E_{2} t}\right)
\end{aligned}
$$

The probability to find a v_{e} when you started with a v_{μ} is:

$$
P_{\text {oscillation }}\left(v_{\mu} \rightarrow v_{e}\right)=\left|<v_{e}\right| v_{\mu}(t)>\left.\right|^{2}
$$

If a neutrino has mass, we expect that the weak eigenstate could be different from the mass eigenstate, as analogous to the quark system [10]. For simplicity, consider the two flavor case at first. The flavor eigenstates, ν_{α} and ν_{β}, is written by

$$
\binom{\nu_{\alpha}}{\nu_{\beta}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{1.1}\\
\sin \theta & \cos \theta
\end{array}\right)\binom{\nu_{1}}{\nu_{2}} \equiv U\binom{\nu_{1}}{\nu_{2}}
$$

where ν_{1} and ν_{2} are the mass eigenstates and θ is the mixing angle. After traveling with a certain time period t, each component of the mass eigenstate gets a different phase:

$$
\binom{\nu_{1}(t)}{\nu_{2}(t)}=\left(\begin{array}{cc}
e^{-i E_{1} t} & 0 \tag{1.2}\\
0 & e^{-i E_{2} t}
\end{array}\right)\binom{\nu_{1}(0)}{\nu_{2}(0)}
$$

Detection of neutrinos by the charged current interaction projects these new states back onto the flavor eigenstates:

$$
\binom{\nu_{\alpha}(t)}{\nu_{\beta}(t)}=U\left(\begin{array}{cc}
e^{-i E_{1} t} & 0 \tag{1.3}\\
0 & e^{-i E_{2} t}
\end{array}\right) U^{-1}\binom{\nu_{\alpha}(0)}{\nu_{\beta}(0)}
$$

Supposing a neutrino is generated as ν_{α} (i.e. $\nu_{\alpha}(0)=1$ and $\nu_{\beta}(0)=0$), its surviving probability in the same flavor eigenstate after traveling a certain distance L is obtained as

$$
\begin{equation*}
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=\left|\nu_{\alpha}(t)\right|^{2}=1-\sin ^{2} 2 \theta \cdot \sin ^{2}\left(1.27 \Delta m^{2}\left[\mathrm{eV}^{2} / \mathrm{c}^{4}\right] \frac{L[\mathrm{~km}]}{E[\mathrm{GeV}]}\right) \tag{1.4}
\end{equation*}
$$

when m_{i} is very small compared to $E_{i}\left(E_{i} \simeq p+m_{i}^{2} / 2 p\right)$. Here $\Delta m^{2} \equiv m_{2}^{2}-m_{1}^{2}$. Thus the flavor of neutrinos oscillates as a function of L / E.
$P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\sin ^{2} 2 \theta_{12} \sin ^{2}\left(1.27 \Delta m_{12}^{2} \frac{L}{E}\right)$
-2 fundamental parameters
$-\Delta \mathrm{m}^{2} \leftrightarrow$ period
$\bullet \theta_{12} \leftrightarrow$ magnitude
-2 experimental parameters

- L = distance travelled
- $E=$ neutrino energy
- Choose L\&E to target ranges of $\Delta \mathrm{m}^{2}$ and θ
- Neutrinos disappear and appear

$P\left(\nu_{\mu} \rightarrow v_{e}\right)=\sin ^{2} 2 \theta_{12} \sin ^{2}\left(1.27 \Delta m_{12}^{2} \frac{L}{E}\right)$
-2 fundamental parameters
- $\Delta \mathrm{m}^{2} \leftrightarrow$ period
$\bullet \theta_{12} \leftrightarrow$ magnitude
-2 experimental parameters
- L = distance travelled
- $\mathrm{E}=$ neutrino energy
- Choose L\&E to target ranges of $\Delta \mathrm{m}^{2}$ and θ
- Neutrinos disappear and appear

$P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\sin ^{2} 2 \theta_{12} \sin ^{2}\left(1.27 \Delta m_{12}^{2} \frac{L}{E}\right)$
-2 fundamental parameters
$-\Delta \mathrm{m}^{2} \leftrightarrow$ period
$\bullet \theta_{12} \leftrightarrow$ magnitude
-2 experimental parameters
$\bullet L$ = distance travelled
$\bullet E=$ neutrino energy
-Choose L\&E to target ranges of $\Delta \mathrm{m}^{2}$ and θ
- Neutrinos disappear and appear

Early Hints of Oscillation $\pm 2 \widehat{K}$

Solar Neutrinos

Atmospheric Neutrinos

1998: Neutrino Mass!
 T2K

ATMOSPHERIC NEUTRINOS

Ratio of $V_{\mu} / V_{e} \sim 2$
(for $\mathbf{E}_{v}<$ few GeV)

Oscillation Basics

T2

- Neutrinos have mass!

Flavour eigenstates: $v_{e}, \nu_{\mu}, \nu_{\tau} \quad$ Mass eigenstates: $\nu_{1}, \nu_{2}, \nu_{3}$

$$
\left|v_{l}\right\rangle=\sum_{i=1}^{3} U_{l i}\left|v_{i}\right\rangle
$$

- Produced and interact as flavour eigenstates;
propagate as mass eigenstates: $\left|v_{l}(L)\right\rangle=\sum_{i=1}^{3} U_{l i} e^{-i m_{i}^{2} L / 2 E}\left|v_{i}(0)\right\rangle$
where:

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

Neutrino Mixing

- For Dirac neutrinos, standard parameterization of the PMNS matrix Uli (for Dirac neutrinos) has:

3 mixing angles, 2 mass square differences, 1 CP phase

First measured recently! (2011 - 2012)
Short baseline reactor neutrinos
(Daya Bay, RENO, DoubleChooz);
Long baseline accelerator neutrinos
(T2K, MINOS, NOvA)

Experimental Probes

T2K

- For Dirac neutrinos, standard parameterization of the PMNS matrix Uli (for Dirac neutrinos) has:

3 mixing angles, 2 mass square differences, 1 CP phase

What is the octant of θ_{23} ? What is the mass hierarchy?
What is the CP violating phase δ ?

Neutrino Sources

$\mathrm{T} 2 \hat{K}$

Where do the neutrinos that experiments measure come from?

$\sim 10 \mathrm{MeV}$
Produced in fusion reactions inside sun.

Energy
thresholds matter for experiments

Reactor

\bar{v}_{e} From β decay of isotopes in nuclear reactors

[Some] Open Questions

1) What is the CP violating phase δ ?
2) What is the mass hierarchy?

Ambiguity in sign of

$$
m_{3}^{2}-m_{2}^{2}
$$

Two possible mass hierarchies

Normal

Inverted

$\left(\Delta m^{2}\right)_{a t m}$
$\left(\Delta m^{2}\right)_{23}$
\rightarrow Electron neutrino appearance can help answer both questions!

θ_{13} measurements (other than solar- v and atm $-v$)

Reactor neutrino experiments : $\bar{\nu}_{\mathrm{e}}$ disappearance

$$
P\left(\bar{v}_{e} \rightarrow \bar{v}_{e}\right) \approx 1-\sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\frac{1.27 \Delta m_{31}^{2} L(m)}{E_{v}(M e V)}\right)
$$

Accelerator neutrino experiments: V_{e} appearance

$$
P\left(v_{\mu} \rightarrow v_{e}\right) \approx \sin ^{2}\left(2 \theta_{13}\right) \sin ^{2} \theta_{23} \sin ^{2}\left(\frac{1.27 \Delta m_{31}^{2} L(k m)}{E_{v}(G e V)}\right) \quad \text { leading term }
$$

Measuring θ_{13}

?

Long baseline accelerator: Sensitive to θ_{13}, δ, mass hierarchy

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\frac{4 C_{13}^{2} S_{13}^{2} S_{23}^{2} \cdot \sin ^{2} \Delta_{31}}{+8 C_{13}^{2} S_{12} S_{13} S_{23}\left(C_{12} C_{23} \cos \delta-S_{12} S_{13} S_{23}\right) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21}}
$$

$-8 C_{13}^{2} C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \sin \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21}$
$+4 S_{12}^{2} C_{13}^{2}\left(C_{12}^{2} C_{23}^{2}+S_{12}^{2} S_{23}^{2} S_{13}^{2}-2 C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta\right) \cdot \sin ^{2} \Delta_{21}$

| $\mathrm{C}_{\mathrm{ij}}=\cos \left(\theta_{\mathrm{ij}}\right)$ |
| :--- | :--- |
| $\mathrm{S}_{\mathrm{ij}}=\sin \left(\theta_{\mathrm{ij}}\right) \quad-8 C_{13}^{2} S_{12}^{2} S_{23}^{2} \cdot \frac{a L}{4 E_{\nu}}\left(1-2 S_{13}^{2}\right) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31}$ |

Solar
where: ---
$C_{i j}=\cos \left(\theta_{i j}\right)$
$S_{i j}=\sin \left(\theta_{\mathrm{ij}}\right)$
$\Delta \mathrm{ij}=\Delta \mathrm{m}_{\mathrm{ij}}(\mathrm{L} / 4 \mathrm{E})$
$+8 C_{13}^{2} S_{13}^{2} S_{23}^{2} \frac{a}{\Delta m_{13}^{2}}\left(1-2 S_{13}^{2}\right) \sin ^{2} \Delta_{31} \quad$ Matter

Short baseline reactor: Sensitive only to θ_{13}

$$
P_{\mathrm{sur}} \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.267 \Delta m_{31}^{2} L / E\right)
$$

Breakthrough of non-zero θ_{13} search (2011~)

In 2011 June, T2K reported the first indication of $\theta_{13} \neq 0$ (2.5 σ) using the data before the earthquake.

In 2012, solid confirmation by reactor experiments.
1σ confidence intervals (before Neutrino2012)

This talk: Updated v_{e} appearance analysis using the full T2K data set

How to measure θ_{13}

Oscillation @Reactors

Oscillation @Accelerators $\pm 2 \widehat{K}$

Long baseline accelerator: Sensitive to $\theta_{13}, \theta_{23}, \delta$, mass hierarchy

Oscillation @Accelerators $\pm 2 \widehat{K}$

Long baseline accelerator: Sensitive to $\theta_{13}, \theta_{23}, \delta$, mass hierarchy

$$
\left.P_{\mu \rightarrow \mu} \approx 1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)\right)\left(P_{\mu \rightarrow e} \approx \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)\right.
$$

T2K

- Start with world's largest detector: Super-Kamiokande
-Build new neutrino beam
- Off-axis beam to Super-K
- L = 295 km
- $\mathrm{E}=0.6 \mathrm{GeV}$
- Near detectors at 280 m to constrain beam flux
-Physics Goals:
- precise $\Delta \mathrm{m}^{2}{ }_{32}, \theta_{23}$ measurements
-search for θ_{13}

The T2K Collaboration

Experimental Overview

Pions, kaons,
$30 \mathrm{GeV} \quad$ muons decay in proton beam 96 m decay from J-PARC volume

MUMON measures muons from pion decay

The T2K experiment Overview

The T2K experiment Neutrino production

Conventional neutrino beam produced from 30 GeV protons

Almost pure $\boldsymbol{v}_{\boldsymbol{\mu}} / \overline{\boldsymbol{v}}_{\boldsymbol{\mu}}$ beam, with an intrinsic $v_{\mathrm{e}} / \bar{v}_{\mathrm{e}}$ component (<1\% at peak)

Can switch from ν_{μ} beam to \bar{v}_{μ} beam by inverting the horn polarities

Neutrino Beam

(to Kamioka)

J. 20093 ER!ीS Bird'\$ eye photo in January of 2008

Construction JFY2001~2008

J-PARC neutrino beamline overview

T2K Data Taking

T 2 K

Many thanks to the J-PARC accelerator division for their efforts and much hard work!

- NEW! Full Run 1-4 data sets published this week! Phys. Rev. Lett. 107:041801 (Feb 10 ${ }^{\text {th }}$)
- Featured in an APS "Viewpoint" article (http://physics.aps.org/articles/v7/15)
- Total exposure at far detector is 6.57×10^{20} P.O.T.
- Previous ve appearance result (2012) used 3.01×10^{20} P.O.T. \rightarrow Statistics increased by factor >2 !
- Thus far, $\sim 8 \%$ of the total data has been collected (assuming design goal)
- Instantaneous luminosity of $220 \mathrm{~kW}\left(1.2 \times 10^{14}\right.$ protons per pulse $) \rightarrow$ World record!

Beam Stability: Rate \& Direction $\pm 2 \widehat{K}$

Beam is quite stable in space (1 mrad tolerance) and time (within 1\%)

The T2K experiment Off-axis beam

- Narrow band neutrino beam, peaked at oscillation maximum (0.6 GeV)
- Reduces high energy tail
- Reduces intrinsic v_{e} contamination of the beam at peak energy
- Interactions dominated by CCQE mode

Here we give an explanation of the off-axis method [20]. The ν_{μ} beam is produced from the charged pion decay $\left(\pi \rightarrow \mu \nu_{\mu}\right)$. The energy of the neutrino in the pion rest frame (in which quantities are labeled with the superscript $*$) is

$$
\begin{equation*}
E_{\nu}^{*}=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}}=29.8 \mathrm{MeV} \tag{1.23}
\end{equation*}
$$

The laboratory frame 4-momentum can be calculated by Lorentz transformation:

$$
\begin{align*}
& \left(p_{\mu}\right) \rightarrow\left[\begin{array}{cccc}
\gamma_{\pi} & 0 & 0 & \gamma_{\pi} \beta_{\pi} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma_{\pi} \beta_{\pi} & 0 & 0 & \gamma_{\pi}
\end{array}\right]\left(p_{\mu}\right) \tag{1.24}\\
& \left(E_{\nu}, E_{\nu} \sin \theta, 0, E_{\nu} \cos \theta\right) \tag{1.25}\\
& \rightarrow\left(E_{\nu}^{*} \gamma_{\pi}\left(1+\beta_{\pi} \cos \theta^{*}\right), E_{\nu}^{*} \sin \theta^{*}, 0, E_{\nu}^{*} \gamma_{\pi}\left(\beta_{\pi}+\cos \theta^{*}\right)\right)
\end{align*}
$$

where θ is angle between the pion momentum and the neutrino momentum. The relation between the angle in the pion rest $\left(\theta^{*}\right)$ and that in the lab. frame (θ) is obtained from the 1 st and 3 rd components of Eq. 1.25:

$$
\begin{equation*}
\tan \theta=\frac{E_{\nu}^{*} \sin \theta^{*}}{E_{\nu}^{*} \gamma_{\pi}\left(\beta_{\pi}+\cos \theta^{*}\right)} \tag{1.26}
\end{equation*}
$$

If $E_{\nu}, E_{\pi} \gg m_{\pi}$ and then $\beta_{\pi} \simeq 1$, we can re-write Eq. 1.26 to

$$
\begin{equation*}
\tan \theta \simeq \frac{E_{\nu}^{*} \sin \theta^{*}}{E_{\nu}} \tag{1.27}
\end{equation*}
$$

using the 0th component of Eq. 1.25. This equation indicates that a maximum lab angle $\theta_{\max }$ is obtained at $\theta^{*}=90^{\circ}$:

$$
\begin{equation*}
\tan \theta_{\max } \simeq \frac{E_{\nu}^{*}}{E_{\nu}} \tag{1.28}
\end{equation*}
$$

In other words, there is a maximum neutrino energy ($E_{\nu}^{\max .}$) with fixed angle θ :

$$
\begin{equation*}
E_{\nu}^{\max .} \simeq \frac{E_{\nu}^{*}}{\tan \theta}=\frac{29.8 \mathrm{MeV}}{\tan \theta} \tag{1.29}
\end{equation*}
$$

The relation between E_{ν}, E_{π} and θ is obtained from the 0 th component of Eq. 1.25:

$$
\begin{equation*}
E_{\nu}=\frac{\gamma_{\pi}+\gamma_{\pi} \beta_{\pi} \sqrt{1-\tan ^{2} \theta}}{1+\gamma_{\pi}^{2} \beta_{\pi}^{2}} E_{\nu}^{*} \tag{1.30}
\end{equation*}
$$

, and is shown in Fig. 1.4. As expected from Eq. 1.29, there is a maximum neutrino energy $E_{\nu}^{\max }$. with non-zero θ, and as the neutrino energy approaches this value, pions in large range of energies contribute to neutrinos in a small range of energy. Thus semimonochromatic energy neutrino beam with the peak around $E_{\nu}^{\max \text {. is achieved with the }}$ fixed angle θ which is called as the off-axis angle.

Figure 1.4: Relation between neutrino energy $\left(E_{\nu}\right)$ and pion energy $\left(E_{\pi}\right)$ in the pion decay with several off-axis angles.

Figure 1.5: (Top) Neutrino energy spectra with several off-axis angles (θ_{OA}). (Middle) Oscillation probability as a function of the neutrino energy. (Bottom) Neutrino interaction cross-sections.

1.2.5 Analysis strategy

To catch the oscillation signals, we detect the beam neutrinos in SK which is 295 km away from J-PARC. Especially the neutrino charged current quasi-elastic (CCQE) interaction event,

$$
\begin{equation*}
\nu_{\ell}+n \rightarrow \ell^{-}+p \tag{1.31}
\end{equation*}
$$

is selected because of following reasons.

- The CCQE interaction is a dominant interaction mode in the T2K neutrino energy region. About 40% interactions are expected to be the CCQE interactions in SK in case without neutrino oscillation.
- The neutrino energy can be reconstructed $\left(E_{\nu}^{\text {rec }}\right)$ by measuring the lepton momentum (p_{ℓ}) and the angle with respect to the neutrino $\left(\theta_{\ell}\right)$:

$$
\begin{equation*}
E_{\nu}^{\mathrm{rec}}=\frac{\left(m_{n}-V\right) E_{\ell}+\left(m_{p}^{2}-m_{\ell}^{2}\right) / 2-\left(m_{n}-V\right)^{2} / 2}{\left(m_{n}-V\right)-E_{\ell}+p_{\ell} \cos \theta_{\ell}} \tag{1.32}
\end{equation*}
$$

where m_{n}, m_{p} and m_{ℓ} are the mass of the neutron, proton and lepton, respectively. E_{ℓ} is the lepton energy and V is the nuclear potential of nucleus (it is 27 MeV for oxygen).

- Flavor of the neutrino can be determined by identifying the flavor of the lepton

In order to select the CCQE interaction event, we require only one Cherenkov ring in SK because the associated proton often does not emit Cherenkov light due to its high Cherenkov threshold in water $(\sim 1.1 \mathrm{GeV} / \mathrm{c})$. The momentum of the muon or the electron can be reconstructed by observed number of Cherenkov photons. The direction of the muon or the electron is determined by the Cherenkov ring direction. The muon and electron can be distinguished because a muon makes a sharp edge ring and an electron makes a fuzzy one due to electromagnetic showers.

For an analysis of the neutrino oscillation in ν_{μ} disappearance, both the energy spectrum and the number of the muon neutrino events in SK are compared between expectation and observation. The energy spectrum at $\mathrm{SK}, \Phi_{S K}\left(E_{\nu}\right)$, strongly depends on the off-axis angle as described in Section 1.2.4. Hence precise measurement of the beam direction is important for the $\Phi_{S K}\left(E_{\nu}\right)$ estimation. In this thesis, the expected number of events at $\mathrm{SK}\left(N_{\mathrm{SK}}^{\text {exp. }}\right)$ is calculated by using the number of events measured in the near detector $\left(N_{\mathrm{ND}}^{\mathrm{obs}}\right)$:

$$
\begin{align*}
N_{\mathrm{SK}}^{\mathrm{exp}} & =N_{\mathrm{ND}}^{\mathrm{obs}} \cdot \frac{N_{\mathrm{SK}}^{\mathrm{MC}}}{N_{\mathrm{ND}}^{\mathrm{MC}}} \tag{1.33}\\
& =N_{\mathrm{ND}}^{\mathrm{obs}} \cdot \frac{\int d E_{\nu} \Phi_{S K} \cdot \sigma_{S K} \cdot \epsilon_{S K} \cdot P\left(E_{\nu} ; \sin ^{2} 2 \theta_{23}, \Delta m_{32}^{2}\right)}{\int d E_{\nu} \Phi_{N D} \cdot \sigma_{N D} \cdot \epsilon_{N D}}
\end{align*}
$$

where $\sigma_{S K}\left(\sigma_{N D}\right)$ is the neutrino cross-section of the target material of $\mathrm{SK}(\mathrm{ND}), \epsilon_{S K}\left(\epsilon_{N D}\right)$ is the detection efficiency of $\mathrm{SK}(\mathrm{ND})$, and P is the oscillation probability as described in Eq. 1.9. One of the characteristic of Eq. 1.33 is the error cancellation between ND and SK. For example, $\Phi_{N D}$ and $\Phi_{S K}$ have a common uncertainty of the production rate of the parent pions. Because the uncertainty is included in both the numerator and the denominator, the uncertainty in $\Phi_{S K} / \Phi_{N D}$ is canceled even if $\Phi_{S K}$ or $\Phi_{N D}$ itself has ambiguities. Thus the event rate measurement at the near detectors is important for the $N_{\mathrm{SK}}^{\text {exp. estimation. }}$

An analysis of the neutrino oscillation in ν_{e} appearance is performed with almost same procedure; the beam direction measurement is also important for this analysis.

The T2K experiment

Near detectors

On-axis detector INGRID (Interactive Neutrino GRID) Located 280m from the target

\& 16 identical modules made of iron and scintillators

- 'counting neutrinos' by reconstructing muon tracks from v_{μ} interactions
- Monitors neutrino beam: rate, direction and stability

The T2K experiment Off-axis near detectors

Off-axis near detector ND280 Located 280 m from the target

- Several detectors inside a 0.2 T magnetic field
- Good tracking capabilities
- 'Tracker' used to constrain flux and interaction uncertainties for oscillation analysis
- Rich cross-section measurement program

Near Detectors

Performance Goals

- INGRID must measure
- Beam profile and direction
- High accuracy, short time
- ND280 designed to measure:
- v_{μ} flux: $<5 \%$
- μ energy scale: <2\%
- intrinsic v_{e} content: <10\%
- v_{μ} CC BGs $<10 \%$
- Magnetic field, fine segmentation, excellent tracking

ND280 on-axis (INGRID)

Event timing of v events

\rightarrow Clear 6 bunch structure (581 ns bunch period)
\checkmark beam intensity
(normalized by proton beam intensity)

ND280 off-axis detector

ND280 off-axis event gallery

sand muon + DIS candidate

quasi-elastic candidate

single pion candidate

DIS candidate

ND280 off-axis performance

Vertex X-Y distribution
$\bigodot v$ beam direction

The T2K experiment

Far detector: Super-Kamiokande

Located 295 km from the target Synchronized with beamline via GPS

- 50 kt water Cherenkov detector
- Operational since 1996

39.3 m

Good separation between $\mu^{ \pm}$and $\mathrm{e}^{ \pm}$ (separate v_{μ} and v_{e} CC interactions)

No magnetic field: cannot separate v and v on an event by event basis

Super-Kamiokande

22.5 kton fiducial volume

Cherenkov
SUPERKAMIOKANDE

- 50,000 ton water Cherenkov detector
- 11,146 PMTs in ID, 1,885 in OD
- ~1km underneath Ikenoyama

Muon Ring

$1 \times$

Electron Ring

\square

Nulti=Ring

Cherenkov photons emitted by a $22 \mathrm{GeV} / \mathrm{c}$ pion or kaon

SK Particle Identification
 T2K

Muons:

- Minimal scattering
- Ring has sharp edges

Electrons

- Electromagnetic shower
- EM scattering makes a "fuzzy" ring

Neutral Pions

- γ s from π^{0} decays shower and look like electrons

- Reliable PID particularly crucial to ve appearance analysis
- PID well-established at KEK beam test (1kton tank) in 1990s

SK Reconstruction

- Find vertex (mostly timing)
- Count rings
- Find momenta
- PID from ring topology ("fuzziness")

Use atmospheric data vs. MC to check reconstruction and set systematic errors

Signal at SK

- Charged Current Quasi-Elastic Events
- Only single lepton ring visible at SK
- Ring topology indicates v_{e} vs. v_{μ}

Super-Kamiokande IV
T2K Beam Run 0 Spill 822275 Run 66778 Sub 585 Event 134229437 10-05-12:21:03:22
T2K beam dt $=1902.2 \mathrm{~ns}$
Inner: 1600 hits, 3681 pe
Inner: 1600 hits,
Trigger: 0×8000000
D wall: 614.4 cm
D_wall: 614.4 cm
e-like, $p=377.6 \mathrm{MeV} / \mathrm{c}$
Charge (pe)

$$
E_{\nu}=\frac{m_{N} E_{l}-m_{l}^{2} / 2}{m_{N}-E l+p_{l} \cos \theta_{l}}
$$

- Incident neutrino energy can be reconstructed (best for CCQE)!
- Recoil proton usually below threshold at T2K beam energy.

UCL HEP Seminar

Beam Trigger/Timing

SK event times

- T2K beam trigger from beam extraction
- Commonview GPS mode used
- At SK, 2 GPS units and a Rubidium clock are used to measure and confirm the time stability.

11 March, 14:46...

Much exterior damage, but inside equipment largely undamaged.

Rapidly repaired!

Repairs are basically complete.
Physics data taking resumed in January!

Neutrino Interactions

- In the region of interest for T2K, large contribution from charge current quasi-elastic scattering:

T2K signal at SK

- Also significant CC contribution with pion in final state
- $\mathrm{NC} \pi^{0}$ is a major background mode from electron appearance:

T2K beam peak energy

Reconstructing v Energy

$\pm 2 \mathbb{K}$

Direction known
(beam direction)

$$
E_{v}^{Q E}=\frac{2 M_{n} E_{e}-\left(M_{n}^{2}+m_{e}^{2}-M_{p}^{2}\right)}{2\left[M_{n}-E_{e}+\sqrt{E_{e}^{2}-m_{e}^{2} \cos \theta_{e}}\right]}
$$

- Only final state lepton is reconstructed
- Neutrino energy can be determined with certain assumptions:
- Neutrino direction is known (beam direction)
- Recoil nucleon mass is known (use neutron mass)
- Target nucleon is at rest (not quite true; introduces smearing)

Ve Signal \& BG (at SK)

- Oscillation signal:

- Beam ve background:

1.56 ± 0.20 evts (2012) p (undetected)
Beam background has harder energy spectrum

- Neutral current π^{0} background:

1.26 ± 0.35 evts (2012) $\quad \mathbf{N}+$ others
(undetected)
Can be removed by identifying second photon ring

13 Feb 2014
M. Malek, Imperial College

Improved π^{0} Rejection

- New likelihood fitter used to distinguish electrons from π^{0}
- Assumes two electron-like rings produced at a common vertex
- Uses 12 parameters in fit:
- Vertex (X, Y, Z, T)
- Directions $\left(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}\right)$
- Momenta ($\mathrm{p}_{1}, \mathrm{p}_{2}$)

Likelihood Ratio vs π^{0} Mass (T2K Monte Carlo)

- Conversion lengths ($\mathrm{C}_{1}, \mathrm{C}_{2}$)
- This 2D cut removes 70% of the π^{0} background remaining after previous selection applied (for same signal efficiency)
- Total background is reduced by 27%
- 6.74 BG events $\rightarrow 4.92$ BG events expected (in full Run 1-4 dataset)

T2K-SK Ve Event Selection

Distance from π^{0} cut line

Ve Selection Criteria

- \# clustered veto hits < 16
- Distance to wall > 200 cm
- \# of rings = 1
- PID of ring is e-like
- Visible energy > 100 MeV
- no Michel electrons
- New π^{0} cut
$-0<\mathrm{Ev}<1250 \mathrm{MeV}$

A Typical ve Candidate

$\pm 2 \mathbb{K}$

Super-Kamlokande IV

T2K Beam Run 0 Spill 1039222
Run 67969 Sub 921 Event 218931934 10-12-22:14:15:18
T2K bean dt $=1782.6 \mathrm{~ns}$
Inner: 4804 hits, 9970 pe
Outer: 4 hits, 3 pe
Trigger: 0xB0000007
D.wall: 244.2 om
e-like, $P=1049.0 \mathrm{MeV} / \mathrm{o}$

visible energy : 1049 MeV
\# of decay-e : 0
2γ Inv. mass : $0.04 \mathrm{MeV} / \mathrm{c}^{2}$ recon. energy : 1120.9 MeV

Ve Vertex Distributions

$\pm 2 \mathbb{K}$

Vertex distributions for ve candidates at the far detector:

Near Detector Constraint $工 2 \widehat{K}$

GOAL: Constrain neutrino flux \& cross section parameters used for oscillation prediction (via MC) at T2K far detector
Error on Far Detector v_{e} Prediction
(After Near Detector Constraint)

	Runs 1-3 (2012)	Runs 1-3 (2013)	Runs 1-4 (2013)
$\sin ^{2} 2 \theta_{13}=0.1$	4.7%	3.5%	3.0%
$\sin ^{2} 2 \theta_{13}=0.0$	6.1%	5.2%	4.9%

- Significant reduction for event rate errors at the far detector

Error on Cross Section Parameters (After Near Detector Constraint)

Parameter	Runs 1-3 (2012)	Runs 1-4 (2013)
$\mathrm{M}_{\mathrm{A}}{ }^{\mathrm{QE}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	1.27 ± 0.19	1.22 ± 0.07
$\mathrm{M}_{\mathrm{A}}{ }^{\mathrm{RES}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	1.22 ± 0.13	0.96 ± 0.06
CCQE Norm.	0.95 ± 0.09	0.96 ± 0.08
$\mathrm{CC} 1 \pi$ Norm.	1.37 ± 0.20	$1.22 \pm 0.16)$

- Uncertainties on the cross section \& flux parameters have been reduced

Ve Appearance Analysis

- Expected background:
-4.92 ± 0.55 events
- With the following assumptions:
- $\sin ^{2}\left(2 \theta_{13}\right)=0.1$
- $\sin ^{2}\left(2 \theta_{23}\right)=1$
- $\delta с р=0$
- normal mass hierarchy the expected signal is:
- 21.6 ± 1.8 events
- 5.5σ sensitivity to exclude $\theta_{13}=0$
- Oscillation parameters were extracted with two parallel analyses:
- Using the 1D Ev distribution (top)
- Using the 2D p- θ distribution (bottom)

Ve Appearance Results

T2K

- 28 ve events observed (recall 21.6 ± 1.8 expected for $\sin ^{2}\left(2 \theta_{13}\right)=0.1$)
- Comparison to null hypothesis gives 7.3σ significance for $\theta_{13} \neq 0$

Tension with θ_{13} measurement at reactors gives some sensitivity to δ \rightarrow Some regions excluded at 90\% CL
$\rightarrow \delta=-\pi / 2$ preferred for both hierarchies

SNO - A "smart" solar neutrino experiment.

- Solar neutrino problem: the electron neutrino flux coming from the sun is "lower" than the flux expected from the solar model
- the solar model is wrong;
- the neutrinos oscillate during the travel.
- The idea of SNO is: we built a detector able to measure neutrinos from the sun, BUT not only electron neutrinos, also muon and tau neutrinos. This can be done detecting 3 different reactions:
- $\boldsymbol{v}+\mathrm{d} \rightarrow \mathrm{p}+\mathrm{p}+\mathrm{e}^{-}\left(\mathrm{CC}-\right.$ only $\left.\boldsymbol{v}_{\mathrm{e}}\right)$
- $v+\mathrm{d} \rightarrow \mathrm{p}+\mathrm{n}+\boldsymbol{v}$ (NC - all three flavours)
- $v+\mathrm{e}^{-} \rightarrow v+\mathrm{e}^{-} \quad$ (ES - all three flavours BUT different rates)
- A deuterium target (Heavy water tank) helps if I can detect electrons or neutrons from the very rare reactions
- Going deeply underground helps to reduce the background

SNO - few numbers

- Neutrinos from the sun are few MeV neutrinos, crosssections are $\approx 10^{-42} \mathrm{~cm}^{2}$ (very small)
- Neutrinos from the sun fluxes are of the order of $\approx 10^{6}$ $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$.
- How many neutrino interactions can I get, given an amount of deuterium nuclei ?

$$
\dot{N}=\sigma_{v} \varphi N_{d} \approx 10^{-36} N_{d}\left(s^{-1}\right)
$$

- If I want at least $\mathrm{O}\left(10^{3}\right)$ events in one year $\mathrm{O}\left(10^{7} \mathrm{~s}\right)$ we need:

$$
N_{d} \approx 10^{32}
$$

- How can I get a sample of 10^{32} deuterium nuclei ? A tank of 1000 tonns of heavy water contains

$$
N_{d}=2 \frac{M}{M_{D 2 O}} \approx \frac{2 \times 10^{6} \mathrm{Kg}}{20 \times m_{N}}=6 \times 10^{31}
$$

SNO - detector

- Logic: tank of 1000 tonns of heavy water and PMT to see Cerenkov light
- from electrons in case of ES and CC reactions
- from $6.25 \mathrm{MeV} \gamma$ from capture of neutrons from detuterium in case of NC reactions (after thermalization of the neutron)
- The three reactions can be disentangled in terms of three measurements:
- Energy (of electrons and of gamma through Compton or pair production)
- Radius (in terms of $\left(\mathrm{R} / \mathrm{R}_{\mathrm{AV}}\right)^{3}$, uniformity of the scattering position)
- $\cos \theta_{\text {sun }}$ (depends on the correlation btw electron directions and primary neutrinos)

SNO - detector sketch

Main features:

2070m below ground in INCO's Creighton mineDeep
Sudbury mine (Ontario, Canada)
Heavy water tank 1000 tonns
Light water envelope 7000 tonns
Sphere of 10000 PMTs around the envelope (inward and backward)
High water purity with controlled quantity of NaCl in
Heavy Water tank (to enhance NC detection)
Each PMT measures charge and Time
\rightarrow Cerenkov ring \rightarrow direction and energy

SNO event

SNO - variables used

Energy
NB solar neutrinos energies

$\mathrm{E}_{\mathrm{v}}<15 \mathrm{MeV}$

NC

(R/R

$$
\begin{array}{lll}
v+\mathrm{d} \rightarrow \mathrm{p}+\mathrm{p}+\mathrm{e}^{-} & \left(\mathrm{CC}-\text { only } \boldsymbol{v}_{\mathrm{e}}\right) & \cos \theta_{\mathrm{e}} \\
v+\mathrm{e}^{-} \rightarrow v+\mathrm{e}^{-} & \text {(ES }- \text { all three flavours BUT different rates }) \\
v+\mathrm{d} \rightarrow \mathrm{p}+\mathrm{n}+v & (\mathrm{NC}-\text { all three flavours })
\end{array}
$$

SNO - results

$$
\begin{aligned}
\phi_{\mathrm{CC}} & =\phi\left(v_{e}\right), \\
\phi_{\mathrm{ES}} & =\phi\left(v_{e}\right)+0.1559 \phi\left(v_{\mu \tau}\right), \\
\phi_{\mathrm{NC}} & =\phi\left(v_{e}\right)+\phi\left(v_{\mu \tau}\right),
\end{aligned}
$$

$$
\begin{aligned}
\phi_{\mathrm{CC}} & =1.76_{-0.05}^{+0.06}(\text { stat. })_{-0.09}^{+0.09}(\text { syst. }) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
\phi_{\mathrm{ES}} & \left.=2.39_{-0.23}^{+0.24}(\text { stat. })_{-0.12}^{+0.12} \text { (syst.) }\right) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, \\
\phi_{\mathrm{NC}} & =5.09_{-0.43}^{+0.44}(\text { stat. })_{-0.43}^{+0.46}(\text { syst. }) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, \\
\phi\left(v_{e}\right) & \left.=1.76_{-0.05}^{+0.05} \text { (stat. }\right)_{-0.09}^{+0.09} \text { (syst.) } \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, \\
\phi\left(v_{\mu \tau}\right) & \left.\left.=3.41_{-0.45}^{+0.45} \text { (stat. }\right)_{-0.45}^{+0.48} \text { (syst.) }\right) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} .
\end{aligned}
$$

SNO - result interpretation

Figure 5: SNO's CC, NC and ES measurements from the $\mathrm{D}_{2} \mathrm{O}$ phase. The x - and y -axes are the inferred fluxes of electron neutrinos and muon plus tau neutrinos. Since the NC and ES measurements are sensitive to both ν_{e} and ν_{μ} / ν_{τ}, the ES and NC bands have definite slopes. The CC measurement is sensitive to ν_{e} only, so has an infinite slope. The widths of the bands represent the uncertainties of the measurements. The intersection of the three bands gives the best estimate of $\phi_{\mu \tau}$ and ϕ_{e}. The dashed ellipses around the best fit point give the $68 \%, 95 \%$, and 99% confidence level contours for $\phi_{\mu \tau}$ and ϕ_{e}. The flux of neutrinos predicted by the SSM is indicated by $\phi_{\text {SSM }}$.

