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PART 1:

quantum-gravity snapshots



Planck-scale-modified dispersion relations

attempts to model “quantum spacetime”
(using “spacetime noncommutativity’’ or certain perspectives on the semiclassical
limit of Loop Quantum Gravity) have stumbled upon modifications of the energy-

L3 L3 L3 2
momentum (on-shell) dispersion relation 5 5 ) E" p
m-=E " -p +a,
_ M’
striking!!! planck
however M., is ultralarge (~10°M| ;;¢) ...difficult to test....

but CAN BE TESTED (see closing remarks)....must be at the forefront of QG research

and what about symmetries? Broken Lorentz Invariance?

GAC+Ellis+Mavromatos+Nanopoulos+Sarkar, Nature393,763(1998)
Gambini+Pullin,PhysRevD59,124021(2000)
Alfaro+Morales-Tecotl+Urrutia,PhysRevLett84,2318(2000)

or rather some sort of “deformed Lorentz invariance’ in

the sense of ‘“‘doubly-special relativity” GAC, grqc0012051,IntJModPhysD11,35
6699 114 ’ I KowalskiGlikman,hepth0102098 PhysLettA286,391
(both ““c” and Mplanck as nontrivial Magueijo+Smolin, hepth0112090,PhysRevLett88,190403

relativistic invariants) GAC,grqc0207049 Nature418,34



the idea of ““deformed symmetries”:

the illustrative example ‘‘kappa-Minkowski” quantum spacetime
and its kappa-Poincare Hopf-algebra symmetries

kappa-Minkowski :;i-'jq_if[:-] — -.i.f;i-'j o B
[‘I'jﬂ A k_] — ”

writing fields in time-to-the-right conventions

1 3 chiom® ol
(I}(I) . / dgli-'q}(k)f:lhﬂl etkox
there is a natural implementation of kappa-Poincare’ Hopf-algebra transformations
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boost generators
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ikopd ikoz? 1—ie ( i o e
Mf’lhj:ﬂ E'E’LIGI - |V‘,!"D -li-'i — L] ( + _'ll-"m. A'Tﬂ)] EERJI E‘Ekﬂl

\-) ‘(' L}

— —

new generators, new ‘“mass Casimir’’:

s ( .
C = (?) sinh? (5Pﬂ) — EJERJPJPJ



crucial point for deformed (rather than broken) Lorentz symmetry, in cases
where the dispersion relation is modified,

is a deformation of the law of composition of momenta that is

consistent with the deformation of the on-shell relation

GAC, grqc0012051,IntJModPhysD11,35
GAC,grqc0207049 Nature418,34

for kappa-Minkowski modified on-shell relation comes

accompanied with “funny plane waves” GAC +Majid,IntJModPhysA 15,4301
ikx ikot iKx _iK i(k+e™K)x i(ky+Ky)t
e e e e " =e¢ e "7

notice nonlinear
composition of “momenta”

—lk,
kj+e KJ.

symmetries described by a Hopf algebra,
essentially codified in the coproduct;for example for translations

P.(eikx eikoteineiKol‘ )= P.(ei(k+eik0K)xei(k0+K0)t)
J J

_ [Pj (e ke ikl ):Ke K Kot )+ [e—zpo (e ke ikl )]PJ (e iKr i of )

Nontris:b coproduct!!



momentum-space curvature?

several attempts, though none truly fruitful, to formalize these and other results
in terms of the possibility of curvature in momentum space

Kadyshevsky +Mateev(1985)
Majid (1992)
KowalskiGlikman (2003)
Girelli+Livine (2005)

and by the way how does one characterize that operatively? 2
how do we know momentum-space is flat?
is it really sharply flat?



“box problems” for in-vacuo dispersion

if one attempts to proceed heuristically adopting
a law for the speed of massless particles with
momentum/wavelength dependence

as a relativistic law strange things

appear to happen to locality

Alice

Bob
(boosted)

t=10""s

GAC, IntJModPhysD(2002)

Schutzhold +Unruh, JETP Lett (2003)
DeDeo + Prescod Weinstein , arXiv (2008)
Hossenfelder,PhysRevLett (2010)



PART 2:

relative locality



19t century Galilean observers/scientists could (should) have asked themselves:
so, do we “see” space? (absoluteness of simultaneity)




19t century Galilean observers/scientists could (should) have asked themselves:
so, do we “see” space? (absoluteness of simultaneity)

of course we now know they didn’t! we don’t!
at best (see later) we ‘‘see’ spacetime! we ‘‘see’ our past lightcone...

The properties of Lorentz boosts are such that
“space by itself, and time by itself fade away into mere
shadows, and only a kind of union of the two [spacetime]
preserves an independent reality” (Minkowski 1908)

And what is responsible for this ‘“union” of space and time?
The nonlinearities of the law of composition of velocities
(nonassociativity/noncommutativity)

questioning the absoluteness of simultaneity
through questioning the linearity of
the law of composition of velocities

[N,,N,|~R,

(Wigner-)Thomas rotations




tﬁe pftinapée af w&du,&e &wa&'ty GACH+Freidel+Kowalski-Glikman+Smolin

so, look around: do you “‘see” spacetime?

NO! you “see” (detect) time sequences of particles
and then abstract a spacetime by inference!

you are more aware of this when you try to set up a macroscopic
spacetime/reference frame

(think in particular of the abstraction of a spacetime used to organize
logically our inferences for what concerns the observations of distant astros)

This was after all one of Einstein’s key lessons A detection
(%,6)=(0,5)
inference
Alice (x,£)=(5/2, S/2)

(x,£)=(0,0)

emission




misleading inferences of Galilean Relativity

nonlinearity of special-relativistic laws:
a man runs on a train at speed U A
I .
<>

(with respect to the train)
and the train has speed V
with respect to the station
— speed of man with respect
to station “must” be U+V

noncommutativity of special-relastivistic laws:

a man runs on a train at velocity U,

and the train has velocity V, T
“must” be same as

a man runs on a train at velocity V,

and the train has velocity U,




the puinciple of relative bacality

But do macroscopically-distant observers
infer/abstract ‘“the same’ spacetime?

What does it even mean to infer ‘‘the same” spacetime?
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What does it even mean to infer ‘‘the same” spacetime?
absolute locality: coincidences of events for one
Einsteinian observer are also coincidences of
events for all other Einstenian observers




the puinciple of relative bacality

But do macroscopically-distant observers
infer/abstract ‘“the same’ spacetime?

What does it even mean to infer ‘‘the same” spacetime?
absolute locality: coincidences of events for one
Einsteinian observer are also coincidences of
events for all other Einstenian observers

And what is it that allows absolute locality?
The structureless (linear) law of composition
of momenta

p,®p,Dp;=p, +p, +P;



the principle of nelative bocality

link from linear conservation of momentum to locality is
most familiar nowadays in the context of field theories

[ dic @, (k)D, (k)P 5 (k)0 (ky + ky + ky) =
— .' dk jd4x&)1(k1)cf)2(k2)&)3(k3)ei(kl+k2+k3)x _

..d4xq)1(x)q)2(x)q)3(x)



the puinciple of relative bacality

link from linear conservation of momentum to locality is
most familiar nowadays in the context of field theories

[dk @, (k)P , (k) (ky)S (ky + ky +ky) =
= [k d 3B (k)P (k)P (ke 7tk

. d4x<I>1(x)(I) , (x)P,(x)

Also notice that the conservation law that generates
transformations between distant observers
are these linear laws of composition of momenta

oss N T ; ptot z :
r“J‘,r‘I; — { r'\J_f‘;‘r‘!J Plr. j}- — (’_Jf with r Pe

and the fact that these act on coordinates assigned to the event by one observer
in a way that is independent of any detail of the specific worldlines and
structure of the event is again responsible for the objectivity of the inferred
distant coincidences of events



the “planck-scale limit” ok, fine, “relative locality”....but how would we
of quantum gravity find out? quantum gravity is so complex!!!

NO. Look at a peculiar limit:

GAC+Freidel+Kowalski-Glikman+Smolin

G,—=0 .
N with L ~ M 21 . kept fixed
planc
h— 0 N

in this limit of quantum gravity roughly speaking
quantum mechanics and gravitation are switched off!!
and the Planck length is switched off!!

But the Planck scale is not switched off and IF the limit
is not completely trivial (as implicitly argued by
supporters of nonlinearities in momentum space)
THEN this limit still contains valuable information
about quantum gravity

a sort of Cheshire-cat smile of quantum gravity
described by theories which one should manage to
analyze with relatively little effort

also a change of perspective on
how to tackle the quantum-gravity problem




the principle of relative locality [EENSEEEIEI CHAEITEREEEENE

the ‘“Planck-scale regime” is a rather peaceful place
what, if anything, of “interesting” could go on in the Planck-scale regime?

we propose that
in the Planck-scale regime all we have is the geometry of momentum space

special relativity corresponds to flat momentum-space geometry
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brief sketch of our proposed description of the geometry of momentum space

let us start from a metric on momentum space

The mass is interpreted as the timelike distance from the origin

D*(p)=D*(p.0) = m*

The kinetic energy defines the geodesm spacelike distance between a
particle p at rest and a particle p of identical mass

D(p)=D(p')=m > D“(p,_p ) = —2mK

from these measurements we can reconstruct the metric

9

di> = h™ (k)dkqdk,




maxe en the new pewspective for

the guantum-gravity problem

GAC+Freidel+Kowalski-Glikman+Smolin

In special relativity, the phase space
associated with each particle is a
product of spacetime and momentum space

In general relativity, the spacetime manifold

has a curved geometry, and the particle phase space

is no longer a product: there is a cotangent space of momenta at each point in
the spacetime manifold and the phase space is the cotangent bundle of JA.

Within the framework of relative locality, it is the momentum space & that is
curved. Then we have a separate spacetime for each value of momentum, and
the whole phase space is then the cotangent bundle over momentum space
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we take momentum space curved and operatively primitive
in the ‘“Planck-scale regime”

spacetime locality then is tricky: even if particle of momentum p; is at x; and
particle of momentum py, is at x;; with x; = x|, it still does not necessarily mean
the particles are close to each other.....x; and x live in different spaces....
before comparing them we need to parallel transport....

ultimately x; = x;; could be a case where the particles spacetime

positions do not coincide
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we introduce an affine connection, a notion of parallel transport,
through the law of composition of momenta

We postulate that there exists a composition of momenta

(_) )_> _)f_(_)$_) notice that it fits
P-4 Pa =\PTq)a the kappaMinkowski

More complicated interaction process are build up by iteration of
this composition e.g (p B q)dk

We do not assume that it is linear or commutative or associative

Outgoing momenta can be turned in ingoing momenta:

there is an operation p — 9p
antipode
satisfying (Ep)Ep=0
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The composition rules defines an affine connection

Jd d

_ (nc __ _tab
P aqb(f}$9)c‘q.;?=o Ff;-’ (0)

transform as an affine connexion

Torsion measure non commutativity

Jd d

— i [ — Ty — ab
apﬂaqb((p%q)f (!'}&Bif)qup:o 1.°(0)
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Curvature measure non associativity

2 : d : ' ; - - _ pabc
zap[n TS (p®q)®k—p®(qDk)),|qpk=0 = R™(0)

*Non-metricity: if the connection defined by interactions is not the
metric connection defined from propagation.

A\*r: be _ Y'r: ﬁhr*
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*Each process has an action principle

DT OCES E: Jree j: int
E’PT’DCFSG = 5-{ € _|_ ;S;R

trajectories, interactions, o

spacetime coordinates by conjugation of momentum-space coordinates of the

0 _
'S\.J;Hrr:‘-:? — /— d?"f}ﬂi + % (jj U\ ))

particles

N

mass-shell constraint

canonical spacetime coordinates

. STy — M2 2
(x4 kI = 8¢5 ¢ (k) = D7 (k) —mj

Notice that the free particle action makes no reference
to a metric for spacetime. Spacetime geometry is inferred

from the geometry of momentum space.
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*Each process has an action principle

TI¥ o 1 FTEE 'l'l. t
E’PT’DCFSG = E r 5-{ € _|_ z : ;S;R

trajectories, interactions, o

0 .
Sfree = [_ s (ks + 26 ' (0) S = K (k(0))aZ"

the interaction terms only enforce

/ the conservation laws

/;-"T — () €8  Kalp.q.k)=pat(qatka)
(L

5C: J \ interaction terms only use the

: connection on momentum space

ry = Nis kT
OR s lagrange multipliers z? turn out to
5 7T i play a very interesting role...
C ( k ) = we call them interaction coordinates

free-particle part produces
worldlines governed by these
equations of motion
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relative locality and the relation between ‘“‘canonical spacetime coordinates”
and “interaction coordinates”....... boundary terms....

Is a consequence of the equations of motion at the endpoints
OIC(k(0))a
6k1(0)
The interaction point is related to the endpoint of the worldline

by a parallel transport between the spaces where they live.

5S = ( 2% — 2%(0)) 6k, (0)

oo . C L . i (S/() y _b o
(0) =UR)s=",  Uh)y = 52 | e | 6(O0) == ), Cralfhe+..
‘a Leid(J)

an observer is ‘“local to the event” 3

if her value of z is z=0, in which \ P
case the endpoints x(0) of
worldlines entering the vertex
coincide

the observers who are “‘distant from
the event” have z=(0 and the X5
endpoints x(0) of worldlines
entering the vertex do not coincide T Pz
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Lei(J)

8px5(0) = D"{ K. x5} = —b“+b" Y Cp ikl + ..

\

an observer is ‘“local to the event”
if her value of z is z=0, in which
case the endpoints x(0) of
worldlines entering the vertex
coincide

the observers who are “‘distant from
the event” have z=(0 and the
endpoints x(0) of worldlines
entering the vertex do not coincide

3 4
\Fﬁ / .
X3 X4

@z

X2

sz
2
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Figure 2. We show the implications of relative locality focusing on the illustrative example of an emission of a photon by a green atom.
near Alice. with the absorption of that same photon by a blue atom, near Bob. The causal link between the two processes is still present.
and the processes are still local, but the locality of the processes is not manifest in the inferences about distant events of the two observers.
According to the coordinates of observer Alice the photon emission by the green atom is indeed a local process but the distant absorption of
the photon by the blue atom appears to be a nonlocal process. In reverse. according to the coordinates of observer Bob the photon absorption
by the blue atom is indeed a local process but the distant emission of the photon by the green atom appears to be a nonlocal process.

works by GAC+Arzano+Barcaroli+Kowalski-Gikman+Loret+ Matassa+Mercati+Rosati



evolutions of relativity

Galilean SR
a velocity scale becomes absolute
simultaneity becomes relative
action of boosts depends on *‘¢”
composition of velocity becomes nonlinear, noncommutative,nonassociative

SR 2DSR
a momentum scale becomes absolute
locality becomes relative
action of boosts depends on ‘¢’ and ‘“€”’
composition of momenta becomes nonlinear (&noncommutative? &nonassociative?)

“relativistic equilibrium” €-> trade a relative for an absoluteGalilean > SR



entanglement and multiparticle states

with relative locality

ikx _ikot iKx iK ot (k+e'MK i(ko+Kg)t
e o™ gl o pltlire TR o1kt Ko)

symmetries described by a Hopf algebra,
essentially codified in the coproduct;for example for translations

P.(eikx eikoteineiKOt )= P.(ei(k+e/1k0K)xei(k0+K0)t)
J J

- Ak kx ik K K
- (kj + e OKle’ e ' e™ e Ot)

_ [Pj (eikx o ot )lein o Kot )+ [e—/lpo (eikx o kot )]PJ (ein oKt )

\ k. +€_€k0Kj

J

kj +e ' Kj =( implica che K e’ ’antipodo di k ovvero Kj = —¢" kj = —kj



Within this setup i1t 1s obvious that the description of multiparticle states
must require new structures with respect to the usual construction.
Let us consider for example a state with two indistinguishable scalar parti-
cles in a 141-dimensional r-Minkowskl spacetime. If we measure the energy-
momentum of each of the two particles the indistinguishability would require
a description of the state of the following form
0P s L (s oy >+l > 6 [ >)
{k,q} V2 nd 4 | -
However, we are here confronted with a puzzle: this state obtained by “indistin-
cuishability symmetrization”, based on the information obtained by measuring
the energy-momentum of each of the two particles is not an eigenstate of
total energy-momentum. In fact the action of K on |v, > @ |¢ >, gives
(q+Fk e~ " (@) ) |ty > @ ¢, >, whereas the action of K on |, >@ |1, > gives
(k4 q e ®) oy > @ oy >
GAC+Arzano+Marciano’, in Frascati volume
Arzano+Marciano’ ,PhysRevD76,125005

—

Arzano 1s here now!



there will be two 2-particle states
kik2)r = —= [|k1) ® |ka) +[(1 —e1)k2) ® | (1 — e2) " kq)]
kaki)x = 5 [lk2) ® | k1) +[ (1~ e2)k1) ® [ (1 — 1) k2)]
same energy and different linear momentum
Ki2=ki @& ka = ki +(1—er)ko
Koy =ky @ ki = ky+(1—e2)kyg



So do we all share the same spacetime?

as usual it is for experiments to decide:

entangled states may eventually prove very powerful for constraining torsion
of momentum space,
but present understanding too limited for definite predictions

manifestations of relative locality for observations of distant astros (GRBs....)
are more easily analyzed but it seems they are only sensitive to a possible
momentum-space nonmetricity



GAC+Matassa+Mercati+Rosati, arXiv:1006.2126;
PhysRevLett106,071301

relativity of locality in

“ [ ) [ )
kappa-Minkowski Smolin.arXiv:1007.0718
phase-Space constructions” GAC+Loret+Rosati, arXiv:1102.4637 (PhysLettB, in press)

SO situation was

(. P}=0, N, Q) =F, {N,P} =Q+£0°%+ éjﬂ
{2, ‘1.'} =)
{P, JT} i_;'l—/
[} 1
IA I
Alice e el 2
f"lh "

whereas from the ‘“noncommutative /
Klein-Gordon equation” /

one would have expected this




—

N, P} = $'2+€Q.2+gp2

Bob

Alice

s

Alice

Alice

what about Bob?

I!‘.ri’

Y

whereas from the ‘“noncommutative
Klein-Gordon equation”
one would have expected this




paraphrasing Minkowski we could argue that
“spacetime by itself fades away into a mere shadow,
and only a kind of union of spacetime and momentum space
preserves an independent objectivity”

this is plenty for today
more details and additional observations in arXiv:1101.0931

important point is that this is the natural framework for stating the questions
about geometry of momentum space and absoluteness of locality!!

they MUST be viewed as experimental issues

and we cannot test them without a framework for formalization

first ideas on how to test separately the cases of
torsionless metric connection
metric connection with torsion
non-metricity are also in arXiv:1101.0931



____._.._______-_u___._.

Timeggince trigger (s

uig/sUney

____ﬁ-.____q._u___._

L L LI

Time since trigger (s)

100

20

|4Q_h_|||.. e e T e e s e o T i o el e I o e T i e B s A e e o ol gy
ol W..
zZ3 2 £
+ = S -] 5
¥ Q= F = =
33 - ki g 8
= - = =
8= 38 52 <2 5T
___n_.uh___pn-_.h__ il ..___.- .h__ _n.-Lh____.—..u_____. Li b b i _ I S - M I ST N .m
g 8 8§ ° g 8 ° g 8 8 ° . w W E W
wy = i = ™~ L] ™~ -
- -
ulq/suNon uIqUSIIN0Y u|q/sIunog uiq/suNoy uig/sunoy

Time since trigger (s)



symmetries describe a Hopf algebra

essentially codified in the coproduct;for example for translations

P.(eikx eikoteineiKOt )= P.(ei(k+e/1k0K)xei(k0+K0)t)

J

J

- Ak kx ik K K
= (kj +e OKle’ e ' e™ e Ot)

[p e e )

K iK ! )+ [e-zpo (e ik ikl )]PJ (e K iK ot )

Nontri;h coproduct!!

Baker
Campbell

Hausdorff

notice nonlinear
composition of momenta

Ak,
kj+e Kj

rather unusual form of boost generator due to requirement of closing Hopf algebra
and it leads to a deformed mass Casimir

Note that
=\ C= (

INE s ¢Py p_pj
7 sinh”® 5P0 = g MR

wave equation governed by this Casimir operator and the

properties of the “kappa-Minkowski noncommutative
differential calculus” describes massless waves that

v=re"P ~1_y|p]

GAC +Majid,IntJModPhysA15(2000)4301

propagate at speed

Alice

notice connection
with modified
dispersion relation

A



snapshot 1, page 3 kappa-Minkowski also studied in terms of

some ‘‘kappa-Minkowski phase-space constructions”

basically take the commutators on previous slides and turn them
into Poisson brackets:

(ot} = —lx (O} =1, {Q;2}=10,
Note that | {P.t} _ /P {P. ‘U} _

=\ ;
{Q,P}=0, {N,Q}=F {IN,P} =Q+£0% + %Pﬁ

then derive worldlines of massless particles within
a rather standard Hamiltonian analysis

. 2
;ftf{,+( D —fp(l— L 2))(ff0)
p? + m? pTTm

and for massless particles

A

J.A

Alice




snapshot 1, page 3 kappa-Minkowski also studied in terms of

some ‘‘kappa-Minkowski phase-space constructions”

basically take the commutators on previous slides and turn them
into Poisson brackets:

(ot} = —lx (O} =1, {Q;2}=10,
Note that | {P,t} _ /P {P._ ‘E} _

=\ ;
(P}=0, (NQ}=P, (N, P}=Q+(Q>+ P

then derive worldlines of massless particles within
a rather standard Hamiltonian analysis

. 2
L = g+ ( P —fp(l— 21'3’ 2))(ffg)
p? + m? pTTm

and for massless particles

‘. i ,/'
A ’
£ T 1 ,/, 2

while on previous slide e

Alice Alice
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note that under a diffeomorphism p — p' = &(p)

0
The operator 7,

() (p) = 05 (p & q)ulg=0

parallel transport on
the tangent bundle

transform as a map from 1P to Tp(P)

It can be interpreted as a paralell transport operator



