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AFFINE QUANTUM MECHANICS

According to Felix Klein “Erlangen Program” the “affine” geometry
deals with intrinsic geometric properties that remain unchanged
under “affine transformations” (affinities). These consist of
collinearity transformations, e.g. sending parallels into parallels
and preseving ratios of distances along parallel lines.

The “conformal geometry” by Hermann Weyl is considered a kind
of affine geometry preserving angles.

Cfr. H. Coxeter, Introduction to Geometry (Wiley, N.Y. 1969).



We aim at showing that the wave equation for
quantum spin (in particular Dirac’s spin %2 equation)
may have room in the classical mechanics of the “relativistic Top”

A.J.Hanson, T. Regge, Ann.Phys (NY) 87, 498 (1974); L.Shulman, Nucl.Phys B18, 595(1970).
E. Sudarshan, N. Mukunda, Classical Dynamics, a modern perspective (Wiley, New York, 1974)



Niels Bohr,
Wolfgang Pauli
and the
spinning Top

(Lund, 1951)




PROGRAM:

.1) DERIVATION OF DIRAC’s EQUATION
2) WEYL's CURVATURE AND THE ORIGIN OF QUANTUM NONLOCALITY
3) ELECTRON “ZITTERBEWEGUNG”
4) KALUZA-KLEIN —-JORDAN THEORIES

5) ISOTOPIC SPIN

E.Santamato, F. De Martini , ArXiv 1107.3168v1 [quant-ph]



Tetrad (a) (fourlegs, vierbein)

P 85 (O’ ) Tetrad vector = vector's components

: on Tetrad 4-legs
Top’s trajectory: J

x' (o)
O : parameter (e.g.proper time)

g.,ee =8, (tetrad's normalization equation)
8 =8u =diag(-1,1, 1, 1); {u,v;a,0:0,1, 2, 3}
(de’ /do)=w! e ; 6 Eulerangles:0”(a =1,....6)

w" =w;g"" :top's angular velocity (skewsymm)



LAGRANGIANS in V),

dxH dxv , del; deY
Lo = 'm.C\/—gW i —a.zg,l,,,ga-b la db _
o ag ag ag a: constant ~ A = (h/mc)
dx* dxv . Compton wl
= mec\/ —Guv o do — AWy WHY,
ds \/ dq* dg’ ¢ = {z",0°} (i = 0,...,9) spanthe
= mc— = me\| —@ii— —, i i i :
1o Gij do do dynamical configuration space:
Vio = MyxSO(3,1).
o — [ 9w 0
Jis ( 0 gaﬁ)
e dx* Ke - A 7
Lem = _Au + — (1'-}?;11/@" — —(G/C')rli(lq /dO'
(-) ?

do 4c
Ay = (—90,A),A; = (AL, A,) 1s a
10-D vector.Aa of A; are linear combinations of the fields H(x) and E(z),

L = Lo+ L., s o-parameterindependent:

[H. Rund, The Hamilton-Jacobi equation (Krieger, NY; 1973)]



Weyl’s affine connection and curvature:
ik =—{jk} + 050k + 0105 + g e’

where { J-"',\,} are the Cristoffel symbols out of the metric

g''¢y is the Weyl potential ¢; as ¢; =

9ij, and G)Z
X 1Ox/0q".

By Weyl's af f ineonnection F; . the overall Weyls scalar

curvature R, can be calculated inD =n=10 dimensions :

Rw = R+2(n— 1)Vk¢')k‘ —(n — 1)@“5‘" _

Vi VEx VixVEx
R+2(n—-1) k\"’ A n(n —1) “;,2 '\,




Hermann Weyl gauge - invariant Geometry

In Riemann geometry: change of component of a contravariant vector under
“ 7 u . u _ _TMU o o, u u n . . "
parallel transport”along dx" : on" = - n"dx"; 1, =T, :"af f ineonnection
Scalar product of covariant - contravariant vector : /% = (5(77 n") =0 leading to:
577 anpdx Then, covariant differentiation : 77‘ =d_n YT 077

N o= o, -I.n,; Dif ferentiion of metric tensor: g =0.

uvp

in Weyl’s geometry : /" =0(n"n,)=¢,0x°l; g,, , =28,9,;
= New" gauge' vector fieldp,: " We)l s potentidl!

Weyl conf ormal transf ormation 4+ e 1" local gaudd ield A( &)
@, =0A/dq" = grad A = x(q) 'x dx(q)/dq



WEYL’s CONFORMAL MAPPING (CM) (*)

= spacetime dependent change of the unit of length L:

ds — "9 ds

Under(CM) any physical quantity withdim ersi ons L is asigned a trans —
f ormation law X— 8% X ( W=" weigh! or'dim ensional numbe? ofthe
object (like the electric charg e in electrodynamis)).

Thus, (CM)is a "unit transf ormatio¥! amenting to a space— time redef initior
of the "unit of length".

Examples: g, : W=2; g :W=-=2; \/:g: W=2, T :W=0;, R W=-=2;
elc.

Conf ormal Mapping preserves angles betweer — véors.

(*) H. Weyl, Ann. der Physik, 59, 101 (1919); Time, Space, Matter (Dover, NY, 1975)



CONFORMAL GROUP :

.1) 6 — parameters Lie group, isomorphic to the proper, orthochronous,
homogeneous Lorentz group.

.2) Preserves the angle between two curves in space time and its direction.

.3) In flat spacetime of Special Relativity the relevant group structure is
the inhomogeneous Lorentz group (Poincare’ group).

In General Relativity , if spacetime is only “conformally flat” (i.e. Weyl's conformal

tensor: C* = (0) we obtain a larger group (15 parameters) of which
the Poincar%‘group is a subgroup.

Weyl’s conformal tensor:

1
Covps = Rivpo ?(Rupgvo R 8up + Rio81p = Rp8 o)

1

o R(g,806~8u&y)s  Ry,, = Riemann curvature tensor
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P. Bergmann, Theory of Relativity, (Dover 1976, Pg. 250).

Physical interpretation of Wey!’s geometry. In Weyl’s geometry, the
geometric structure of space is characterized by the symmetric tensor
density g, and the “pseudovector” ¢,. It appears reasonable to as-
sume that the g, represent the gravitational field, and that the ¢,
are the components of the world vector potential. In Weyl’s original
formalism, the ¢, transform as a vector with respect to codrdinate
transformations, but are changed by a gradient when a gauge
transformation is carried out. This is the historical reason for calling
the addition of a gradient to the electromagnetic world vector potential
a gauge transformation.

We shall now attempt to set up field equations for the g, and ¢, .

Weyl’s variational principle. Weyl considered it desirable to derive
the field equations as the Euler-Lagrange equations of a variational
principle. We shall show that the Euler-Lagrange equations of a varia-

A, —=A4,-9,a(x)



In place of L assumea &., — P(qi)g,w conformally - invariant
Lagrangian:

_ da® da’
L = "."h-\/—ngij dqg d(i F Lem,

where the particle’s mass is replaced by the Weyl’s scalar curvature: Rw

— mc — ";"fl\/ R W -

Rw acts as a scalar potential on
the top and, because it depends on y and its derivati-
ves, the field y acts on the top as a sort of pre-potential.
The paths followed by the top in the configuration space
Vieo = MyxS0O(3,1) are assumed to be the extremal
curves of the action integral [ L do.




HAMILTON - JACOBI EQUATION

Search for a family of equidistant hypersurfaces S = constant
as bundles of extremals fL do. via Hamilton-Jacobi equation:

. [0S > 98 ,
g* ds ' d_ _ EAJ- _
Jaqt ¢ dgi ¢

=g" (D"S - EAi) (DJS N 2‘41) = —h*y*Rw

by integrating the differential equations

dq' B glj(éqj — ¢ 4;5)
dS [g e ( d(i[?n _ %‘4 m ) ( % T %‘4 m )] 1"""2

Nonlinear partial differential equations for the unknown S(q) and
X(q) once the metric tensor g.(gq) isgiven.

S(q) is the Hamilton’s “Principal function”.



Cross-sectional
area of bundle

S(x) : Hamilton’s Principal Function = p. =

(a)

Bundle has area &
lying perpendicular
to k.

(b)




By the "ansatz” solution, with Weyl “weight™. W = (2 — n)/2

= | Y(q) =x(q) T R

and, by fixing, for D=10:~* = — =

the “classical” Hamilton - Jacobi equation is linearized leading to:

=> | (=ihVi = =A;) (=ihV; - ~4;) ¥+ K**Ry = 0.

In the absence of the e.m. field , Aj =0, the above equation reduces to:

"'u'l’ = (—A + ","AQR)".JT’ where Z\ is the Laplace—Beltrami operator and
7 R=6/d"

is the “conformal” Laplacian, i.e. a Laplace- de Rham operator.



STANDARD DEFINITION OF THE:
“HAMILTON’s PRINCIPAL FUNCTION” S(X) :

~95(x)
o’

D, = [-ihV, [ x[iS(x)/ 7]

ﬂ ﬂ

Momentum operator( p) x complex ()" phasé



Moreover, we assume that the action function S obeys
the auxiliary divergence condition

Dy (DFS = ZAx) =0. (9)
C
expressing the Weyl's invariant current — density:
it =x"""Y/g 47 (05/0¢" — (e/c)Ay).

which can be written in the alternative, significant form:

j = [* VG 47 (85/0° — (e/c)A;).

This is done by introducing the same “ansatz™

n—2 . S(q)

= U(g) =x(q) 7 &7




2
The above results show that the scalar density ‘?,U‘ = O is transported along
the particle’s trajectory in the configuration space, allowing a possible statistical

interpretation of the wavefunction according to Born’s quantum mechanical rule.

The quantum equation appears to be mathematically equivalent to the classical
Hamilton-Jdacobi associated with the conformally — invariant Lagrangian L
and the Born’s rule arises from the conformally invariant zero - divergence

current along any Hamiltonian bundle of trajectories in the configuration space.

It is possible to show that the Hamilton — Jacobi equation can account for the

quantum Spin-1/2.



= Homomorp hism : SA3,1) = SK2)

|
[eigenvalues of the (0,1/2) ® (1/2,0)
Casimir operators: 1 !
u(u+1), v(v+1)] (u,Vv) (u,v)
O Dotted | undotted spinors =  n“ n“

= Space inversion I ( Parity):

]Sga A _170'5 : [Sno'c A 5&(1

& A nd :
[S(nﬁ.) —%(gﬁ) A=11}

= Because of equation's I invariance: 4 - Dimension Dirac's spinor.

\ 4




4 - D solution, invariant under Parity :

Yuu(q) = DU (ATNZ07 (2) + DW(ATHZYF (2)

DY) (A)7,: (2u+1) x(2v+1) matrices accounting for A(0) = {eh(6)}
transf.s :

/

Wy (l?),‘li-’g (Cl?): 2-component spinors accounting for space-time coord.s: x"

The two matrices are related by [D:""':‘(_.f\')]l‘ = [D”"“:(.-'\'):_'.



Yuo(q) = DA N2 (2) + DYPW(AH,07 (z)
(u <) |

where D'*¥)(A)9, are the (2u+1)x(2v+ 1) matrices rep-
resenting the Lorentz transformation A(#) = {e#(#)} in
the irreducible representation labeled by the two num-
bers u.v given by 2u.2v = 0,1,2...., and the wg'(ar)
and z,bg' (z) are expansion coefficients depending on the

space-time coordinates z* alone. The matrices D"V} (A)
and D% (A) depend on the Euler angles #* only, and

provide conjugate representations of the Lorentz trans-
formations -

The two matrices are related by [D™"(A)]} = [D®¥(a)~".



4 components Dirac’s equation

{g’“’ (~ih3, = =A, ) (~ihd, = =4,) - N SH - iaE)

C

Up+

‘PI:) — L'g-’ E = a 0 S — o 0 o — {O-;I‘so-yo-fi'}
o) 0 o 0 —o
By the replacement Rw — Rw — ca/ch* WF’“’) the e.m. term:

(ea/c)?(H? — E?) cancels, and by setting:a = (h/me)y/3(1+ 472)/2
the equatlon reproduces exactly the quantum — mechanical results given by:

L.D. Landau, E.M. Lifschitz, Relativistic Quantum Theory (Pergamon, NY, 1960)
L.S. Schulman, Nucl. Phys. B18, 595 (1970).



THE SQUARE OF THE DIRAC'S EQUATION FOR THE SPIN 7
CAN BE CAST IN THE EQUIVALENT FORM:

Y D, — (e/e)A, + m|p, — (e/c)A, — m|JY =0

WHERE THE GAMMA MATRICES OBEY TO THE CLIFFORD'’s
ALGEBRA:

THE 4 —- MOMENTUM OPERATOR IS: Py, = th(d;, —V)



IN SUMMARY: our results suggest that:

.1) The methods of the classical Differential Geometry may be

considered as an inspiring context in which the relevant
paradigms of modern physics can be investigated satisfactorily by
a direct , logical, (likely) “complete” theoretical approach.

.2) Quantum Mechanics may be thought of as a “gauge theory”
based on “fields” and “potentials™ arising in the context of diffe-

rential geometry.

Such as in the geometrical theories by: Kaluza, Klein, Heisenberg,

Weyl, Jordan, Brans-Dicke, Nordstrom, Yilmaz, etc. efc.

.3) Viewed from the above quantum - geometrical perspective,
“GRAVITATION”
IS a “monster” sitting just around the corner.......



QUANTUM MECHANICS: A WEYL's GAUGE THEORY ?

LOOK AT THE DE BROGLIE - BOHM THEORY



Max Jammer,

The Philosophy of
Quantum Mechanics

(Wiley, 1974: Pag. 51)

DE BROGLIE - BOHM

—_—

Thus the quantum mechanical equation

2 2
ﬁ(—ihV——j—A)zp+(ecp+ V)4/=iha—‘f, (66)

which describes the motion of a charged particle in a field, determined by

the vector potential A and the scalar potential @, could be replaced by the
hydrodynamic equations

5
div (po) + 5 =0, (67)

the equation of continuity, and

b0 = — pgrad (V+ Q)+ = (0 x H) +9, E, (68)
where

hz VZpl/Z
P,y =mp, p,=ep, and Q= — — 3

t . pl/z

“In their subsequent paper “Relativistic hydrodynamics of rotating fluid masses,” Physical
Review 109, 1881-1889 (1958), Bohm and Vigier generalized their approach to a hydrodyna-
mical interpretation of the Dirac and Kemmer wave equation, hoping to provide thereby a
physical basis for a causal interpretation also of relativistic wave equations.

H. W. Franke, “Ein Strémungsmodell der Wellenmechanik,” Acta Physica Academiae
Scientiarum Hungaricae 4, 163172 (1954).

SIL. Janossy, “Zum hydrodynamischen Modell der Quantenmechanik,” Zeitschrift fir Physik
169, 79-89 (1962). L. Janossy and M. Ziegler, “The hydrodynamical model of wave
mechanics,” Acta Physica Academiae Scientiarum Hungaricae 16, 37-48 (1963); ibid., 345-354
(1964); 20, 233-251 (1966); 25, 99-109 (1968); 26, 223-237 (1969); 27, 35-46 (1969); 30,
131-137 (1971); ibid., 139-143 (1971).

(69)



(Max Jammer, The Philosophy of Quantum Mechanics, Wiley 1974; Pag. 52)

52 Early Semiclassical Interpretations

(Q,often referred to as the “quantum mechanical potential,” has to be
interpreted in the present context as an “elastic potential” whose gradient
yields the interior force which, together with an exterior force, produces
the acceleration of the fluid.) The last equation manifests ostensibly the
action of the Lorentz force on the elements of the fluid.

Janossy and his collaborators also showed how the hydrodynamic in-
terpretation can be extended to account for particles described by the
Pauli equation. By expressing the Pauli equation in terms of hydrodynamic
variables as a system of equations which describe motions in an elastic
medium they succeeded in proving that there exists a one-to-one corres-
pondence between the normalized solutions of the wave equation and the
solutions of the hydrodynamic equations which satisfy the appropriate
initial conditions. Even the spin-orbit coupling can be accounted for on
this interpretation. The difficulties which arise in extending this interpreta-

¥ R N e R TS o, TR, [ - VR S R



= De Broglie— Bohm " Quantum Potential" :

2 V2
Q= - f X \/; For wavef unctiony = \/; xexp( 1Y &
2m \/;
2 YAV V,.p V¥
O =_h_x LA k’O2 P [In spacedim : n= 3]
2m |\ 2 p 4 p

= Qverall "Curvature in" Weyl's geometry:

1 V.V'x _n VX VkX)

R, =R +%(n—1)x

2 x 4 x
[Inspacetimedim : n=10 FULLY RELATIVISTIC THEOR]Y



DUE TO AFFINE CONNECTION
TOTAL SPACE TIME CURVATURE (i.e. TO CHRISTOFFEL SYMBOLS)

\ / IMPLIED BY 10-D METRIC TENSOR G

QO = (R, - R) = Curvature due to
Weyl's gauge f iela

Physical ef f ects of Weyl coupling amo
particles via space— time curvature.

1) Quantum Interf erence ( Young s Ik
2) Quantum N onlocality, etc. etc.




Einstein-Podolsky-Rosen “paradox”

1.8 CAN QUANTUM-MECHANICAL DESCRIPTION OF
PHYSICAL REALITY BE CONSIDERED COMPLETE?

ALDERT EINSTZIN, Boris PopoLsky, AND NATIAN RoOSEN

In a ¢ceaplele theary Ihere is an element correszoniling
10 sach eemant of cenlily. A sufiviens enamlisin foe the,
reality uf a phywicil uantity ls the posibilicy of peedieting
it with ceriainty, withour dlisturbing e aysiem, In
quantuin mechasics in the case of 1wo physicnl quantilies
dexerilmb iy monsranimnting opruien, (hy ksaekalye ol
ane pracludes the knowledge of the other. Then sither )
1he descripcion of reality given hy the wave Tunctian in

1.

NY scrious consideration of a physical

theory must take [nto account the dis
linction between the objective reality, which is
independent of any theary, and the physieal
concepts with which the theory operates. These
concepts nre intended Lo correspand with the
abjeetive renlity, aid by meinns of thest comeeps
we picture this realily to ounlves.

[n attempting to judge the succeds ol a
physical theory, we may ask oursclves twa ques-
Lianss (1) "Ta the theoey eorrect?” and (2) “Ts°
the desesiption given Ly the theory complete®”
[t is only in the case in which positive answers
may be given to both of these questions, that the
concepts of tha theory may ba said 1o be satis-
factory, The corzectncss of the theory is judged
by the degree of agreement between the con-
clusiona af the theary and hunwan expesicnee.
Thix experivsicu. which alone enables us 1o nutke
inforonces aliout reality, in physics Likew the
form of experiment and measuremente It is tha
second question that we wish ta consirler here, an
appiicel ta quantuem mechanics,

Criginully publishad in Physical Review, 47, 77780 (1933}

yuanium mechanic uet emnplete or (2} thase 1wo
qiatitien mnioe have sinudtiacons realily. Conshileration
af the prulfem vf makiag peediciions cancerning a system
an the Lesis of measuramont s macle on anocher system that
hal previously inreracted wich ic leacls 10 1he reat that if
(1) im Laloet 11 43) 0 alwr falee. One i v sl T emgluly
1hat the deseription of reafily as given by & wave functica
it soL coniplese,

\Vhatever the meaning assigned Lo the term
compieie, tha following requirement for 3 com-
iglcle theory seems to be a neces onc; cery
\element of the physical reulity must hirie & counlers
{ part in the physicnl theory. We shail calt thia the
condition of completeness. Tha second question
is thur ensily answered, a8 sean as we ace able o
decile white ane the elemenis of b physical
reality. :

The clements nf tha physical eeality cannot
ba detezmined Yy a priori philosophical con-
silesations, hul must be found by an appeal to
resuits of cxperiments and measurcments. A
comprch=nsive definition of reality Is, hawever,
unneers: ry for our purpose. Wa shall be satisficd
with 1he following criterion, which we regard na
rensonable. [f, withont in amy wey diffurbing ¢
sxsten, we ean predicl wih certainly (fe, with
peadability egund ta wnize) the wafwe of v physient
guanltity, thex theee exisls un element af physieal
renlity corresponding fo Whis physicel gunnnisy, It
scemis 10 ws that chis criterion, while far (rom
exhausting all prswible ways of recopnixing a
physieal realiey, av least peovides us with one

[y> =2;£2Jiff = Z](w,?m

é
¢.‘3¢nxfafas
of X

Ny, (T ——
ovqensioes

of P

(EPR 1935)




“SPOOKY ACTION - AT — A-DISTANCE”
A. Einstein

1 x(qi.q7) 2

The two-particle configuration space Vi 1s the product of two copies of the 10-D space
Vip = My x SO(3,1) of each particle. We take as coordinates in SO(3,1) the six Euler
angles 0 and 05 (a = 1...., 6) for particle 1 and 2, respectively. We set also g = {zf, 07}
and ¢4 = {z5,05} (i = 1,...,10) the coordinates of each particle and Q* = {gi,4}}

(A=1,..., 20) the coordinates of the whole configuration space V.
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IM FEBRUAR 1922 WURDE IN DIESEM GEBAUDE DES ’e’ W‘ ,
PHYSIKALISCHEN VEREINS, FRANKFURT AM MAIN, ‘5
VON OTTO STERN UND WALTHER GERLACH DIE i3t

FUNDAMENTALE ENTDECKUNG DER RAUMQUA\NT!SIERUNG‘

DER MAGNETISCHEN MOMENTE IN ATOMEN GEMACHT.S



OPTICAL STERN - GERLACH

L(\/n)

F4-3

R(O)

PBS

+1 -1

N

DICOTOMIC MEASUREMENT
ON A SINGLE PHOTON:
Click (+): a=+1

Click (-) : a=-1



SINGLE SPIN.

Generalized coordinates: ¢'=|x. y.z. a. Byl (i=1. ... 0)
] 1 a1 S L (Euler angles)
Lagrangian: La=5mv +;lcw =5g;q 4.
where
(m 0 0 0 0 0 )
0 m 0 0 0 0
: 0 0 0 0
Metric Tensor: |g, )= (N |
SN 0 00 Ie 0 I-Cos|f]
0 00 0 Ic 0
L0 0 0 IoCos[B] 0 Ir |

Riemann scalar curvature of the Top: R-= %



.4///1:. ////////////
L

"I
s

(b) y , (c)

Euler angles for a rotating body in space



TWO IDENTICAL SPINS

Metric Tensor:

fm O O

m

0
0

0
0

0 ICCos]||

IC

0

31 ]

IC

IC

0

D

1]

f

0 0 0 ICCos|;

m O

m

0 ICCos|[B2]

IC

IC

IC

0

0 0 0 ICCos|[B2]

10 0 O



EPR 2-SPIN STATE

The EPR state can be symbolically written as

._ 1 ., \
| Y12)gpR = 77 | Ta1. S22Femi— | ¥21. T:2)Femi)  (Singlet : invariant under

i spatial rotations).

where the antisymmetric Fernu states of the two particles have been defined previously.

The EPR state has the following properties
1) the spmn and space coordinates degrees of freedom are factorized (not entangled)
2) the spin degrees of freedom of the two particles are entangled
3) the space degrees of freedom of the two particles are entangled
4) the EPR wavefunction 1s symmetric (even) in the coordinates exchange. 1.e. under
(X1. Y1. 21. @1, B1. 71l & (x2. 2. 22, @2, Ba. 2]
5) the EPR wavefunction 1s antisymmetric (odd) in the coordmates and spin exchange

| T21. 422)Fermu = = | U1, To1) | W2, 4220 — |2, Top) ¥, 422)) =

V2

1 | YIx1. y1- 21, Th] ¥lxa, »a. 22, 42

V2 1 ¢lx1, y1. 21, T1l @lx2, y2. 22, 42



WEYL's POTENTIAL CONNECTING TWO DISTANT SPINS
(in entangled state):

Spatial (x,y,z) terms: (non entangled)

/N

¢EPR = Log|Abs[y1(x2, y2, z2]]?| + Log|Rbs [¥2[x2, y2, 22]]?| +
Log[l-Cos[Bl] Cos[fS2] -Cos[al-a2] Sin[B1] Sin[fB2]]

T

Euler — angles term (ENTANGLED!)

But the Euler’s angles degrees of freedom i the last term of ¢rpr cannot be split i the sum of two terms dependong on
(@1, B1. 71! and l@y. By, v>) separately. Then, we see that the angular degrees of freedom of the two particles remain
entangled wrespective of their mutual distance mn space. This provides a geometric angular interaction between the two spins
and this interaction 1s nonlocal. This nonlocal interaction cannot be removed by space distance and it 15 no visible 1 the
wave equation. Only the HJE approach unveils the presence of this nonloal mnteraction and. hence. provides an explamation
to the EPR paradox: effectively, when one of the particle 1s made to collapse by a measurement apparatus, the other particle
percetves this through the uneliminable nonlocal interaction due to the Weyl curvature and collapses itself.



WEYL’s CURVATURE ASSOCIATED TO THE EPR STATE:

Rw =

(2 (-13+24 Cos[B1] Cos|[B2] +
24 Cos[al] Cos[a2] Sin[B1l] Sin[B2] +24 Sin[al] Sin[a2] Sin([B1] Sin([B2])) /
(§IC (-1+Cos|[B1l] Cos[B2] +Cos[al] Cos[a2] Sin[B1l] Sin[B2] +
Sin[al] Sin[a2] Sin[B1] Sin[B2]))

We see that Ry depends on the Euler angles of both tops 1n a complicated way. The top are then mteracting and this mnterac-
tion cannot be removed by setting the particles apart each other.



State of two spinning particles acted upon by Stern — Gerlach (SG) apparatus # 1

Yy12EPRfinal [x1, y1, z1, al, B1, y1, x2, y2, z2, a2, B2, y2]
B2 -

1 N (]l +a?—v1-v2) . 3
- — @ 2z \EETRATYRTYA le"‘*’ Cos[
2 \ 2 -

w1l[x1, y1, z1)] ¥2([x2, y2, z2]

51 . - B1 B2 1
Sin[ - e'% Cos } Sin } '
2 - ¢ 2 L2 4

Changed by SG into:
Collect[¢y12EPRszmeas[x1, y1, z1, al, B1, ¥1, x2, y2, z2, a2, B2, ¥2], ¥2[___ 1]

|'. 1 fal . ia2 X i . iy2 r ,'32 r ,'31 ) .
-— ¢ 2 2 2 2 Cos } Sin Yyldown[x1l, y1, zl] +
V2 - 2 - 2
1 1a1 102 1v1 iy2 r B1 T B2 ’ \ ) )
— e 2 2 2z 2 Cos ] Sin ] Ylup [x1, y1, z1] | ¥2[x2, y2, z2]
2 -2 -2 /

Then. the apparatus changes the S and p functions of our system and changes. in particular. the Weyl curvature Ry of the
configuration space too. This change affects both particles. because they do inferact through the Weyl curvature. which acts
as an potential on the two particles. In fact. the Weyl curvature does not split in the sum of two functions depending on the
Euler angles of the two particles separately.

Under detection of, say Yldown x1, v1, z1 ,the Weyl curvature acts

nonlocally on apparatus # 2 and determines the EPR correlation !
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“Zitterbewegung” (Trembling motion *)

Ur(0) =P, (0) + PR = A= yHVE) + 30+ yHP ).

L=9G p—my =i ¥+ Ugi PUgr—mEWpyg + Vrv)

h 76
T 2 2me? - ~
Oscﬂlatlorj frequency: 200 > 7;:’0 = 2 % 102! sec—! m = c Ry = axc
o
g Zag
}\ ‘\ ‘\\ ﬁa%
< W
g g P \/7
= Zag N6 h
o a= ~—= A Compton w.l.
mc  mc
Zag
< Klein paradox on € localization

(@) ®) (O.Klein, Z.Phys53,157(1929).

*) E. Schrodinger, Sitzber. Preuss. Akad. Wiss Physik-Math 24, 418 (1930)



“Thus could be the discovery of the century. Depending,
of course, on how far down it goes.”












HAMILTON- JACOBI EQUATION

Lagrangian: L = yh\/ -R,gdqd; L=L

5deo=O — (3fL2dO’=—%Rngj SSZ 885;
qg oq

Find the Hamiltonian Function:

—— . aL p— . o« 7 e 1 o] o 7

H(p,q)=q 0 -L=g (—Rngq’+Al-)—L=—5RWq q’ g;
oL . . .

p=i=-Rygd + 4~ 4 =R g (p,-4)

dq



Hamiltonian:

_ 1 P . ] )
H = _ERngjaRWzgk(pk - A (P, - Az)g]l == 2 1 kl(pk - A )P, -
D =ViS - [_—[(Vz‘Saqz') =-R,
S(q)= Solution of the Hamilton- Jacobi Equation
g = % =1'(q"); Choose as parameter: 0 — ds = \/(— g; %9_9q )

00 ds oS

dg' a8 e 4S8 e -

: [gf(—.——A Ng" (=A== 4)F = Eq(®)

0s dqg’ ¢ aq" ¢ aq" ¢

4))



The tensor wy, has the explicit form

0 (lq ) (s
—(1 0 —Ww3 W9
—a9 W3 0 —W1
—a3 —Wa2 W1 0

and wH*? has the form

0 —ay —as —as
WY — a; 0 —w3 wo

az w3z 0 —wy

3 —Wo Wy 0

Then we have w,,w"’ = w



The tensor F,,, has the explicit form

/O E, Es E3\

—F 0 B; —B
Fu.u — 1 3 2

—Es —B; 0 .
\ -Es B, -Bl1 0 |

and F*Y has the form

/ 0 51 —E; —E3
Bs —Bo

E;, —33 0

\ B B> —BIl 0 )

Fh —

Notice the change of sign in the space components
of the tensors F,,, and w,, . This is the usual con-
vention. Then we have $F,, F*¥ = B? — E? and
1F Wt = —(B-w+ E -a). Usually w is inter-
preted as the intrinsic particle magnetic moment
and a as the intrinsic particle electric dipole.



ELECTROMAGNETIC LAGRANGIAN

where e 1s the particle charge and F),, 1s given by
FW = BA,,/ ozt —0A, /ox” with four-potential A, given
by A (—9,A), ¢, A being the scalar and vector
electromagnetlc potentials, respectively. Finally, K 1s a
numeric constant that will be identified as the particle
gyromagnetic ratio. The fourleg components e (and
the SO(3.1) group) are parametrized by six “Euler an-
gles” 0% (@ = 1,...,6), so that the configuration space
spanned by the space-time coordinates and the Euler an-
gles 1s ten dimensional.









In place of L assumea 8. — P(qi)gw conformally - invariant
Lagrangian:

_ dat dal
L= A/'h'\/—RH'gij d((]j qu' | Lem._-.

where the particle’s mass is replaced by the Weyl’s scalar curvature: Ew

— mc — o hy/R W -

Rw acts as a scalar potential on
the top and, because 1t depends on Yy and its derivati-
ves, the field y acts on the top as a sort of pre-potential.
The paths followed by the top in the configuration space

1o = MyxSO(3,1) are assumed to be the e\tlemal
curves of the action integral [ Ldo. ~° ‘

DO EXTEND THEORY TO 2 - PARTICLE ASSEMBLY !



2 — PARTICLE LAGRANGIAN

. . - .dOAdOB
L (1,2) sh\/ R (Q)Gap(Q) 2=
do do

2 — PARTICLE METRIC TENSOR

Guy(T1) () 0 ()

o 0 ~wlty) O 0
Gap(Q) -

0 0  gu.(x2) ()

U ! 0 7as(f2)



2 — PARTICLE LAGRANGIAN

d.[P d 1 ¢ v
Lw(1,2) = éhy/ Ry _g;nf(l'l)d_al% - 0'2'@1;::'@31‘ -

drhy drf N
— Quv(T2) =——— — a"woy, o

do do
For integrable Weyl's connection, the scalar curvature Ry (()) 1s given by
Vi V&Y VixVEy

Rw—”*(l’l—l) n(n—l) 5
X X"




The motion of the two rotating particles i1s obtained from the Hamilton-Jacobi equation

associated to the Lagrangian (5), namely

ap 0 0S
Q4 0Qp
and solving the following ODEs for Q4(s)

+ §2fi2Rw =

gt G =( Gag ) as
ds [_GMNO_S_,ﬁ,] Y ¢hyv/Rw ) 0Qa
9Qm QN

with (time-like) parameter s given by ds? = —G,pdQ*dQ®. We notice that the Weyl's
curvature depends on the space-time coordinates of both particles, thus introducing a
nonlocal interaction of geometric origin. As we shall see, this geometric interaction 1s at

the basis of nonlocal quantum correlation phenomena.



2 - PARTICLE BELTRAMI - DE — RHAM - KLEIN - GORDON EQUATIONS

& Klein-Gordon-like wave equation for
¥
(p° + K¢’ Rw)v = 0
where p* = pgp® = —A with px = —ihVk, and A and R are the Laplace-Beltrami and
Riemann scalar curvature of Vyg, respectively. As shown elsewhere, the value of £ 1s fixed

by the requirement of Weyl's conformal invariance of the wave equation (14) according to

with n = 20. We notice that any reference to the underlying Weyl’s structure of the space
18 disappeared in Eq. (14), which has a pure Riemannian form. Owing to the block form of

the metric tensor (2), Eq. (14) can be also written as
(Hy + Ha)wo =0

where H, = pi +h22 R, (k = 1,2) are the Hamiltonians of the two particles. .
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Notice the change of sign in the space components
of the tensors F,,, and w,, . This is the usual con-
vention. Then we have $F,, F*¥ = B? — E? and
1F Wt = —(B-w+ E -a). Usually w is inter-
preted as the intrinsic particle magnetic moment
and a as the intrinsic particle electric dipole.



Hamiltonian:
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H = _ERngjaRWzgk(pk - A (P, - Az)g]l == 2 1 kl(pk - A )P, -
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Weyl’s affine connection and curvature:
ik =—{jk} + 050k + 0105 + g e’

where { J-"',\,} are the Cristoffel symbols out of the metric

g''¢y is the Weyl potential ¢; as ¢; =

9ij, and G)Z
X 1Ox/0q".

By Weyl's af f ineonnection F; . the overall Weyls scalar

curvature R, can be calculated inD =n=10 dimensions :

Rw = R+2(n— 1)Vk¢')k‘ —(n — 1)@“5‘" _

Vi VEx VixVEx
R+2(n—-1) k\"’ A n(n —1) “;,2 '\,




