
Corso di Laboratorio di Elettromagnetismo e Circuiti - A. A. 2008-2009 Esercitazione n.3 Circuiti del primo ordine (RC e CR) in regime sinusoidale

Si monti sulla basetta il circuito mostrato in figura (si consiglia di utilizzare i valori C=22 nF ; R=2.7 k Ω):

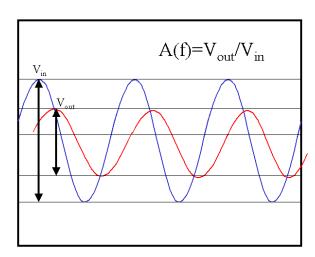
1) Circuito RC

Si suggerisce di regolare inizialmente l'ampiezza dei segnali del generatore a circa 1 V. Si usi il generatore in configurazione di generatore di segnale sinusoidale.

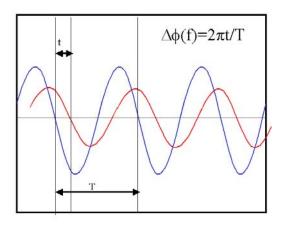
Si vuole studiare la tensione ai capi del condensatore in funzione della frequenza v del segnale sinusoidale.

Se il segnale del generatore e' una sinusoide:

$$V_{S}(t) = V_{S} \sin(2\pi vt)$$


anche quello ai capi del condensatore sara' sinusoidale ma con ampiezza e fase differenti:

$$V_C(t) = V_C \sin(2\pi \nu t + \Delta \phi)$$


Si effettuino misure del rapporto V_C/V_S e $\Delta \phi$ per valori di frequenza nell'intorno del valore:

$$v_0 = \frac{1}{2\pi \cdot \tau} \,,$$

ed anche molto al di sotto e molto al di sopra di v_0 (ad esempio da 100 Hz a 100 kHz) in modo da individuarne l'andamento asintotico e si riportino in un grafico (usualmente: in ordinate V_C/V_S (o $\Delta \phi$) in scala lineare ed in ascisse la frequenza (non la pulsazione $\omega=1/\tau$!) in scala logaritmica).

La misura della fase $\Delta \phi$ puo' essere effettuata misurando il ritardo temporale relativo dei due segnali (visualizzare entrambi i canali contemporaneamente, trigger su uno dei due canali). Fare attenzione al verso dello sfasamento da misurare: si consideri che in questo caso $\Delta \phi$ =0 per ν << ν_0 .

2) Circuito CR

Si vuole studiare la tensione ai capi del resistore in funzione della frequenza v del segnale sinusoidale.

Si effettuino misure del rapporto V_R/V_S e $\Delta \phi$ per valori di frequenza nell'intorno del valore ν_0 ed anche molto al di sotto e molto al di sopra di ν_0 , analogamente al punto precedente. Fare attenzione al verso dello sfasamento da misurare: si consideri che in questo caso $\Delta \phi$ =0 per ν >> ν_0 .

Consigli pratici:

- Misurare sempre i valori dei componenti scelti utilizzando il ponte d'impedenze ed il mutimetro a disposizione in laboratorio. Questi sono i valori da usare per il calcolo "teorico" delle grandezze che caratterizzano il circuito, come τ.
- Nell'effettuare le connessioni ricordarsi che i terminali "ground" dei due canali dell'oscilloscopio sono connessi internamente. Connettere il terminale "ground" del generatore di segnali con il "ground" del circuito e con quello dell'oscilloscopio.