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Abstract

Interferometric methods applied to neutral kaon pairs at a φ-factory offer
unique possibilities to perform fundamental tests of discrete symmetries, as
well as of the basic principles of quantum mechanics. In this paper a general
review on neutral kaon interferometry at a φ-factory is given. The most recent
results obtained by the KLOE experiment at the DAΦNE e+e− collider, the
Frascati φ-factory, are reviewed. A recent proposal for continuing the KLOE
physics program (KLOE-2) at an upgraded DAΦNE machine is discussed in
this context.

1 Introduction

The neutral kaon doublet is one of the most intriguing systems in nature.
During its time evolution a neutral kaon oscillates between its particle and
antiparticle states with a beat frequency Δm ≈ 5.3 × 109 s−1 , where Δm is
the small mass difference between the exponentially decaying states KL and
KS. The fortunate coincidence that Δm is about half the decay width of KS

makes possible to observe a variety of intricate interference phenomena in the
production and decay of neutral kaons. In turn, such observations enable us to
test the linear superposition principle of quantum mechanics, the interplay of
different conservation laws and the validity of various symmetry principles.

A unique feature of a φ-factory is the production of neutral kaon pairs
in a pure quantum state with the consequent possibility to study quantum in-
terference effects, and to have pure monochromatic tagged KS and KL beams.
Besides the possibility to measure to high accuracy most, if not all, of the
properties of the kaon system, the correlation between the two kaons could
open up new horizons in the study of discrete symmetries and of the basic
principles of quantum mechanics. For instance a possible violation of the CPT



symmetry1 (where C is charge conjugation, P is parity, and T is time reversal)
could manifest in conjunction with tiny modifications of the initial correlation,
decoherence effects, or Lorentz symmetry violations, which, in turn, might be
justified in a quantum theory of gravity. At a φ-factory the sensitivity to some
observable effects can reach the level of the interesting Planck’s scale region,
i.e. O(m2

K/MPlanck) ∼ 2×10−20 GeV, which is a very remarkable level of accu-
racy, presently unreachable in other similar systems (e.g. the B meson system).
Moreover recent theoretical studies demonstrated that entangled neutral kaons
at a φ-factory are suitable to test the foundations of quantum mechanics, such
as Bohr’s complementarity principle, the quantum erasure and marking con-
cepts, and the coherence of states over macroscopic distances, while for the
more classical test using Bell’s inequalities, new ideas have been put forward.
Therefore neutral kaon interferometry constitutes a powerful tool and a very
attractive opportunity to be fully exploited at a φ-factory.

This paper is organized as follows: a brief introduction on the neutral
kaon system is given in Sects. 2 and 3; the basic concepts of neutral kaon
interferometry and the description of the most important “standard” tests on
discrete symmetries that can be performed at a φ-factory are reviewed in Sect.
4; a brief introduction is given on possible tests of quantum mechanics (Sect.
5), decoherence and CPT violation effects that could be induced in a quantum
gravity framework (Sect. 6), and CPT and Lorentz symmetry violation effects
(Sect. 7). Detailed reviews on these subjects can be found in the other contri-
butions of this handbook. The most recent results of the KLOE experiment at
DAΦNE, the Frascati φ-factory, are reviewed in Sect. 8; finally, the improved
sensitivities and prospects for the proposed KLOE-2 experiment are discussed
in Sect. 9.

1The CPT theorem 1, 2, 3, 4) ensures that exact CPT invariance holds
for any quantum field theory assuming (1) Lorentz invariance, (2) Locality, and
(3) Unitarity. Testing the validity of CPT invariance therefore probes the most
fundamental assumptions of our present understanding of particles and their
interactions.



2 The neutral kaon system

The time evolution of a neutral kaon that is initially a generic superposition of
K0 and K̄0,

|K(0)〉 = a(0)|K0〉 + b(0)|K̄0〉 , (1)

can be described by the state vector

|K(t)〉 = a(t)|K0〉 + b(t)|K̄0〉 +
∑

j

cj(t)|fj〉 , (2)

where t is the time in the kaon rest frame, fj ’s with {j = 1, 2, ...} represent
all possible decay final states, and a(t), b(t), and cj(t) are time dependent
functions. In the Wigner-Weisskopf approximation 5), which is valid for times
larger than the typical strong interaction formation time, the functions a(t)
and b(t), describing the time evolution of the state in the {K0, K̄0} sub-space,
obey the Schrödinger-like equation

i
∂

∂t

(
a(t)
b(t)

)
= H

(
a(t)
b(t)

)
, (3)

where the effective Hamiltonian H is a 2 × 2 complex, not Hermitian, and
time independent matrix. It can be decomposed in terms of its hermitian and
anti-hermitian parts

H =
(

H11 H12

H21 H22

)
=

= M − i

2
Γ =

(
M11 M12

M∗
12 M22

)
− i

2

(
Γ11 Γ12

Γ∗
12 Γ22

)
, (4)

where M and Γ are two hermitian matrices with positive eigenvalues, usually
called mass and decay matrices, and indices 1 and 2 stand for K0 and K̄0,
respectively.

The true Hamiltonian H = H0 + Hwk, where H0 governs the strong
and electromagnetic interactions and conserve strangeness (H0|K0〉 = M0|K0〉,
H|K̄0〉 = M0|K̄0〉, S|K0〉 = |K0〉, S|K̄0〉 = −|K̄0〉), while Hwk is a small
perturbation governing weak interactions and not conserving strangeness, is
related to the effective Hamiltonian H as follows:

Mij = M0δij + 〈i|Hwk|j〉 + P
∑

f

( 〈i|Hwk|f〉〈f |Hwk|j〉
M0 − Ef

)
(5)



Γij = 2π
∑

f

〈i|Hwk|f〉〈f |Hwk|j〉δ(M0 − Ef ) (6)

where i, j = 1, 2, P stands for the principal part, and the intermediate states
f correspond to virtual (M) or real (Γ) decay channels.

The matrix H is characterized by eight independent real parameters;
seven of them are observables, while one phase is arbitrary and unphysical.
In fact the flavor symmetry of the strong interaction leaves the freedom to
redefine the relative phase of |K0〉 and |K̄0〉 states:

|K0〉 → eiϑ|K0〉
|K̄0〉 → e−iϑ|K̄0〉 , (7)

implying that the off-diagonal elements of H depend on the arbitrary phase ϑ

H12 → e−2iϑH12

H21 → e2iϑH21 . (8)

Thus expressions which depend on ϑ are not suited to represent experimental
results, unless ϑ is fixed to a definite value by convention. However the di-
agonal elements of H, the product of the off-diagonal elements, their absolute
values, the trace of H, its determinant and eigenvalues are all phase convention
independent quantities.

The conservation of discrete symmetries constrains the matrix elements
of H, and the following phase-invariant conditions hold2:

H11 = H22 for CPT conservation, (9)

|H12| = |H21| for T conservation, (10)

H11 = H22 and |H12| = |H21| for CP conservation. (11)

The eigenvalues of H are

λS = mS − iΓS/2

λL = mL − iΓL/2 , (12)

2For a general review on discrete symmetries in the neutral kaon system see
Refs. 6, 7, 8, 9, 10, 11).



where mS,L and ΓS,L are the masses and widths of the physical states, respec-
tively. It is also useful to define the differences

Δm = mL − mS > 0

ΔΓ = ΓS − ΓL > 0 (13)

and the so called superweak phase

tan φSW =
2Δm

ΔΓ
. (14)

The physical states that diagonalize H are the short- and long-lived states;
they evolve in time as pure exponentials

|KS(t)〉 = e−iλSt|KS〉
|KL(t)〉 = e−iλLt|KL〉 , (15)

and are usually written as:

|KS〉 =
1√

2(1 + |εS |2)
{(1 + εS)|K0〉 + (1 − εS)|K̄0〉}

|KL〉 =
1√

2(1 + |εL|2)
{(1 + εL)|K0〉 − (1 − εL)|K̄0〉} , (16)

where εS,L are two small complex parameters describing the CP impurity in
the physical states; one can equivalently define the parameters

ε̄ ≡ (εS + εL)/2 , δ ≡ (εS − εL)/2 . (17)

Ignoring negligible quadratic terms, they can be expressed in terms of the
elements of H as:

ε̄ =
H12 − H21

2(λS − λL)
=

−i�M12 − 1
2�Γ12

Δm + i (ΔΓ) /2
(18)

δ =
H11 − H22

2(λS − λL)
=

1
2

(
M22 − M11 − i

2 (Γ22 − Γ11)
)

Δm + i (ΔΓ) /2
. (19)

It is worth noting that the parameter ε̄ is phase convention dependent. The
arbitrariness in the choice of the phase ϑ can be conveniently used to have
either arg(Γ12) = 0 (in this case ε̄ = |ε̄|eiφSW ), or the phase of some decay
amplitude such that arg(Γ12) 	 1 (as in the Wu-Yang phase convention 12)).



In this case it can be shown 9, 11, 13, 14) that the real part of ε̄ does not
depend on arg(Γ12), and the following relation holds3:

|H12|2 − |H21|2
|H12|2 + |H21|2 
 4�ε̄ . (20)

Then it is easy to show that

• δ �= 0 implies CPT violation;

• �ε̄ �= 0 implies T violation;

• �ε̄ �= 0 or δ �= 0 implies CP violation.

The effective Hamiltonian H can thus be expressed in terms of the following 7
observable quantities: 4 being in the complex eigenvalues λS,L, 2 in the complex
parameter δ, and 1 in the real part of ε̄.

3 Correlated kaons

The correlations between the decay modes of a system consisting of a KK̄ pair
produced in nucleon-antinucleon annihilation were first considered in 1958 by
Goldhaber, Lee and Yang 15). Neutral kaon pairs can also be produced in the
strong decay of some scalar, vector, or tensor unflavored neutral mesons, e.g.
f0, φ, or f ′

2, with definite JPC = 0++, 1−−, 2++ quantum numbers. In such a
case only the two following zero strangeness states need to be considered:

|K0(+	p)〉|K̄0(−	p)〉
|K̄0(+	p)〉|K0(−	p)〉 (21)

where the kaon momentum +	p (or −	p) is specified in the decaying meson
rest frame. Neutral kaons are spinless bosons and the physical K0K̄0 state is
required to be symmetric under the combined operation of charge conjugation
C and permutation of space coordinates P , i.e. CP = +1. For an arbitrary
and well defined orbital angular momentum L, the system is an eigenstate of
C with eigenvalue (−1)L. Hence, for the decay of scalar or tensor mesons into

3Always neglecting |ε̄|2 	 1 and |δ|2 	 1.



K0K̄0, one has L = 0, 2 (C = P = +1) and necessarily the following symmetric
combination of states (21):

|i〉 =
1√
2
{|K0(+	p)〉|K̄0(−	p)〉 + |K̄0(+	p)〉|K0(−	p)〉}

=
1√
2
{[|KS(+	p)〉|KS(−	p)〉 − |KL(+	p)〉|KL(−	p)〉]

−2δ[|KS(+	p)〉|KL(−	p)〉 + |KL(+	p)〉|KS(−	p)〉]} (22)

while, for the decay of vector mesons, one has L = 1 (C = P = −1) and the
antisymmetric combination:

|i〉 = 1√
2
{|K0(+	p)〉|K̄0(−	p)〉 − |K̄0(+	p)〉|K0(−	p)〉}

= N√
2
{|KS(+	p)〉|KL(−	p)〉 − |KL(+	p)〉|KS(−	p)〉} (23)

where

N =

√
(1 + |εS |2)(1 + |εL|2)

(1 − εSεL)

 1 (24)

is a normalization factor.
It is worth noting that:

• for identical spinless bosons, Bose statistics forbids states with odd angu-
lar momentum; hence in the case L = 1 terms like KSKS or KLKL (or
K0K0, etc.) cannot appear; this is also true for simultaneous kaon states
at any time in the evolution of the system after production; the state
results totally antisymmetric, and eq.(23) is exact regardless of any CP
or CPT violation in the neutral kaon system (apart the case of a possible
CPT violation in which Bose statistics does not apply, as described in
Ref. 16, 17));

• in the case L = 0, 2 terms of the order ε̄2 and δ2 have been neglected
in eq.(22) but the effect of possible CPT violation has been included,
leading to the appearance of KSKL and KLKS terms.

4 Kaon interferometry at a φ-factory

Neutral kaon pairs in the antisymmetric state (23) are ideally and copiously
produced at a φ-factory (JPC = 1−− for the φ meson) in the reaction e+e− →



φ → K0K̄0. According to quantum mechanics, one can evaluate the decay
amplitude for state (23) into final states f1 and f2 produced in the +	p and −	p

directions at kaon proper times t1 and t2, respectively:

A(f1, t1; f2, t2) =
N√
2
{〈f1|T |KS(t1)〉〈f2|T |KL(t2)〉

−〈f1|T |KL(t1)〉〈f2|T |KS(t2)〉}
=

N√
2
{〈f1|T |KS〉〈f2|T |KL〉e−iλSt1e−iλLt2

−〈f1|T |KL〉〈f2|T |KS〉e−iλLt1e−iλSt2} . (25)

The double differential decay rate into final states f1 and f2 at proper times t1

and t2 can be readily computed from eq.(25):

I(f1, t1; f2, t2) = C12{|η1|2e−ΓLt1−ΓSt2 + |η2|2e−ΓSt1−ΓLt2

−2|η1||η2|e−
(ΓS+ΓL)

2 (t1+t2) cos[Δm(t1 − t2) + φ2 − φ1]} (26)

where

ηi ≡ |ηi|eiφi =
〈fi|T |KL〉
〈fi|T |KS〉 , (27)

C12 =
|N |2

2
|〈f1|T |KS〉〈f2|T |KS〉|2 ,

and a proper account of phase-space integrals is implicitly assumed. After
integration in (t1 + t2), at fixed difference of time Δt = t1 − t2, the following
distribution is obtained, sometimes simpler to manipulate and compare to data:

I(f1, f2; Δt ≥ 0) =
C12

ΓS + ΓL
{|η1|2e−ΓLΔt + |η2|2e−ΓSΔt

−2|η1||η2|e−
(ΓS+ΓL)

2 Δt cos[ΔmΔt + φ2 − φ1]} (28)

valid for Δt ≥ 0, while for Δt < 0 the substitutions Δt → |Δt| and 1 ↔ 2 have
to be applied.

Both eqs.(26) and (28) show a time interference term (in the second line
of their expressions) giving rise to a characteristic correlation between the two
kaon decays. It can be exploited to study the neutral kaon system and discrete
symmetries. In fact the decay amplitude ratios ηi defined in eq.(27), as well
as the kinematical properties of neutral kaons, i.e. ΓS , ΓL and Δm, can be



evaluated by measuring the distribution (28) with different choices of final
states f1 and f2. From these measurements several parameters describing the
neutral kaon system can be extracted.

In general two kind of asymmetries can be constructed from eq.(28); the
first one can be obtained by considering eq.(28) for positive and negative Δt’s:

A(|Δt|) =
I (f1, f2; Δt > 0) − I (f1, f2; Δt < 0)
I (f1, f2; Δt > 0) + I (f1, f2; Δt < 0)

; (29)

for |Δt| � τS (where τS,L = 1/ΓS,L is the KS,L lifetime) it becomes:

A(|Δt| � τS) 
 |η1|2 − |η2|2
|η1|2 + |η2|2 , (30)

while for |Δt| < 5τS it depends on the complex ratio η2/η1, and therefore from
the phase difference φ2 − φ1.

The second asymmetry can be defined by considering three different final
states f1, f2, and f3:

Af1,f2(Δt) =
I (f1, f3; Δt) − I (f2, f3; Δt)
I (f1, f3; Δt) + I (f2, f3; Δt)

. (31)

For large positive Δt one obtains:

Af1,f2(Δt � τS) 
 Γ(KL → f1) − Γ(KL → f2)
Γ(KL → f1) + Γ(KL → f2)

, (32)

while for large negative Δt one has:

Af1,f2(Δt 	 −τS) 
 Γ(KS → f1) − Γ(KS → f2)
Γ(KS → f1) + Γ(KS → f2)

. (33)

For |Δt| < 5τS the asymmetry (31) depends on the ratios η1/η3 and η2/η3.

4.1 Decays into two charged and two neutral pions

The parameter ε′/ε signaling direct CP violation 18, 6) in K → ππ decays
can be measured with the choice f1 = π+π− and f2 = 2π0; in this case the
corresponding ηi parameters are defined as follows:

η+− ≡ |η+−|eiφ+− = ε + ε′

η00 ≡ |η00|eiφ00 = ε − 2ε′ (34)



where4:

ε = ε̄ − δ + i
�A0

�A0
+

�B0

�A0
(35)

ε′ =
1√
2
ei(δ2−δ0)�A2

�A0

[
i

(�A2

�A2
− �A0

�A0

)
+

(�B2

�A2
− �B0

�A0

)]
, (36)

and the decay amplitudes of K0 and K̄0 into a ππ final state of definite isospin
I = 0, 2 are written as

〈ππ; I|T |K0〉 = (AI + BI)eiδI

〈ππ; I|T |K̄0〉 = (A∗
I − B∗

I )eiδI , (37)

with δI the ππ strong interaction phase shift for channel of total isospin I.
Here AI (BI) describe the CPT -conserving (CPT -violating) part of ππ decay
amplitudes (see Refs. 6, 19, 18) for a detailed discussion).

The distribution (28) in the case of f1 = π+π− and f2 = 2π0 is shown
in Fig.1 (where the effect of ε′/ε �= 0 is emphasized). One can construct an
asymmetry of the kind of eq.(29):

Aε′/ε(|Δt|) =
I

(
π+π−, π0π0; Δt > 0

) − I
(
π+π−, π0π0; Δt < 0

)
I (π+π−, π0π0; Δt > 0) + I (π+π−, π0π0; Δt < 0)

= AR(|Δt|)�
(

ε′

ε

)
− AI(|Δt|)�

(
ε′

ε

)
(38)

where terms proportional to
(

ε′
ε

)2

have been neglected in the last equality, and

AR(|Δt|) = 3
e−ΓL|Δt| − e−ΓS |Δt|

e−ΓL|Δt| + e−ΓS |Δt| − 2e−
(ΓS+ΓL)

2 |Δt| cos(Δm|Δt|)

AI(|Δt|) = 3
2e−

(ΓS+ΓL)
2 |Δt| sin(Δm|Δt|)

e−ΓL|Δt| + e−ΓS |Δt| − 2e−
(ΓS+ΓL)

2 |Δt| cos(Δm|Δt|)
(39)

The asymmetry is sensitive to �(ε′/ε) for |Δt| ≤ 5τS, while for |Δt| � τS tends
to 3�(ε′/ε).

4It is worth remarking that ε and ε′ are measurable quantities independent
of any phase convention.



Δt/τS

I(Δt)  (a.u.)

Figure 1: The I
(
π+π−, π0π0; Δt

)
distribution in the case of ε′/ε = 0 (solid

line), and in the case of �(ε′/ε) = 0.005, �(ε′/ε) = 0.05 (dashed line).

4.2 Double semileptonic decays

The semileptonic decay amplitudes can be parametrized as follows 6):

〈π−l+ν|T |K0〉 = a + b , 〈π+l−ν̄|T |K̄0〉 = a∗ − b∗

〈π+l−ν̄|T |K0〉 = c + d , 〈π−l+ν|T |K̄0〉 = c∗ − d∗ (40)

where a, b, c, d are complex quantities; CPT invariance implies b = d = 0,
ΔS = ΔQ rule implies c = d = 0, T invariance implies �a = �b = �c =
�d = 0, while CP invariance implies �a = �b = �c = �d = 0. Then three
measurable parameters can be defined:

y = −b/a , x+ = c∗/a , x− = −d∗/a ; (41)

x+ (x−) describes the violation of the ΔS = ΔQ rule in CPT conserving
(violating) decay amplitudes, while y parametrizes CPT violation for ΔS =



ΔQ transitions. Then the semileptonic charge asymmetries for KS and KL

states can be expressed as

AS =
Γ(KS → π−l+ν) − Γ(KS → π+l−ν̄)
Γ(KS → π−l+ν) + Γ(KS → π+l−ν̄)

= 2�ε̄ + 2�δ − 2�y + 2�x− , (42)

and

AL =
Γ(KL → π−l+ν) − Γ(KL → π+l−ν̄)
Γ(KL → π−l+ν) + Γ(KL → π+l−ν̄)

= 2�ε̄ − 2�δ − 2�y − 2�x− . (43)

With the choice f1 = π−l+ν and f2 = π+l−ν̄, the corresponding ηi parameters
are

ηl+ 
 1 − 2δ − 2x+ − 2x−

ηl− 
 −1 − 2δ + 2x∗
+ − 2x∗

− . (44)

The decay intensity (28) in this case is shown in Fig.2 (where a possible effect
of δ �= 0 is emphasized). The following asymmetry can be constructed:

ACPT (|Δt|) =
I (π−l+ν, πl−ν̄; Δt > 0) − I (π−l+ν, π+l−ν̄; Δt < 0)
I (π−l+ν, π+l−ν̄; Δt > 0) + I (π−l+ν, π+l−ν̄; Δt < 0)

= −4
3
{AR(|Δt|)δR + AI(|Δt|)δI}

×cosh (ΔΓ|Δt|/2) − cos(Δm|Δt|)
cosh (ΔΓ|Δt|/2) + cos(Δm|Δt|) (45)

that is sensitive to CPT and/or ΔS = ΔQ rule violations. In fact for |Δt| � τS

it tends to −4δR, where δR = �δ + �x−, while for |Δt| ≤ 5τS it is sensitive to
δI = �δ + �x+.

4.3 Semileptonic and two pion decays

The decay intensity (28) in the cases of f1 = π−l+ν, f2 = π+l−ν̄, and f3 = ππ

is shown in Fig.3; an asymmetry of the kind of eq.(31) can be constructed

Al+l−(Δt) =
I (π−l+ν, ππ; Δt) − I (π+l−ν̄, ππ; Δt)
I (π−l+ν, ππ; Δt) + I (π+l−ν̄, ππ; Δt)

, (46)



Δt/τS

I(Δt)  (a.u.)

Figure 2: The I (π−l+ν, πl−ν̄; Δt) distribution in the case of δ = x+ = x− = 0
(solid line), and in the case �δ = 5 · 10−4, �δ = 0.05 , x+ = x− = 0 (dashed
line).

that at large positive times Δt � τS coincides with the KL semileptonic asym-
metry AL given in eq.(43), while for short times it is sensitive to |ηππ| and φππ.

4.4 Decays into identical final states

In the case of f1 = f2 = π+π− the dependence on the η+− parameter factorizes
out, and the shape of distribution (28) is sensitive only to the kinematical
quantities ΓS , ΓL and Δm, as shown in Fig.4. The same holds for any choice
of identical final states, i.e. with f1 = f2.

More detailed reviews on this subject can be found in Refs. 18, 6, 19, 20).



I(Δt)  (a.u.)

Δt/τS

Figure 3: The I (π−l+ν, ππ; Δt) (solid line), and I (πl−ν̄, ππ; Δt) (dashed line)
distributions.

5 Entanglement and neutral kaons

As mentioned above the interference term in eqs.(26) and (28) gives rise to a
characteristic correlation between the two kaon decays. For instance, a com-
plete destructive interference prevents the two kaons from decaying into the
same final state f at the same time t, i.e.:

I(f, t; f, t) = 0 (47)

for any f and t (as it can be also noticed in Fig.(4) for |Δt| = 0). This is
a consequence of the antisymmetry of state (23). From an intuitive point of
view, once produced, the two kaons can be viewed as two freely propagating
independent particles. However even though the two decays can be regarded
as separated space-like events (the kaons are produced with opposite momen-
tum in the φ meson rest frame), it is like the kaon flying in the +	p direction



I(Δt)  (a.u.)

Δt/τS

Figure 4: The I (π+π−, π+π−; |Δt|) distribution as a function of |Δt| (solid
line), and the same distribution in the case of a fractional variation of Δm of
+10% (dashed line).

cannot “freely” decay into a certain final state f at a certain proper time t,
but its behaviour depends on what the other kaon flying in the opposite −	p

direction does. This kind of correlation (entanglement) for neutral kaon pairs
was emphasized already in 1960 by Lee and Yang 21), and later on by several
authors 22, 23, 24). It cannot be simply explained in terms of conservation
laws, and is of the type first pointed out by Einstein, Podolsky and Rosen
(EPR) in their famous paper 25).

This feature of the initial state (23) has long reaching consequences in
terms of potentialities of the neutral kaon system in testing fundamental as-
pects of quantum mechanics. This can be easily understood by recognizing
that the quantum number strangeness ±1 for a neutral kaon can play the same
role of spin up or down along a chosen direction. Then, the correlations implied



by the state (23) for a kaon pair lead to a quite straightforward formal anal-
ogy with the system of spin 1/2 particles in the singlet state. Therefore, kaon
pairs produced at a φ-factory might be suitable for a significant test of Bell’s
inequality, as it is discussed in detail in the contributions of Bertlmann and
Hiesmayr 26), and Bramon, Escribano and Garbarino 27) (see also the contri-
bution of Go 28)), or for the study of Bohr’s complementarity principle with
an interesting implementation of the quantum erasure concepts, as described
in the contribution of Bramon, Garbarino and Hiesmayr 29).

6 Decoherence and CPT violation

6.1 Furry’s hypothesis and a simple decoherence model

Most of the key features of the entangled state (23) resides in its non-separability.
It has been suggested that the state soon after the φ-meson decay, sponta-
neously factorizes to an equally weighted statistical mixture of states |KS〉|KL〉
and |KL〉|KS〉, (commonly known as Furry’s hypothesis 30)). In this case
the characteristic quantum interference term would disappear from expressions
(26) and (28); to be more specific, this means that the calculation of intensity
I(f1, t1; f2, t2) is no more given by eq.(26), as in orthodox quantum mechanics,
but is given by the incoherent sum:

I(f1, t1; f2, t2)Furry =
|N |2

2
{|〈f1|T |KS(t1)〉〈f2|T |KL(t2)〉|2

+|〈f1|T |KL(t1)〉〈f2|T |KS(t2)〉|2} . (48)

One of the most direct way to search for such deviations from quantum
mechanics 31) is to introduce a decoherence parameter ζSL, and a factor (1−ζ)
multiplying the interference term in eq.(26):

I(f1, t1; f2, t2; ζ) = C12{|η1|2e−ΓLt1−ΓSt2 + |η2|2e−ΓSt1−ΓLt2

−2(1 − ζ)|η1||η2|e−
(ΓS+ΓL)

2 (t1+t2) cos[Δm(t1 − t2) + φ2 − φ1]} . (49)

The case ζ = 0 corresponds to the usual orthodox quantum theory, while for
ζ = 1 the case of spontaneous factorization of state, as in eq.(48), is obtained,
i.e. total decoherence. Different ζ values correspond to intermediate situations
between these two. However, the state could also spontaneously factorize into
another mixture of states, e.g. |K0〉|K̄0〉 and |K̄0〉|K0〉, giving rise to a different



decay intensity expression. As pointed out in Ref. 32), in general the definition
of ζ depends on the basis in which is written the initial state (23) because the
interference term changes with the basis (obviously in the orthodox quantum
theory the final result does not depend on the basis choice). For a generic basis
|Kα〉, |Kβ〉, distribution (26) is modified as follows:

I(f1, t1; f2, t2; ζαβ) =
|N ′|2

2
{|〈f1|T |Kα(t1)〉〈f2|T |Kβ(t2)〉|2

+|〈f1|T |Kβ(t1)〉〈f2|T |Kα(t2)〉|2
−2(1 − ζαβ)�[〈f1|T |Kβ(t1)〉〈f2|T |Kα(t2)〉〈f1|T |Kα(t1)〉∗〈f2|T |Kβ(t2)〉∗]} ,

(50)

defining the basis dependent decoherence parameter ζαβ .

6.2 A general approach to decoherence

In general decoherence is the time evolution of a pure state into an incoher-
ent mixture of states. The density matrix formalism correctly treats pure and
mixed states in a unique consistent framework. According to quantum me-
chanics, the time evolution of the density matrix ρ of a system is given by the
Liouville - von Neumann equation:

dρ

dt
= −i[H, ρ] (51)

Decoherence can be introduced at a more fundamental level than inserting
by hand the parameter ζ, by suitably modifying eq.(51). Very general mod-
ifications have been proposed in Ref. 33, 34, 35, 36, 37, 38) for single kaon
and correlated pair of kaon systems. In the broad framework of open quantum
systems, neutral kaons can be modeled as being small subsystems in weak in-
teraction with large environments. The reduced dynamics for the subsystem
is obtained by tracing over the environment degrees of freedom, and the time
evolution is assumed to be described by a completely positive dynamical map.
A detailed review on this subject can be found in the contribution of Benatti
and Floreanini 39).

6.3 Decoherence and CPT violation due to quantum gravity effects

The decoherence mechanism can be made more specific in the case it is induced
by quantum gravity effects. In fact one of the main open problem in quantum



gravity is related to what is commonly known as the black hole information-loss
paradox. In 1976 Hawking showed 40) that the formation and evaporation of
black holes, as described in the semiclassical approximation, appear to trans-
form pure states near the event horizon of black holes into mixed states. This
corresponds to a loss of information about the initial state, in striking conflict
with quantum mechanics and its unitarity description.

At a microscopic level, in a quantum gravity picture, space-time might be
subjected to inherent non-trivial quantum metric and topology fluctuations at
the Planck scale (∼ 10−33 cm), called generically space-time foam, with associ-
ated microscopic event horizons. As further suggested by Hawking himself 41),
this space-time structure, might induce a pure state to evolve into a mixed one,
i.e. decoherence of apparently isolated matter systems. This decoherence, in
turn, necessarily implies, by means of a theorem 42), CPT violation, in the
sense that the quantum mechanical operator generating CPT transformations
cannot be consistently defined.

The information-loss paradox generated a lively debate during the last
decades with no generally accepted solution. Even the recent proposed solu-
tions in favor of no-loss and preservation of information do not completely solve
the problem, some aspects of which still remaining a puzzle (see for instance
Refs. 43, 44, 45)). It seems therefore extremely interesting to put experimental
limits at the level of the Planck’s scale region on possible decoherence effects.

The above mentioned decoherence mechanism lead Ellis and coworkers 46)

to formulate a model in which a single kaon is described by a density matrix ρ

that obeys a modified Liouville-von Neunmann equation:

dρ

dt
= −iHρ + iρH† + iδH/ ρ (52)

where now H = M − iΓ/2 is the usual neutral kaon effective Hamiltonian,
and the extra term δH/ would induce decoherence in the system. Taking
as orthonormal basis for ρ the states |K1〉 = 1√

2

[|K0〉 + |K̄0〉] and |K2〉 =
1√
2

[|K0〉 − |K̄0〉], and expanding ρ in terms of Pauli spin matrices σi and the
identity σ0, i.e. ρ = ρμσμ, the extra term can be represented by a 4× 4 matrix



δH/ μν (μ, ν = 0, 1, 2, 3) acting on a column vector with ρμ as components:

δH/ μν = −2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 α β
0 0 β γ

⎞
⎟⎟⎠ (53)

where α, β and γ are three new real parameters, which violate CPT symmetry
and quantum mechanics, and satisfy the inequalities α, γ > 0 and αγ > β2 (see
Refs. 46, 47)). They have mass dimension and are guessed to be at most of
O(m2

K/MPlanck) ∼ 2×10−20 GeV, where MPlanck = 1
√

GN = 1.22×1019 GeV
is the Planck mass.
The formalism described above is for single kaons. Its extension to the corre-
lated kaon pair (23) has been described in Refs. 48, 17).

It is worth noting that the assumption of complete positivity 34, 35)

introduces additional constraints on these three parameters, i.e. α = γ and
β = 0, reducing them to only one independent parameter.

As discussed above, in a quantum gravity framework inducing decoher-
ence, the CPT operator is ill-defined. This consideration lead Bernabeu,
Mavromatos and Papavassiliou 16, 17) to investigate intriguing consequences
in correlated neutral kaon states. In fact the resulting loss of particle-antiparticle
identity could induce a breakdown of the correlation of state (23) imposed by
Bose statistics. As a result the initial entangled state (23) can be parametrized
in general as:

|i〉 =
1√
2

{[|K0〉|K̄0〉 − |K̄0〉|K0〉] + ω
[|K0〉|K̄0〉 + |K̄0〉|K0〉]}

∝ {[|KS〉|KL〉 − |KL〉|KS〉] + ω [|KS〉|KS〉 − |KL〉|KL〉]} (54)

where ω is a complex parameter describing a completely novel CPT violation
phenomenon, not included in previous analyses. Its order of magnitude might

be at most |ω| ∼
[

(m2
K/MP lanck)

ΔΓ

]1/2

∼ 10−3, with ΔΓ = ΓS − ΓL.
From eq.(54) it is evident that the best decay channel to look for such CPT

violation effects is the one with f1 = f2 = π+π−: in fact in this case the leading
KSKL terms are CP suppressed while the new CPT violating KSKS term is
not.

A general review on the theoretical motivations for possible CPT viola-
tion induced by quantum gravity in the neutral kaon system can be found in



the contribution of Bernabeu, Ellis, Mavromatos, Nanopoulos and Papavassil-
iou 49); a review on decoherence models in this framework can be found in the
contribution of Sarkar 50), while general considerations on quantum gravity
phenomenology with a special focus on correlated states can be found in the
contribution of Amelino-Camelia, Arzano and Marcianò 51).

7 CPT violation and Lorentz symmetry breaking

CPT invariance holds for any realistic Lorentz-invariant quantum field theory.
However a very general theoretical possibility for CPT violation is based on
spontaneous breaking of Lorentz symmetry, as developed by Kostelecky 52, 53, 54),
which appears to be compatible with the basic tenets of quantum field theory
and retains the property of gauge invariance and renormalizability (Standard
Model Extension - SME). A detailed review on this subject can be found in
the contribution of Lehnert 55). Here, after a brief introduction, some mea-
surement methods at a φ-factory are discussed.

In SME for neutral kaons, CPT manifests to lowest order only in the
CPT violation parameter δ (e.g. BI , y and x− vanish at first order), and
exhibits a dependence on the 4-momentum of the kaon:

δ ≈ i sinφSW eiφSW γK(Δa0 − 	βK · Δ	a)/Δm (55)

where γK and 	βK are the kaon boost factor and velocity in the observer frame,
and Δaμ are four CPT - and Lorentz-violating coefficients for the two valence
quarks in the kaon.

The implications of the momentum dependence in the CPT violation
parameter can be substantial, as it is evident in eq.(55). The analysis of exper-
imental data requires a particular care in considering meson boost, momentum
orientation, and possible diurnal effects arising from the rotation of the Earth
relative to the constant vector Δ	a, in order to avoid cancellations of the CPT

violation effects.
Following Ref. 53), the time dependence arising from the rotation of the

Earth can be explicitly displayed in eq.(55) by choosing a three-dimensional
basis (X̂, Ŷ , Ẑ) in a non-rotating frame, with the Ẑ axis along the Earth’s
rotation axis, and a basis (x̂, ŷ, ẑ) for the rotating (laboratory) frame (see Fig.5).
The CPT violating parameter δ may then be expressed as:



Figure 5: Basis (x̂, ŷ, ẑ) for the rotating frame, and basis (X̂, Ŷ , Ẑ) for the fixed
non-rotating frame. The laboratory frame precesses around the Earth’s rotation
axis Ẑ at the sidereal frequency Ω; χ is the angle between the axes Ẑ and ẑ.

δ(	p, t) =
i sin φSW eiφSW

Δm
γK{Δa0 + βKΔaZ(cos θ cosχ − sin θ cosφ sin χ)

−βKΔaX sin θ sin φ sin Ωt

+βKΔaX(cos θ sin χ + sin θ cosφ cosχ) cosΩt

+βKΔaY (cos θ sin χ + sin θ cosφ cosχ) sin Ωt

+βKΔaY sin θ sin φ cosΩt} (56)

where Ω is the Earth’s sidereal frequency, cosχ = ẑ · Ẑ, and θ and φ are the
conventional polar and azimuthal angles defined in the laboratory frame about
the ẑ axis.

The sensitivity to the four Δaμ parameters can be very different for fixed
target and collider experiments, showing complementary features 53). At a
fixed target experiment usually the kaon momentum direction is fixed, while
|	p| might vary within a certain interval. On the contrary, at a φ-factory kaons
are emitted with the characteristic p-wave angular distribution dN/dΩ ∝ sin2 θ,



while |	p| is fixed5. Assuming a symmetric decay distribution6 in the azimuthal
angle φ, and an integration on this variable, the following expression is obtained
for δ:

δ =
1
2π

∫ 2π

0

δ(	p, t)dφ

=
i sinφSW eiφSW

Δm
γK{Δa0 + βKΔaZ cos θ cosχ

+βK(ΔaY sin χ cos θ sin Ωt + ΔaX sin χ cos θ cosΩt)} , (57)

showing different angular and time dependences of the various terms propor-
tional to Δaμ.

7.1 Measurement of Δa0 at a φ-factory

The Δa0 parameter can be measured through the difference of the semileptonic
charge asymmetries for KS and KL, given in eqs.(42) and (43), by performing
the measurement of each asymmetry with a symmetric integration over the
polar angle θ, thus averaging to zero any possible contribution from the terms
proportional to cos θ in eq.(57). Then one obtains that the difference (AS−AL)
is proportional to Δa0, i.e.:

AS − AL 

[

4� (
i sinφSW eiφSW

)
γK

Δm

]
Δa0 . (58)

An alternative method to measure Δa0 consists in exploiting the corre-
lation between the two kaons in double semileptonic decays φ → KSKL →
π+�−ν̄, π−�+ν with opposite lepton charges. The two kaons are practically
emitted back-to-back, and terms proportional to cos θ have opposite sign for
the two kaons; Δa0 can be evaluated through the asymmetry (45), which for
large Δt becomes:

ACPT (|Δt| � τS) 
 −
[

4� (
i sinφSW eiφSW

)
γK

Δm

]
Δa0 . (59)

5Apart small variations due to the small φ meson momentum in the labo-
ratory frame.

6This simplifying assumption will be maintained throughout the following;
however small non-symmetric φ angle effects could be easily included in the
formulas without significantly modifying the main conclusions below.



The above two methods are largely independent and could be useful for
systematics cross-checks.

7.2 Measurement of ΔaZ at a φ-factory

The ΔaZ parameter can be measured through the AL asymmetry measured
separately for KL’s emitted in the forward (cos θ > 0) and backward (cos θ < 0)
direction; assuming data have been uniformly taken as a function of sidereal
time, thus averaging to zero any possible contribution from the terms propor-
tional to cosΩt and sin Ωt in eq.(57) (otherwise a proper t-dependent analysis
has to be performed), one has:

ΔAL ≡ AL(cos θ > 0) − AL(cos θ < 0)


 −
[

4� (
i sinφSW eiφSW

)
βKγK cosχ 〈cos θ〉

Δm

]
ΔaZ (60)

where 〈cos θ〉 is a proper average of cos θ over the forward (backward) hemi-
sphere.

Also for the measurement of ΔaZ an alternative and independent method
exists, based on neutral kaon interferometry with φ → KSKL → π+π−, π+π−

decays. In this case the intensity I (π+π−(+), π+π−(−); Δt) can be measured,
where the two identical final states are distinguished by their forward or back-
ward emission (the symbols + and − represent cos θ > 0 and cos θ < 0, respec-
tively), and the following asymmetry evaluated:

A(|Δt|) =
I (π+π−(+), π+π−(−); Δt > 0) − I (π+π−(+), π+π−(−); Δt < 0)
I (π+π−(+), π+π−(−); Δt > 0) + I (π+π−(+), π+π−(−); Δt < 0)

(61)

To first order in small quantities, the above asymmetry for Δt � τS tends to
zero, because ε and δ are 90◦ out of phase (see Ref. 18)):

A(|Δt| � τS) 
 −2�
(

δ

ε

)
∼ 0 (62)

while for |Δt| ≤ 5τS it is sensitive to � (δ/ε), and therefore to ΔaZ :

A(0 < |Δt| < 5τS) ∝ �
(

δ

ε

)



[
sinφSW βKγK cosχ 〈cos θ〉

Δm|ε|
]

ΔaZ . (63)

Also in this case the two methods could be used for cross-checks.



7.3 Measurement of ΔaX , ΔaY at a φ-factory

The ΔaX , ΔaY and ΔaZ parameters can be all simultaneously measured by
performing a proper sidereal time dependent analysis of asymmetries in eqs.(60)
and (61).

8 The KLOE experiment at DAΦNE

DAΦNE, the Frascati φ-factory 56), is an e+e− collider working at a center of
mass energy of

√
s ∼ 1020 MeV, corresponding to the peak of the φ resonance.

The φ production cross section is ∼ 3μb; the main φ decays and branching
ratios are listed in tab. 1. The beams collide at the interaction point (IP)

Table 1: Main decay channels and branching fractions of the φ meson
Decay channel Branching fraction (% units)
φ → K+K− 49.1
φ → K0K̄0 34.0
φ → ρπ, π+π−π0 15.4
φ → ηγ 1.3

with a crossing angle θx 
 25 mrad, therefore φ’s are produced with a small
momentum of ∼ 12.5 MeV in the horizontal plane. The beams collide with a
frequency up to 370 MHz corresponding to a bunch crossing period of Tbunch =
2.7 ns and a maximum number of circulating bunches of 120. The KLOE
interaction region is equipped with three low-β quadrupoles, which reduce the
beam-size in the vertical (y) direction. The typical sizes of the beam are σx =
0.2 cm; σy = 20 μm; σz = 3 cm. The maximum peak luminosity reached during
KLOE data taking is L 
 1.4 × 1032cm−2 s−1

The KLOE detector consists mainly of a large volume drift chamber sur-
rounded by an electromagnetic calorimeter. A superconducting coil around the
calorimeter provides a 0.52 T solenoidal magnetic field.

The fine sampling lead-scintillating fiber calorimeter 57) consists of a
barrel and two end-caps, and has solid angle coverage of 98%. Photon energies
and arrival times are measured with resolutions σE/E = 5.7%/

√
E(GeV) and

σt = 54ps/
√

E(GeV)⊕50ps, respectively. Photon entry points are determined
with an accuracy σz ∼ 1 cm/

√
E(GeV) along the fibers and σ⊥ ∼ 1 cm in the

transverse direction.



The tracking detector is a 4 m diameter and 3.3 m long cylindrical drift
chamber 58) with a total of ∼ 52000 wires, of which ∼ 12000 are sense wires.
In order to minimize multiple scattering and KL regeneration and to maximize
detection efficiency of low energy photons, the chamber works with a helium
based gas mixture and its walls are made of light materials (mostly carbon
fiber composites). The momentum resolution for tracks produced at large polar
angle is σp/p ≤ 0.4%. Vertices are reconstructed with a resolution of ∼ 3 mm.

Kaon regeneration in the beam pipe is a non negligible disturbance. The
beam pipe is spherical around the interaction point, with a radius of 10 cm.
The walls of the beam pipe, 500 μm thick, are made of a 62%-beryllium/38%-
aluminum alloy. A beryllium cylindrical tube of 4.4 cm radius and 50μm thick,
coaxial with the beam, provides electrical continuity.

KLOE completed the data taking in March 2006 with a total integrated
luminosity of ∼ 2.5 fb−1, corresponding to ∼ 7.5 × 109 φ-mesons produced.

8.1 Decoherence and CPT symmetry tests

The quantum interference between the two kaon decays in the CP violating
channel φ → KSKL → π+π−π+π− has been observed for the first time by
KLOE 59). A data sample corresponding to ∼ 380 pb−1 has been analysed; the
selection of the signal requires two vertices, each with two opposite curvature
tracks inside the drift chamber, with an invariant mass and total momentum
compatible with the two neutral kaon decays. The experimental resolution on
the time difference |Δt| in the case of π+π− decays can be improved exploit-
ing the good momentum resolution of the KLOE detector 60) and the closed
kinematics of the event. After a kinematic fit, a resolution σ|Δt| ∼ 0.9τS is ob-
tained. The measured I(π+π−, π+π−; |Δt|) distribution as a function of |Δt|
can be fitted with the expression given in eq.(28). After having included resolu-
tion and detection efficiency effects, having taken into account the background
due to coherent and incoherent KS-regeneration on the beam pipe wall, the
small contamination of non-resonant e+e− → π+π−π+π− events, and keeping
fixed in the fit ΓS and ΓL to the PDG 61) values, Δm can be evaluated. The
fit result is Δm = (5.61 ± 0.33) × 109s−1, which is compatible with the more
precise value given by the PDG: Δm = (5.290± 0.015)× 109s−1.

A similar analysis can be done on the same data sample, by fixing Δm to
the PDG value, using the modified expression given in eq.(50) after integration
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Figure 6: Fit of the I(π+π−, π+π−; |Δt|) distribution. The black points are
the experimental data, while the histogram is the fit result in the case of ζSL

determination. The uncertainty arising from the detection efficiency evaluation
is shown as the hatched area. The peak at |Δt| ∼ 17τS is due to coherent and
incoherent KS-regeneration on the spherical beam pipe.

in (t1 + t2), and leaving the decoherence parameter ζ as a free parameter in
the fit. The results in the two main basis, {KS, KL} and {K0, K̄0}, are

ζSL = 0.018± 0.040stat ± 0.007syst
ζ00̄ = (1.0 ± 2.1stat ± 0.4syst) × 10−6 ,

compatible with the quantum mechanics prediction, i.e. ζSL = ζ00̄ = 0, and
no decoherence effects. As an example, the fit of the |Δt| distribution used to
determine ζSL is shown in Fig.6.

The result on ζ00̄ has a high accuracy, of O(10−6), due to the CP sup-
pression present in the specific f1 = f2 = ππ decay channel which makes the
function (50) very sensitive to ζ00̄ deviations from zero. This result improves



by five orders of magnitude the previous limit obtained by Bertlmann and co-
workers 32) in a re-analysis of CPLEAR data 62) (a review of the CPLEAR
results can be found in the contribution of Go 28)). It can also be compared to
a similar result recently obtained in the B meson system 63), where an accuracy
of O(10−2) can be reached.

Another analysis based on the same data constrains the parameters α,
β and γ related to possible decoherence effects induced by quantum gravity,
as discussed above. The theoretical expression of the I(π+π−, π+π−; |Δt|)
distribution including these effects can be found in Refs. 48, 17). The KLOE
preliminary results are 64):

α =
(
−10+41

−31stat ± 9syst
)
× 10−17 GeV

β =
(
3.7+6.9

−9.2stat ± 1.8syst
)
× 10−19 GeV

γ =
(
−0.5+5.8

−5.1stat ± 1.2syst
)
× 10−21 GeV (64)

In the simplifying hypothesis of complete positivity, i.e. α = γ and β = 0, the
KLOE result is 59):

γ =
(
1.3+2.8

−2.4 ± 0.4
) × 10−21 GeV , (65)

These results can be compared to the ones obtained by the CPLEAR collabo-
ration, studying single neutral kaon decays to π+π− and πeν final states 65):

α = (−0.5 ± 2.8)× 10−17 GeV

β = (2.5 ± 2.3) × 10−19 GeV

γ = (1.1 ± 2.5) × 10−21 GeV . (66)

All results are compatible with no CPT violation, while the sensitivity ap-
proaches the interesting level of O(10−20 GeV).

The uncertainties on the KLOE measurements of the ζ, α, β, γ, and ω

parameters should improve by more than a factor two with the analysis of the
full KLOE data sample of 2.5 fb−1.

As discussed above CPT violation effects might also induce a breakdown
of the correlation of state (23), as given in eq.(54). A similar analysis performed
on the same KLOE data as before, including in the fit the modified initial state
(54), yields the first measurement of the complex parameter ω 59):

�(ω) =
(
1.1+8.7

−5.3 ± 0.9
)× 10−4 �(ω) =

(
3.4+4.8

−5.0 ± 0.6
) × 10−4 ;



compatible with no CPT violation, and with an accuracy that already reaches
the interesting Planck’s scale region.

8.2 CPT symmetry tests with KS → πeν decays

For t1 � t2, τS (or t2 � t1, τS), the amplitude (25) factorizes, and everything
behaves like the initial state were an incoherent mixture of states |KS〉|KL〉
and |KL〉|KS〉. Hence the detection of a kaon at large times tags a |KS〉 state
in the opposite direction. This is a unique feature at a φ-factory, not possible
at fixed target experiments, that can be exploited to select a pure KS beam.

At KLOE a KS is tagged by identifying the interaction of the KL in the
calorimeter (KL-crash). In fact about 50% of the produced KL’s in φ → KSKL

events reach the calorimeter before decaying; their associated interactions are
identified by a high energy, neutral and delayed deposit in the calorimeter,
i.e. not associated to any charged track in the event, and delayed of ∼ 30 ns
(as βK ∼ 0.22) with respect to a photon coming from the interaction region.
Pure KS samples have been selected exploiting this tagging technique. In
particular KS → πeν decays are selected requiring a KL-crash and two tracks
forming a vertex close to the IP, and associated with two energy deposits in the
calorimeter. Pions and electrons are recognized using a time-of-flight technique.
The number of signal events is normalized to the number of KS → π+π− in
the same data set. Then the first measurement of the KS semileptonic charge
asymmetry has been performed 66):

AS = (1.5 ± 9.6stat ± 2.9syst) × 10−3 .

The uncertainty on AS can be reduced at the level of ≈ 3 × 10−3 with the
analysis of the full data sample of 2.5 fb−1.

From the sum and the difference of the KS and KL semileptonic charge
asymmetries one can test CPT conservation. Using the values of AL, �δ, and
�ε̄ from other experiments 61), the real part of the CPT violating and ΔS =
ΔQ violating (conserving) parameter x− (y) in semileptonic decay amplitudes
(see eqs.(42) and (43)), can be evaluated 66):

�x− =
AS − AL

4
−�δ = (−0.8 ± 2.5) × 10−3

�y = �ε̄ − AS + AL

4
= (0.4 ± 2.5) × 10−3 . (67)



8.3 CPT symmetry test from unitarity

The unitarity relation, originally derived by Bell and Steinberger 67),(
ΓS + ΓL

ΓS − ΓL
+ i tanφSW

) [ �ε̄

1 + |ε̄|2 − i�δ

]
=

=
1

ΓS − ΓL

∑
f

A∗(KS → f)A(KL → f) ≡
∑

f

αf (68)

can be used to bound �δ, after having provided all the αi parameters, ΓS ,
ΓL, and φSW as inputs. A detailed review on this subject is given in the
contribution of Isidori 68).

Using KLOE measurements, PDG 61) values, and a combined fit of KLOE
and CPLEAR data, the following result is obtained 69):

�ε̄ = (159.6± 1.3) × 10−5 , �δ = (0.4 ± 2.1) × 10−5 , (69)

the main limiting factor of this result being the uncertainty on the phase φ+−
of the η+− parameter entering in απ+π− .

The limits on �(δ) and �(δ) 70) can be used (see eq.(19)) to constrain
the mass and width difference between K0 and K̄0. In the limit Γ11 = Γ22, i.e.
neglecting CPT -violating effects in the decay amplitudes, the best bound on
the neutral kaon mass difference is obtained:

−5.3 × 10−19 GeV < M11 − M22 < 6.3 × 10−19 GeV at 95 % CL . (70)

8.4 Lorentz and CPT symmetries tests

From the measured value 66) of AS and a preliminary evaluation of AL by
KLOE, the difference AS − AL = (−2 ± 10) × 10−3, and a first preliminary
evaluation of the Δa0 parameter can be obtained 71):

Δa0 = (0.4 ± 1.8)× 10−17 GeV . (71)

With the analysis of the full KLOE data sample (L = 2.5 fb−1) a statistical
sensitivity δ(Δa0) ∼ 7×10−18 GeV could be reached. In the case of the method
based on double semileptonic decays (see eq.(45) ), the analysis of the full data
sample could yield a sensitivity δ(Δa0) ∼ 1 × 10−17 GeV.

An analysis has been performed on the same sample (L = 380 pb−1) of
φ → KSKL → π+π−, π+π− events used for the measurement of decoherence



parameters, exploiting the method based on eq.(61). It yields a first preliminary
evaluation of ΔaZ

71):

ΔaZ = (−1 ± 4) × 10−17 GeV . (72)

With the analysis of 2.5 fb−1 a statistical sensitivity δ(ΔaZ) ∼ 2× 10−17 GeV
could be reached. In the case of the method based on eq.(60), the analysis of
the full data sample could yield a sensitivity δ(ΔaZ) ∼ 3 × 10−17 GeV.

The same level of accuracy could also be reached on the ΔaX and ΔaY

parameters by means of a proper sidereal time dependent analysis. However in
this case the sensitivity would not be competitive with a preliminary measure-
ment performed by the KTeV collaboration 72) based on the search of sidereal
time variation of the phase φ+−, that constrains ΔaX and ΔaY to less than
9.2 × 10−22 GeV at 90% C.L. .

The Δaμ parameters have also been recently constrained in the B-meson
system 73) with an accuracy of O(10−12 GeV).

9 The KLOE-2 program

A proposal 74) has been recently submitted for a physics program to be car-
ried out with an upgraded KLOE detector, KLOE-2, at a new Frascati e+e−

collider, which is expected to deliver an integrated luminosity of the order of 50
fb−1 at the φ(1020) peak. The high luminosity is necessary to reach significant
sensitivities in the tests discussed above by means of neutral kaon interferom-
etry.

As discussed above, the decay mode φ → KSKL → π+π−π+π− is very
rich in physics. In general all decoherence effects show a deviation from the
quantum mechanical prediction (47). Hence the reconstruction of events in the
region at Δt ≈ 0, i.e. with vertices near the IP, is crucial for precise determina-
tion of the parameters related to CPT violation and to the decoherence. The
vertex resolution affects the I(π+π−, π+π−; |Δt|) distribution precisely in that
region, as shown in Fig. 7, and its impact on the decoherence parameter mea-
surements has to be carefully evaluated. In fact, the resolution has two main
effects: (1) to reduce the statistical sensitivity of the fit to the parameters; (2)
to introduce a source of systematic uncertainties. In Figs. 8, 9 the statistical
uncertainty on several decoherence and CPT -violating parameters is shown as
a function of the integrated luminosity for the case σ|Δt| ≈ τS (present KLOE



Figure 7: The I(π+π−, π+π−; |Δt|) distribution as a function of |Δt| (in τS

units) with the present KLOE resolution σ|Δt| ≈ τS (histogram with large bins),
with an improved resolution σ|Δt| ≈ 0.25 τS (histogram with small bins), and
in the ideal case (solid line).

resolution), and for σ|Δt| ≈ 0.25 τS. As it can be seen in the last case an im-
provement of about a factor two could be achieved. Therefore the addition
of a vertex detector between the spherical beam pipe and the drift chamber,
improving the vertex resolution in that region in order to have σ|Δt| ≈ 0.25 τS,
is the major upgrade of the KLOE detector that has been considered in the
KLOE-2 proposal. The KLOE-2 physics program concerning interferometry
measurements is summarized in table 2, where the KLOE-2 statistical sensitiv-
ities to the main parameters that can be extracted from the experimental time
distributions I(f1, f2; Δt) with different choices of final states fi, are listed in
the hypothesis of an integrated luminosity L = 50 fb−1, and compared to the
best presently published measurements.



Table 2: KLOE-2 statistical sensitivities on several parameters.
f1 f2 parameter best published meas. KLOE-2 (50 fb−1)

KS → πeν AS (1.5 ± 11) × 10−3 ± 1 × 10−3

π+π− πlν AL (3322 ± 58 ± 47) × 10−6 ± 25 × 10−6

π+π− π0π0 � ε′
ε (1.66 ± 0.26) × 10−3 ± 0.2 × 10−3

π+π− π0π0 � ε′
ε (1.2 ± 2.3) × 10−3 ± 3 × 10−3

π+l−ν̄ π−l+ν (�δ + �x−) �δ = (0.29 ± 0.27)× 10−3 ± 0.2 × 10−3

�x− = (−0.8 ± 2.5)× 10−3

π+l−ν̄ π−l+ν (�δ + �x+) �δ = (0.4 ± 2.1)× 10−5 ± 3 × 10−3

�x+ = (0.8 ± 0.7) × 10−2

π+π− π+π− Δm 5.288± 0.043 × 109s−1 ± 0.03 × 109s−1

π+π− π+π− ζSL (1.8 ± 4.1) × 10−2 ± 0.2 × 10−2

π+π− π+π− ζ00̄ (1.0 ± 2.1) × 10−6 ± 0.1 × 10−6

π+π− π+π− α (−0.5 ± 2.8) × 10−17 GeV ±2 × 10−17 GeV

π+π− π+π− β (2.5 ± 2.3) × 10−19 GeV ± 0.1 × 10−19 GeV

π+π− π+π− γ (1.1 ± 2.5) × 10−21 GeV ± 0.2 × 10−21 GeV
(compl. pos. hyp.)
± 0.1 × 10−21 GeV

π+π− π+π− �ω (1.1+8.7
−5.3 ± 0.9) × 10−4 ± 2 × 10−5

π+π− π+π− �ω (3.4+4.8
−5.0 ± 0.6) × 10−4 ± 2 × 10−5

KS,L → πeν Δa0 (prelim.: (0.4 ± 1.8) × 10−17 GeV) ± 2 × 10−18 GeV
π+l−ν̄ π−l+ν ± 2 × 10−18 GeV

π+π− πlν ΔaZ (prelim.: (−1 ± 4) × 10−17 GeV) ± 5 × 10−18 GeV
π+π− π+π− ± 3 × 10−18 GeV

π+π− πlν ΔaX , ΔaY (prelim.: < 9.2 × 10−22 GeV) O(10−18) GeV
π+π− π+π− O(10−18) GeV



Figure 8: The statistical sensitivity to the ζSL, ζ00̄ and �ω parameters with the
present KLOE resolution σ|Δt| ≈ τS (open circles), with an improved resolution
σ|Δt| ≈ 0.25 τS (full circles).

10 Conclusions

A φ-factory represents a unique opportunity to study the neutral kaon system,
and the related fundamental discrete symmetries. It is also an ideal place to
investigate the entanglement and correlation properties of the produced K0K̄0

pairs, as well as CPT violation effects that might be induced by quantum
gravity effects.

The KLOE experiment concluded the data taking at the beginning of 2006
with a total integrated luminosity of ∼ 2.5 fb−1. Several parameters related to
possible CPT violations in conjunction with decoherence or Lorentz symmetry
violations, have been measured, some of them for the first time, and with a



Figure 9: The statistical sensitivity to the parameters α, β, γ with the present
KLOE resolution σ|Δt| ≈ τS (open circles), and with an improved resolution
σ|Δt| ≈ 0.25 τS (full circles); the horizontal lines represent the CPLEAR results.

precision reaching the interesting Planck’s scale region; with the analysis of the
full KLOE data sample further improvements are expected on all results.

The search for such CPT violation effects and precision tests of quantum
mechanics by means of neutral kaon interferometry constitute one of the main
physics issues of the KLOE-2 proposal. With an integrated luminosity of about
50 fb−1, significant improvements in a variety of observables involving different
final states are expected.
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